

DO Run 2b Trigger Upgrades

- Run 2a Trigger System
- Trigger Strategies for Run 2b
- Upgrade Design
 - L1 track trigger
 - L1 calorimeter trigger
 - L1 cal-track matching
 - + L2 upgrades
- Organization of Trigger Upgrades
- Schedule

Darien Wood Northeastern University Fermilab PAC Meeting April 12-13, 2002

Run 2b Project Organization

The Run 2a Trigger System

- Main physics driver for Run 2b: Higgs search
 - Need efficient triggers for Higgs production/decay in all major modes
- Top, W, Z
 - Important for precision mass measurement to complement Higgs mass determination
 - Also important for background & calibration for higgs search
- Other background/calibration channels (e.g. $Z \rightarrow b\overline{b}$)
- Some trigger load can be relieved elimination of low-pt physics menu (lower energy QCD, b-physics, ...), but this is not sufficient.

- Increase trigger rejection at Level 1
 - L1 Calorimeter trigger upgrade to sharpen thresholds
 - + L1 Tracking trigger upgrade to maintain rejection
 - Additional rejection from cal-track matching
- Maintain rejection at Level 2
 - + L2 Processor upgrades
 - Expand Silicon Track Trigger (STT) for new silicon detector geometry
- Upgrade/maintain DAQ/Online systems to support data collection through Run 2b (not discussed further in this talk)

Sample Run 2b Level1 Trigger rates

- Run2b: $\Delta t=132ns$, L=5x10³² cm⁻²s⁻¹
- High p_T trigger menu exceeds available bandwidth

Trigger	Example Physics Channel	Rate (no upg.)
EM Trigger (1 EM tower > 10 GeV)	$W \rightarrow e V$	9 kHz
Jet Trigger (2 trigger towers > 4 GeV)	$ZH \to v\overline{v}b\overline{b}$	2 kHz
Track Trigger (2 trk > 10, 5 GeV, iso, EM)	$H \to \tau \tau$	60 kHz
Muon Trigger (muon > 10 GeV)	$W \to \mu \nu$	6 kHz
TOTAL		77 hKz

Total rate into Level 2 limited to 5 kHz

FNAL PAC Meeting Apr 12-13, 2002

L1 Tracking Trigger Upgrades

- Level 1 Central Track Trigger (CTT) essential for electrons, muons, taus (WH→lvjj)
- Tracking trigger rates sensitive to occupancy
- Upgrade stategy:
 - Narrow tracker roads by using individual fiber hits (singlets) rather than pairing adjacent fibers (doublets)
 - Cal-track matching

Tracking Trigger Upgrades

H (51.4cm) 2× 44 fil G (49.4cm) 2× 40 fibe	bers Simulation rs	n result	s (prelin	niary): 5 ev	min. bias vents
F (44.5cm) 2× 36 fibers E (39.6cm) 2× 32 fibers D (34.7cm) 2× 28 fibers		Defa ult eq'ns	16- layer singlet	12- layer eq'ns	14- layer eq'ns
C (29.8cm) 2 × 24 fibers B (24.9cm) 2 × 20 fibers	Eff. For pt>10 Gev	96.9	99.3	98.6	99.2
A.5° / Upgrade: go to larger	Fake % (1 trk >10)	5.8	0.4	1.6	0.7
FPGA's for trigger logic	Fake % (2 trk > 10 Gev)	0.7	0	0.13	0.03

- Introduce digital filter on trigger tower signals
- Suppress pile-up effects
- Improve energy resolution
- Avoid triggering on wrong crossing (signal rise time > 132 ns)
 - Sample at peak to avoid timing variations
 - Previous crossing will often be above threshold
 - It would be the highest energy events (most interesting) which are mis-assigned

 Sharpen thresholds by introducing EM, Jet clustering

FNAL PAC Meeting Apr 12-13, 2002

Single jet

 $ZH \rightarrow v \overline{v} b b$

- Clustering algorithm gets implemented in FPGA's
- Similar to ATLAS sliding-window algorithm

- Present calorimeter trigger allows calorimeter-track matching only by quadrant in azimuth
- Upgrade L1 Cal trigger would provide calorimeter matching information with 8 times finer granularity

- Additional factor of ~2 in background rejection for electron triggers (confirming EM clusters with high- $p_{\rm T}$ tracks)
- Additional factor of ~3 in background rejection for tau's (confirming high- p_T isolated tracks with EM+had energy)

