

BROWN UNIVERSITY

Measurement of the tr Production Cross Section in Lepton+Jets Channel with Lifetime Tagging at DØ

Hwidong Yoo Brown University For DØ Experiment

04/16/07 APS April Meeting, Jacksonville Hwidong Yoo

Slide 1

- Introduction
- Analysis Overview
- Backgrounds Estimation
- Preselection
- Jet Tagging
- Control Plots
- MC and Data agreement
- Cross Section
- Conclusion

Introduction

- This analysis is for Lepton+Jets channel
 - The data used for this analysis is ~ 1 fb⁻¹
- The method is different from the previous analysis
 - To disriminate signal and background
 - Using event kinematics (for the previous analysis)
 - Using b-tagging (for this analysis)

Top Pair Branching Fractions

04/16/07 APS Meeting

Hwidong Yoo

Slide 3

- **Backgrounds Estimation**
- Multi-jet background
 - The dominant background before preselection
 - can reduce almost by preselection
 - determine by Matrix Method
 - e+jets: $\varepsilon_{sig} \sim 0.85$, $\varepsilon_{QCD} \sim 0.18$
 - mu+jets: $\varepsilon_{sig} \sim 0.84$, $\varepsilon_{QCD} \sim 0.24$
- W+jets
 - The dominant physics background
 - Normalize to the number of data before b-tagging
 - can reduce most of them by applying b-tagging
- Additional backgrounds
 - very low rate after b-tagging
 - single top, $Z \rightarrow \tau \tau$

•
$$N^{bg} = \sigma^{theory} \cdot \varepsilon^{presel} \cdot BR \cdot Lumiosity$$

$$N^{Wjets+t\bar{t}} = \mathcal{E}_{sig} \frac{N_t - \mathcal{E}_{QCD}N_l}{\mathcal{E}_{sig} - \mathcal{E}_{QCD}}$$

$$N^{QCD} = \varepsilon_{QCD} \frac{\varepsilon_{sig} N_l - N_t}{\varepsilon_{sig} - \varepsilon_{QCD}}$$

Requirements

- 3jets or \geq 4 jets in the event with Jet pT > 20 GeV
 - Most of top events have \geq 3jets
 - use the events with 1 and 2 jets for control of background estimation
 - Calculate the cross section with both 3 and \geq 4 jets events
- good vertex with $|z_{PV}| \le 60$ cm and at least 3 tracks attached
- Second lepton veto (orthogonal to dilepton channel)
- lepton coming from the primary vertex $|\Delta z(\text{lepton}, \text{PV})| < 1 \text{cm}$
- A tight isolation lepton with pT > 20 GeV
- Large MET > 20 GeV

ttbar → l+jets	Preselection efficiency (%)
e+jets	Exactly 3 jets 12.08 ± 0.09
	4 or more jets 11.62 ± 0.08
mu+jets	Exactly 3 jets 9.10 ± 0.07
	4 or more jets 9.80 ± 0.07

Jet Tagging

- NN b-tagger was developed at DØ
 - NN trained on 7 input variables for life-time information
 - vertex mass
 - vertex number of tracks
 - vertex decay length significance
 - chi2/DOF of vertex
 - number of vertices
 - two methods of combined track impact parameter significances (CSIP, JLIP)

04/16/07 APS Meeting

Hwidong Yoo

- New NN tagger efficiency is improved (~15%)
 - b-jet tagging efficiency : ~ 69%
 - old tagger used for 425 pb^{-1} : ~ 60%
 - smaller systematic uncertainties
- MC Event Weight
 - $p_i = probability for jet i to be tagged$
 - n = number of jets in the event

$$P_{\geq 2} = P_{\geq 1} - P_1$$

Improved of 15% w.r.t. the previous b-jet tagging

Control Plots (b-tagged events)

