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Summary

This paper analytically examines the unsteady fluid dynamics of a

vortex filament subsequent to a normal collision of the vortex with a

solid body. In particular, the breakdown or reconnection

phenomena, post-collision, for a vortex filament is studied. The

paper does not investigate the collision dynamics process itself. The

derived exact solution is based upon the laminar viscous form of the

Helmholtz equations.

Nomenclature

Radial coordinate, origin at filament axis, ft

r* Nondimensional radial coordinate, r*=r/s

rc Vortex filament core size radii as a function of time, t, ft

Re Vortex filament Reynolds number, Re=7/v
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Axial distance of filament breakpoint (time equal zero) from
origin, fl

Time, sec

Nondimensional time parameter, t*=vt/s 2

Velocity vector, cylindrical coordinates, V=[v r v0 vz], fl/sec

Radial velocity component, ft/sec

Nondimensional radial velocity component

Axial (along vortex filament axis) velocity component, ft/sec

Nondimensional axial velocity component

Tangential velocity component, ft/sec

Nondimensional tangential velocity component

Axial (along vortex filament axis) coordinate, origin at

intersection of filament segments' plane of symmetry and
filament axis, fl

Nondimensional axial coordinate, z*-z/s

Vortex filament initial circulation strength, ftVsec

Vorex circulation, ftVsec

Kinematic viscosity, ftVsec

Angular coordinate, radians

Vorticity vector, c0=[co r ¢o0 o3z], ftVsec

Quasi-stream function
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Introduction

Vortex filament 'collisions' with solid bodies occur in a number of
real world examples for rotary-wing aircraft: blade vortex
interactions where vortices shed from one blade collide with another
blade; trailed tip vortex interactions/collisions with a helicopter
airframe/tailboom in hover and low-speed flight; or, alternatively,
proprotor trailed tip vortex collisions with wing surfaces for tiltrotor
aircraft in airplane-mode. For, blade vortex interactions, references
1-3 provide qualitative discussion regarding the vortex filament
collision process. References 4-7 provide a similar qualitative
discussion of vortex fuselage/airframe/wing collisions.

Very little work to date has been performed examining the post-
collision dynamics of vortex/solid body interactions. Most work has
either concentrated on the collision process itself (see reference 8) or,
alternatively, has looked at vortex-on-vortex collisions (see reference
9, for example). A related academic exercise is the study of ring

vortices throughout the collision process; see reference 10, for

example.

Nonetheless, flow visualization techniques are sufficiently maturing

so as to examine in detail the rotary-wing/airframe vortex filament

collision process - see, in particular, references 4, 5, and 7. It's clear

that current rotor wake CFD analyses are inadequate to represent

rotor vortex filament collision and subsequent breakdown or

reconnection. This paper proposes as a initial step towards

understanding the very complex flow phenomena of rotor wakes a

first order analytical treatment of the vortex filament/solid body

collision process. This paper will concentrate on the post-collision

vortex filament fluid dynamics.
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Problem Description

Figure 1 illustrates the point that there is going to be varying

degrees of vortex filament breakage (in form of filament distortion

and separation of breakpoints) depending on the severity of the
collision process. Vortex filament collisions with thin solid bodies

will tend to minimize the separation distance between the filament

segment breakpoints as well as minimize the filament distortion.

Therefore, collision with thin solid bodies will tend to result in the

'reconnection' of the vortex filaments. Conversely, collisions with

bluff bodies will tend to result in large . breakpoint separation

distances and considerable filament segment distortion -- therefore,

most likely resulting in filament segment 'breakdown.'
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Collision with Thin Body Collision with Bluff Body

Figure 1 - Hypothetical Vortex Filament Distortion/Breakage After
Collision with Solid Bodies
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Figure 2 illustrates an idealized version of the vortex filament in the
intermediate process of vortex reconnection/breakdown, post-
collision. Distortion of the filament as to deflection of filament axis
laterally from its undisturbed orientation is neglected. Initial axial
flow (along the filament) is assumed to be zero as a result of the
collision process: the filament, as it wraps around the solid body, will
have to obey the no-flow boundary constraint.

