Summary and conclusions
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e W.l.s. fibres give 120 photo electrons per 10 mm at best.
This is for non-scintillating Kuraray Y-11. SCSF-81Y-11(200) yields only 75 p.e.

e W.l.s. bars give slightly more and are simpler to build and cheaper.
An alternative for the photon veto?

e Direct coupling is both simpler and 2.5x faster and gives at least four times more signal.
By using four PM’s per scintillator module one might consider multiplicity logic (2/4) and
can live with dead channels.

e Who is afraid of PM’s in vacuum?

IMO[oq UMOYSAI ST uorjejuasold 19)9e[ oY} WOIJ dPI[s Arewrwns oy T,
[w " serIpue /goaou /sdurjeoumr /9g 6o /ordoad /A03 Tuq-qamqnd / /:dyyq

JeRUDQ IOp URA SOLIPUY AQ 90USIJUOD 09PIA Z(0Z I9qUIdAON 91} Je pojussard sis[eue o) pue

sd-ggouy/seroutdey/9gee/ordoad /a08-Tuq qamqnd / /:dyg
(sd-)gouy/sejouray /9zee /oidoad /A0S Tuq qomqnd / /:dyy)

620U} pPuR LU} S9j0U [eIIUYID) S} UI J[E[IRAR dIR S1S9} UIRd( INO WOIJ S}MNSAI YT,

Jeeyog JOp UeA SOLIPUY ‘NOYdS UOWIS ‘UURWI(OY 1919 ‘Tedsey] Zulo|

dnous yormz oYy 10y [ONIL, *d
d 0I°A d[oI1Ied padiey) Jo snjels

ugiso



Since the options with the photomulipliers directly coupled to the scintillators yields considerably
more light, we are presently concentrating on this option. We investigate further in our test setup the
influence of various light guides, run a photomultiplier with a scintillator attached to it in vacuum
over a period of almost a year now monitoring its performance with a source, and also studied how
we can mount the counters inside the tank. Some ideas to this matter are shown below.

The only new piece of information concerns the timing resolution, the position corrected time
difference for the signals from two of the four photomultiplies is shown:
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Distribution of the time difference between upper and lower pair of PMs in the
setup with direct coupling, corrected for the observed dependence on y. The
mean of the four PMs would have a twice narrower distribution independent of

position. We could not verify this because there was no decent time reference.



End of June and early July we have obtained test beam time at PSI, where we will test the full
size prototype shown below:
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In the following we show slides indicating how the charged particle veto might actually be

mounted inside the tank starting from the old version in the TDR:
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How a Version with PM’s in the tank could be constructed.
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How a Version with PM’s in the tank could be constructed, which allows access to the PM
without breaking the vacuum.
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The installation procedure for the charged particle veto, as foreseen up until now.
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The last four slide show how a charged particle veto (with fibre readout) may be made part of
the cylindrical version of the barrel photon veto (V.V. Issakov option):
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