About DOE Button Organization Button News Button Contact Us Button
Search  
US Department of Energy Seal and Header Photo
Science and Technology Button Energy Sources Button Energy Efficiency Button The Environment Button Prices and Trends Button National Security Button Safety and Health Button
_DOE Office of Fossil Energy Web Site

Fossil Energy

-

Techlines (News)

-

Speeches

-

Congressional Testimony

-

Upcoming Events

-

Register for NewsAlerts

-

IN YOUR STATE

OFFICES & FACILITIES

EMAIL UPDATES

Register to receive Fossil Energy NEWSALERTS by e-mail.

GO to Link

QUICK REFERENCE

You are here:  Techlines (News) > 2005 Techlines > 05022-Alaska Heavy Oil

Techlines provide updates of specific interest to the fossil fuel community. Some Techlines may be issued by the Department of Energy Office of Public Affairs as agency news announcements.
 
 
Issued on:  May 12, 2005

Heavy Oil Potential Key to Alaskan North Slope Oil Future


DOE-funded Research Points to Optimum Recovery Method

Tulsa, Okla. — Alaska’s North Slope boasts a massive heavy oil resource that someday could underpin the survival of one of the Nation’s most critical oil-producing provinces—and research funded by the Department of Energy may provide the key to unlocking this vast but, to date, largely intractable oil resource.
 
Alaska’s North Slope is home to the largest oilfield ever found in North America, the legendary Prudhoe Bay. Also linked to the Prudhoe Bay infrastructure is Kuparuk River oilfield, the Nation’s second largest oilfield by production. A number of smaller oilfields that still would be considered giants by Lower 48 standards have been developed nearby.
 
But perhaps the biggest potential source of oil on the North Slope is the less-heralded heavy oil formations overlying the main producing zones at Prudhoe and Kuparuk. As much as 36 billion barrels of original-oil-in-place lie within the Ugnu, West Sak, and Schrader Bluff formations. That surpasses the original-oil-in-place of Prudhoe and Kuparuk combined.
 
The largest undeveloped accumulations in North America, these reservoirs lie tantalizingly in reach of existing infrastructure. Their recovery, however, has proven a daunting challenge. At a depth of 3,000–3,500 feet, these formations’ proximity to the subsurface permafrost renders the already low-gravity crudes extremely viscous. Viscous crude, which can be as thick as molasses, has trouble flowing to the wellbore for production. Low formation strength presents an additional hurdle to high recovery and productivity rates. North Slope producers have struggled for years to devise an economic plan to recover the heavy oils. This plan has become more important for America’s energy security because of production declines in other North Slope fields.
 
North Slope operators thus far have focused on the less-viscous crudes in the West Sak and Schrader Bluff heavy-oil formations, where viscosities range from ~30 centipoise to ~3,000 centipoise. Combined original-oil-in-place volumes for these two formations total about 10–20 billion barrels. Even assuming modest recovery rates, producible reserves could total several billion barrels of oil. Because there are even higher viscosities seen in the Ugnu formation, that resource’s exploitation must await future technological advances.
 
North Slope operators have had some success producing the less-viscous crudes in the West Sak and Schrader Bluff formations by injecting slugs of water alternating with gas (WAG) into the reservoirs; the gas acts as a solvent to reduce oil viscosity, while the water front helps sweep the reservoir, pushing the crude to producing wells.
 
There are several gas streams available on the North Slope that contain natural gas liquids and carbon dioxide. Natural gas liquids have been used for years as part of a miscible gas enhanced oil recovery effort to bolster recovery at Prudhoe Bay. CO2 flooding is the fastest-growing form of enhanced oil recovery in the United States and creates the opportunity for environmentally safe disposal of the greenhouse gas.
 
DOE-funded research by the University of Houston has developed tools for modeling the optimum WAG flood design. The goal of the research—managed for DOE’s Office of Fossil Energy by the National Energy Technology Laboratory—was to focus on modeling tools that would determine the best solvent, injection schedule, and well architecture for a WAG process in North Slope shallow-sand viscous oil reservoirs.
 
In the project, which took place from September 2001 through September 2004, the researchers were tasked with developing a compositional model, devising a new relative permeability model, creating a reservoir simulator, designing the ideal well architecture, and optimizing the WAG flood.
 
In their final project report, researchers also found a potential for greatly increased production rates for deploying WAG floods in horizontal wells vs. vertical wells, depending on well design and other factors. The research also showed that well productivity for these viscous oil reservoirs can be doubled via electromagnetic heating. 
 
Such models will serve as useful tools in fully commercializing a vast oil resource needed to help stem the decline of production on Alaska’s North Slope. And that could make the difference in keeping America’s most prolific oil province on line.

- End of Techline -

For more information, contact:

Program Links

>

DOE's Oil Recovery R&D Program


 

 

>

 Page owner:  Fossil Energy Office of Communications
Page updated on: December 14, 2005 

The White House USA.gov E-gov IQ FOIA Privacy Program
U.S. Department of Energy | 1000 Independence Ave., SW | Washington, DC 20585
1-800-dial-DOE | f/202-586-4403 | e/General Contact

Web Policies | No Fear Act | Site Map | Privacy | Phone Book | Employment