/
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Filament
Segment

VOrtex

Filament
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Figure 2 - Vortex Geometry Description. (Vortex Filament Described

_by_ Contour of Maximum Velocity)



Governing Equations

The Helmholtz equation for laminar-flow vorticity (references 13 and

14) is given by

DcO (co. V)V + vV2o3
Dt (1)

The term Dc0/Dt is the 'particle derivative' for the vorticity.

further, (references 13 and 14)

And,

divco = V. co = 0 (2)

where

co = curlY = V x V (3)

Considering the vorticity component about the z-axis (mz), for the

problem under discussion -- and using the cylindrical coordinate

system for the Helmholtz, vorticity divergence equations, and the

vorticity definition -- the above two equations become respectively

am, am, v o 3% 3c%
at _Vr--_"r "t" r 30 +v_ =

C0r_r_'_c%_v* _ f_2mz 1_0_ z 1 _2_z _20_z_
r 00 +% +v{-_r2 +r--_-r +r= 002 + 3z = j

(4)



I_( i_c0 e ___0_rCOr) + ----- = 0
r r c30 c3z

(5)

where.

1 _v, Ov o

% - r _0 Oz

(_V0 V0 10V r

0_- Or + r r oaO

(6a-c)

Imposing O-symmetry on equations 4, 5, and 6a-c gives

boo.+c3t vr _r_ + Vz_z_ "°b_r _ +_' av'--_z + v_-_r z(82c0"+ 1 8c0'r--_-r + a2c°'_8z'J

(7)

COz J k. ar + r )dz
(8)

where

C_V o

8z
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OV r OV z

co° = Oz 3r

_V o V o

(Dz= O--'; -+-r

(9a-c)

Note that substitution of equation 9a into equation 8 automatically

satisfies equation 9c. Finally, the continuity equation (0-symmetry)
requires that

l___(rv)+lOv 0 3v_ v, 0Vr+OV ,
rOr' r, r-_-+-_-z ---_-+r 3r -_z =0 (10)

Or, rather

_v_ JL Or + dz (11)

This completes the set of required governing equations necessary to
solve the described problem for laminar flow.

Solution

A class of unsteady laminar flow problems called 'moving boundary'

problems has been exhaustively studied in the literature. By

assuming that Vr=Vz=0, the Navier-Stokes equations (or,

correspondingly, the Helmholtz vorticity equation) can be reduced to

the well-known unsteady heat conduction equation (reference 15).
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The Lamb-Oseen vortex solution (references 13 and 14) is one
member of this class of unsteady laminar flow problems.

What is sought then is a new class of flow problems that not only
encompasses the 'moving boundary' class of problems but the
problem described in this paper. But key to defining this new class
of flow problems remains the mathematical challenge of reducing the
Helmholtz equation, with 0-symmetry, to the unsteady heat

conduction equation.

It is proposed that this new class of solution can be defined by

assuming that the radial velocity component, Vr, is not merely equal

to zero but instead is proportional to the tangential velocity gradient

with respect to the z-axis (equation 12). (Note that if the tangential

velocity gradient is zero, such as in the case of the Lamb-Oseen

vortex, then the 'moving boundary' class of problems is recaptured.)

bY° (12a)
Vre< _Z

Or

v r =g ov° (12b)
Oz

Where the length scale factor, g, is a constant that transforms the

proportional relationship of equation 12a to the equivalence

relationship of 12b. (The constant g has the unit of length hence it

being called a 'length scale factor.') This will be discussed in detail

later in the paper.

Meanwhile, continuing with the analysis with the proportional

relationship for radial velocity, applying equation 12a to equation 11

gives a second proportional relationship based on flow continuity for

the axial velocity.

v_ k ar +
(13)



Applying equations 12a and 13 to equations 9a-c gives

_£ ¢_ _VI "

_'_z _ BVz

(14a-b)

Application of equations 12a, 13, and 14a-b to equation 7 causes the

convective acceleration terms to cancel out the vortex stretching

terms and thereby achieves the objective of reducing the Helmholtz

equation to the unsteady heat conduction equation (equation 15).

= + j (15)

Reference 15 reveals that a particular solution of equation 15, for a

instantaneous point source, is given by

C

co_lpoi._o__ - 8(rtvt)3/2 e-(_+(_-_')_)/4_ (16)

where c is a constant, z. is the origin of the instantaneous point

source with respect to the z-axis, and r and z are the coordinates of

the point for which the vorticity is predicted.

Correspondingly, reference 15 derives the solution to the unsteady
heat conduction equation for an instantaneous line source of infinite

length (represented as a continuous distribution of instantaneous

point sources) by the equation 17.
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('l')z infinite line source -- --
c 7 -(r,+-z.),)/,v,.