MC and Data agreement

lepton+jet channel combined

04/16/07 APS Meeting

Hwidong Yoo

- Cross section is calculated with 8 different channels
 - e+jets: 1 b-tag and \geq 2 b-tags, 3 jets and \geq 4 jets (4 channels)
 - mu+jets: 1 b-tag and ≥ 2 b-tags, 3 jets and ≥ 4 jets (4 channels)
- Cross Section

$$\sigma_{t\bar{t}} = \frac{N_{observed}^{b-tag} - N_{background}^{b-tag}}{L \cdot Br \cdot \mathcal{E}_{presel} \cdot \mathcal{E}_{b-tag}} \cdot \mathcal{E}_{b-tag}$$

$$Top Mass Dependence$$

$$l + jets: \sigma_{tt} = 8.3 + 0.6_{-0.5}(stat) + 0.9_{-1.0}(sys) \pm 0.5(lumi) pb$$

$$e + jets: \sigma_{tt} = 7.4 \pm 0.7(stat) + 0.8_{-1.0}(sys) \pm 0.4(lumi) pb$$

$$\mu + jets: \sigma_{tt} = 9.5 \pm 0.9(stat) + 1.1_{-1.3}(sys) \pm 0.6(lumi) pb$$

 $\sigma_{tt}^{NLO} = 6.8 \pm 0.6 \text{ pb}$

Kidonakis & Vogt, PRD 68 (2003)

Hwidong Yoo

 $\delta\sigma/\sigma = +14\% - 15\%$

- Measured cross section is agreed well with the SM prediction
- This result is currently the most precise top cross section measurement at DØ
- Due to the improved b-tagging algorithm, we have small statistical errors
 - Try to reduce systematic uncertainties
- on going to publish

Backup Slides

Introduction

- Top quark was discovered at 1995 by DØ and CDF Collaborations
- **Tevatron** is still the only place to produce the top events in the world
- Top pair events are important to understand the Standard Model and search New physics
 - They are important background for Higgs search
- Measurement of top pair production cross section is the first step toward any Top property analysis

Tevatron and DØ detector

• Tevatron

- $p\bar{p}$ collider with $\sqrt{s} = 1.96$ TeV
- Integ. Lumi. 2.71fb⁻¹(delivered), 2.28fb⁻¹(recorded)
- expect 3fb⁻¹ by July!
- DØ Detector
 - Silicon Vertex Detector
 - Central Tracker
 - EM and Hadronic Calorimetors
 - Muon Detector

DØ Detector Overview

04/16/07 APS Meeting

Hwidong Yoo

Slide 15

Top Quark Production and Decay

Top quark pair production at Tevatron energies

q \overline{q} anihilation (~ 85%)

gluon fusion (~ 15%)

Top Pair Branching Fractions

I, q

b

- Top quark decays to Wb with ~100% due to it's heavy mass
 - So, the final states are determined by what W boson decays
 - 3 types of channels
 - dilepton channel
 - lepton + jets channel
 - all hadronic channel

04/16/07 APS Meeting

Signal

- one isolated, high pT letpon
- Large Missing Transverse Energy (MET) from neutrino
- \geq 4 jets
 - b-tagging (≥ 1 b-tag)
 - To discriminate signal from background
 - Require at least one b-tagged jet in the final state
- Background
 - Main physics background is W+jets (W+bb, W+cc, and W+light-jets)
 - Multi-jet background

- e+jets channel
 - Exactly 3 or \geq 4 jets with pT > 20GeV and $|\eta| < 2.5$
 - one tight electron with pT > 20 GeV in CC
 - no second tight electron with pT > 15 GeV in CC or EC
 - no isolated muon with pT > 15 GeV
 - good vertex with $|z_{PV}| \le 60$ cm with at least 3 tracks attached
 - electron coming from the primary vertex $|\Delta z(e, PV)| < 1$ cm
 - MET > 20GeV and $\Delta \Phi(e, MET) > 0.7*\pi 0.045*MET$
- mu+jets channel
 - Exactly 3 or \geq 4 jets with pT > 20GeV and $|\eta| < 2.5$
 - one tight muon with pT > 20 GeV with muon quality MediumNSeg3
 - invariant mass of the selection muon and any second muon $M_{\mu\mu} < 70 GeV$ or $M_{\mu\mu} > 110 GeV$ to reject $Z(\rightarrow \mu\mu)$ +jets events
 - no second muon with pT > 15 GeV with muon quality MediumNSeg3
 - no tight electron with pT > 15 GeV
 - good vertex with $|z_{PV}| \le 60$ cm with at least 3 tracks attached
 - muon coming from the primary vertex $|\Delta z(e,PV)| < 1$ cm
 - MET > 20GeV and $\Delta \Phi(e, MET) > 0.48*\pi 0.033*MET$ and $W_{tmss} > 30 \text{ GeV}$