- Muon triggers No change needed to muon trigger system, but most muon triggers would gain needed rejection from upgrade of the CTT FPGA's.
- Global calorimeter sums better missing \textbf{E}_{T} with incorporation of intercryostat detector and massless gaps
- EM shape and isolation these cuts can be implemented in Level 1 after cluster finding, giving an additional factor of 2 rejection for electron & photon triggers
- Topology flexibility to require acoplanar jets, etc.
- Flexibility: New clustering and tracking algorithms can be implemented with FPGA downloads

- Studied and eliminated several upgrade options in favor of lower schedule-risk and/or cost:
 - Level 1 stereo tracking
 - Preshower as 9th tracking layer
 - Finer granularity of calorimeter towers (0.1x0.2)
- Use existing hardware (or minor modifications thereof) for new applications
 - Muon Trigger Cards for calorimeter-track matching
 - Existing DFE motherboards with daughter board replacement for tracking upgrade

Run 2b Level1 Trigger rates with upgrade

• Run2b: $\Delta t=132ns$, L=5x10³² cm⁻²s⁻¹

Trigger	Example Physics Channel	Rate (no upg.)	Rate (w/ upgrade)
EM Trigger (1 EM tower > 10 GeV)	$W \rightarrow e v$	9 kHz	0.5 kHz
Jet Trigger (2 trigger towers > 4 GeV)	$ZH \rightarrow v\overline{v}b\overline{b}$	2 kHz	0.5 kHz
Track Trigger (2 trk > 10, 5 GeV, iso, EM)	$H \to \tau \tau$	60 kHz	0.7 kHz
Muon Trigger (muon > 10 GeV)	$W \rightarrow \mu \nu$	6 kHz	2 kHz
TOTAL		77 hKz	3.7 kHz

Total rate into Level 2 limited to 5 kHz

Level 2 Trigger

- Silicon Track Trigger
 - Vital for triggering on b-quarks
 - ▲ ZH→vvbb
 - \blacktriangle Z \rightarrow bb (top mass jet energy scale)
 - Improves track trigger
 - \blacktriangle Sharper p_T turn-on
 - ▲ Reduced fake rate

- Upgrade needed to accommodate design of new silicon detector
- Level 2 β processors
 - Add 12 additional processors for higher Run2b luminosity
 - This additional processing power (X 2-3 increase over run2a) is needed to take advantage of the increased power at Level 1

- Summer 2001: DØ Trigger Task force studies upgrade options for trigger
- October 2001: Conceptual Design report produced, trigger upgrade presented to the Fermilab PAC
- December 2001: Reviewed by Director's Technical review committee. Scope approved:
 - "The proposed Level 1 trigger/DAQ upgrades are needed for the D0 experiment to function at an instantaneous luminosity of 5x10³² and a bunch spacing of 132ns. Without these improvements D0 will not be able to take useful data under Run 2b running conditions. "

- Jan 2002: MRI proposal submitted for trigger upgrade
 - \$2.6 M requested (\$2.0 M from NSF)
- April 2002: Technical design report draft, cost estimate, resource-loaded schedule prepared for Director's Review Committee.

Trigger Upgrade Project

Sub-project	Institution(s)
Calorimeter: ADF	Saclay, MSU
Calorimeter: TAB	Columbia
Track trigger	Boston University, FNAL
Cal-Track match	U. of Arizona
Simulation & algorithms	Notre Dame, Saclay, Kansas, Manchester, Brown
Online software & integration	MSU, Northeastern, FSU, Langston
Level 2 ^β	Orsay, Virginia
STT upgrade	Boston, Columbia, Stony Brook, FSU

Strong, active institutions

- Largely University-driven
- •Combination of Run2a experience and new ideas
- •Other institutions expressing interest

Schedule Contingency

scenario	All production and testing complete	Trigger slippage (days)
default	12/10/04	0
extra ADF prototype revision & test	03/04/04	84
extra TAB prototype revision & test	03/04/05	84
extra GAB prototype revision & test	12/10/04	0
double time for all in-situ and integration tests	04/29/05	140
3 rd prototype cycle for DFEAs	02/04/05	56
Cal-trk redesign after internal review	12/10/04	0
All of the above	06/24/05	196

Note: Shutdown period = 3/14/05 - 10/27/05

All scenarios leave at least 4 months for installation and commissioning

FNAL PAC Meeting Apr 12-13, 2002

- Trigger Upgrades needed for:
 - Increased rejection at level 1 (x2-3)
 - Controlling rates with multiple interactions
 - Triggering on correct beam crossing at 132 ns
 - More sophisticated event selection at Level 2
 - Selecting the events needed to discover the Higgs boson