8(_:Vt)3/:_ .12 az,

C e_, 2/4vt

4rcvt

(17)

With the constant, c, set equal to the circulation strength, y,

(reference 14), then equation 17 becomes the vorticity distribution
for a Lamb-Oseen ",ortex.

To solve the unsteady laminar flow problem for a rectilinear vortex

filament that has been 'cut' or 'broken,' however, it is necessary to

represent the vortex filament segments with semi-infinite

distributions of instantaneous point sources (equation 18). Note that

the constant, c, still has been assigned the value c=7.

{! s }- Y e("-_')=/4_'dz, + e " dL.
(D z 8(TCVt) 3/2 e-r=/4vt -(z-z )=/4vt

(18)

The integral terms in equation 18 can be found in standard

handbooks for integralion formulas (see reference 16). The solution

of vorticity component with respect to the z-axis is given by

where erfc(x) is the complementary error function, i.e.,

/,_ _112

erfc(x) = -_- Jx e du (20)

Noting that complementary error function is related to the error

function by the relationship erfc(x)--1-eft(x). And, further,

erf(-x)=-eft(x), eft(,,,,)= 1, and eft(0)=0. With these properties of the

error function and complementary error function in mind, it can be
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readily seen that equation 19 satisfies three important boundary
constraints and/or conditions.

0-)z "_ _/_e -r2/4vt for s _ 0
4nvt

z ---_ 4-oo

t_0 for Izl_>s

(Vorticity distribution approaches that of the Lamb-Oseen Vortex)

Having derived the vorticity distribution, the axial velocity

distribution follows straghtforwardly from equation 14b, given

equation 19.

vz °_ -_t e-?/4vt ferfc(_v_ ) + erfc( s + z ]_ (21)

Haivng established the proportional relationship vz o_f(r,z,t), it is

necessary to multiply equation 21 by a length scale to arrive at an

equivalence relationship v, =gf(r,z,t). The appropriate length scale

factor is the separation distance, i.e., g=+s. Further, specifically,

g=+s when z<0 and g=-s when z_>0. Besides being a natural length

scale factor, using s as the length scale automatically satisifies the

'moving boundary' extreme of the vortex filament

breakdown/reconnection problem; i.e., when s=0 then v z =0.

80t e
where z<0

= erfc( s +z _v_ + Ts e-rVavt_erfc(S__Z_]+
8nvt L _.Vnvt ) _,4_f4_-)J

(22b)
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and where z>0.

Given equations 9c and 19, the tangential velocity distribution can be

derived through solution of a first-order ordinary differential

equation.

v0= 'Y(1-e-':2/4"l_erfc(s_-_+erfc(_t) }2rtr t JL /_4vt J
(23)

The analogous attributes of equation 23 with respect to the Lamb-

Oseen vortex are obvious (reference 14). As demonstrated in a

similar manner with respect to the vorticity distribution, if s_0

then, correspondingly, the tangential velocity distribution reduces to

the Lamb-Oseen profile.

Next, given equations 23 and 12a, the radial velocity, vr, can be

derived by taking the derivative of v0 with respect to z (equation

24).

v r o_ 2_.r(1-7 e-r2/4v,){e-(S-z)2/4_t _ e-(S+z):/4vt}
(24)

Applying the length scale factor, g=+s (where g=+s when z<0 and

g=-s when z>0), to equation 24, given equation 12a, gives the

following expression for the radial velocity distribution

"/s (1 _ e_rV,_,,t){e_(,_z)2/4,,t _ e_(,+_):/4,,t }Vr =-_ 2_-r
(25a)

when z<0,

Vr = 2_/-_.r(1-Ts e-r"/_,.t){e-(S-7):/4_t _ e-(,÷_)_/4,,,}
(25b)
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when z_>0. A key outcome of equations 25a-b is the prediction that
the radial velocity is negative (inward to the vortex core) for all
values of r, z, and t.

The process and rate by which the vortex filament segments
'reconnect' can be quantified by a single parameter, Z. The

derivation of this parameter will now proceed. First, the vortex

segment circulation will be defined by equation 26.

r

F - 2rcJ'mzdr (26)

Substitution of equation 19 into 26 and performing the required
integration yields.

F = _ (1 - e-r2/4v'){erfC(_v_ ) + erfc( s_t ) } (27)

See reference 14 for the derivation for the circulation of an infinite

line vortex. What is needed to examine the rate of filament segment
reconnection is the rate of increase of the circulation in the

intermediate region (z=0) between filament segments versus the

circulation of the filament far away from the breakpoints (z--++oo).

Therefore, the parameter, Z, will be defined as follows

(28)

Application of equation 27 to equation 28 -- taking the appropriate

limits for each term in the numerator and denominator of equation

28 -- gives the following expression for Z.
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The implications of equation 29 and equations 22a-b, 23, and 25 of
the unsteady flow behavior of the vortex sements will be discussed
in the next section of the paper.

Discussion of Results

A set of exact solutions have been derived for the unsteady laminar

flow behavior of a vortex filament subsequent to a perpendicular

collision with a solid body. A number of simplifying assumptions

was required in order to derive this solution. Chief among those

assumptions are: (1) that the filament segments still remained

straight, parallel, and aligned with each other; (2) a clean 'break' or
'cut' existed such that no initial vortical flow existed in the

intermediate region between the breakpoints; (3) implied, but not

explicitly assumed, was that the vortex filaments could be

represented by a Lamb-Oseen vortex as an initial condition.

Given this set of exact solutions, it is necessary to examine their

implications for the vortex filament reconnection (or breakdown)

process. In order to examine the results of the above analytical

treatment the following dimensionless parameters will need to be

defined: r*=r/s; z*=z/_,; t*=vt/s2; v_ = Vr(S/7); V_ = Vz(S/7); V; = Vo(S/7 ).

Figure 3 is the tangential velocity profile with respect tor r" for

various values of t*. The time dependent behavior manifested in

figure 3 not only aacounts for the Lamb-Oseen vortex viscous

diffusion effects but also accounts for viscous vorticity transport

from the vortex filament segments ([zl>s) to the intermediate region

(Izl<s) between the filament breakpoints.
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Figure 3 - Tangential Velocity Profile as a Function of Time at the

Vortex Filament Breakpoint (z*=-_z__L)

The normalized tangential velocity profile with respect to r* is similar

to the well-recognized Lamb-Oseen tangential vortex profile -- refer

to figure 4 - except that the viscous vorticity transport mechanism

results in a net reduction in magnitude of the tangential velocities.

There are more significant differences in the flow behavior of the

reconnecting vortex filament segment problem -- as will be seen.
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Figure 4 - Differences between the Lamb-Oseen Vortex Tangential

Velocity Profile and the Profile for Broken but 'Reconnecting'

Filaments (z*=-l.O and t*=l.Ol

As noted earlier, with the Lamb-Oseen vortex , vr=vz=0. The radial

and axial velocities for the 'broken' vortex filament segments are, on

the other hand, substantial. Figures 5 and 6a-b illustrate the vortex

filament unsteady flow behavior. Figure 5 shows the vector flow

field for the r-z plane.
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Figure 6a Streakline Plot for the r0 Plane
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Figure 6b - Streakline Plot for the r-z Plane

The dependence of the parameter _ (equation 29) -- the ratio of

circulation of the flow at z=0 versus that at z_+_ -- with respect to

the nondimensionalized time parameter, t" is shown in figure 7.
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Interpretation of figure 7 suggests that the greater than vortex

filament breakpoint separation, s, or the lower the kinematic

visocosity, v, the slower (or less likely) the filament reconnection will

be accomplished.

)C 0.5

0 1 2

*

Figure 7 - _ as a function of t*

There can be no absolute means by which to define when a vortex

filament will 'breakdown' versus 'reconnect.' If one were willing to

wait an infinite amount of time all broken or cut vortex filaments

will eventually reconnect, given one interpretation of equation 29.

However, as a practical matter, there will quickly reach a point

where the vortex filament segments will have decayed sufficiently

via viscous diffusion such that no discernable flow structure will

exist by the time reconnection is achieved -- therefore an observer

would likely conclude that the vortex filaments have suffered

breakdown rather than reconnection. Only some sort of semi-

arbitrary criteria can be established to distinquish between vortex

filament segment reconnection or breakdown. The author will not

propose such a criteria in this paper.

Conclusions
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An exact solution for the breakdown or reconnection of a laminar

vortex filament -- having been 'cut' or 'broken' subsequent to a

collision with a solid body -- has been developed. The analytical

solution is based upon the definition of a general class of flow

problems that encompasses as a subset the extensively studied

'moving boundary' laminar flow problems. The viscous Helmholtz

equation for vorticity is reduced to the unsteady heat conduction

equation. Consequently, instantaneous lines sources for the vorticity
can be used to model the vortex filament breakdown or reconnection

process. The analytical solution does not treat, though, the actual

collision process itself.
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