Physics with the HKS - hypernuclear spectroscopy E01-011

Mizuki Sumihama For HKS collaboration Department of Physics Tohoku university

2005 HallC Summer Workshop

Collaboration list

 O.Hashimoto (Spokesperson), S.N.Nakamura (Spokesperson), Y.Fujii, M.Kaneta, M.Sumihama, H.Tamura, K.Maeda, H.Kanda, Y.Okayasu, K.Tsukada, A.Matsumura, H.Nomura, K.Nonaka, D.Kawama, N.Maruyama, Y.Miyagi

Department of Physics, Tohoku University, Sendai, 980-8578, Japan

S.Kato

Department of Physics, Yamagata University, Yamagata, 990-8560, Japan

T.Takahashi, Y.Sato, H.Noumi

Institute for Particle and Nuclear Physics, KEK, Tsukuba, 305-0801, Japan

T.Motoba

Laboratory of Physics, Osaka Electro-Communication University, Neyagawa, 572-8530, Japan

• L.Tang (Spokesperson), O.K.Baker, M.Christy, L.Cole, P.Gueye, C.Keppel, L.Yuan

Department of Physics, Hampton University, Hampton, VA 23668, USA

J.Reinhold (Spokesperson), P.Markowitz, B.Beckford, B.Raue, W.Boeglin, L.Kramer, A.Acha, P.Baturin

Department of Physics, Florida International University, Miami, FL 27411 USA

• Ed.V.Hungerford, K.Lan, N.Elhayari, N.Klantrains, T.Miyoshi, Y.Li, S.Radeniya,

• V.M. Rodriguez

Department of Physics, University of Houston, Houston, TX 77204 USA

• R.Carlini, R.Ent, H.Fenker, D.Mack, G.Smith, W.Vulcan, S.A.Wood, C.Yan Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

• N.Simicevic, S.Wells

Department of Physics, Louisiana Tech University, Ruston, LA 71272 USA

• M.Furic, D. Androic, T.Petkovic, and T.Seva University of Zagreb, Croatia

Λ hypernuclei

Core Nucleus + Λ hyperon

Nucleon replaced by Λ hyperon.

- **AN interaction**
 - Unified view of baryon-baryon interaction by including new degree of freedom, strangeness.
 - Central and spin-dependent ΛN interaction. $V_{\Lambda N}$ (~30 MeV) < V_{NN} (~50 MeV)
- Unique structure of hadronic many-body system
 - Deeply bound states, no Pauli blocking.
 - Core excited states.
 - Glue role of a Λ hyperon in nucleus.

Narrow widths of excited states High precision spectroscopy

Physics issues

- ${}^{12}C \rightarrow {}^{12}_{\Lambda}B$
 - Precision analysis of core excited states
 - p-orbit states splitting ?
 - comparison with the mirror hypernucleus, ${}^{12}{}_{\Lambda}C$
- ²⁸Si \rightarrow ²⁸_{Λ}Al
 - The first precision spectroscopy beyond the p-shell
 - Is splitting in the p, d orbits ?
- Other targets (^{6,7}Li, ⁹Be, ^{10,11}B, ⁵¹V, ⁸⁹Y)
 - Rate study for heavier targets
 - p-shell spectroscopy
 - Target mass dependence --- quasifree K⁺ electroproduction

${}^{12}_{\Lambda}$ B spectrum of E89-009

Ground state doublet

Binding energy $B_{\Lambda} = 11.4 \pm 0.5 \text{ MeV}$ Emulsion data $B_{\Lambda} = 11.37 \text{ MeV}$ Cross section $140 \pm 17(\text{stat}) \pm 18(\text{sys}) \text{ nb/sr}$ Motoba's calculation 138 nb/sr

More statistics and better resolution are required to see more precise structure of core-nucleus excited states.

Energy spectra in ${}^{12}_{\Lambda}$ C and ${}^{12}_{\Lambda}$ B

- Core-nucleus excited states
- •Splitting in p shell
- •Charge symmetry

Medium-Heavier hypernuclei

Basic characteristics of (e,e'K⁺) spectroscopy

Hadron (K or π) beam :

Large cross section,

the energy resolution is <u>1.5 MeV</u>,

limited by ΔE of secondly beam.

Electron beam :

<u>Small cross section</u>, recovered by high intensity continuous e beam in JLAB. the 400 keV energy resolution is possible.

- Proton converted to $\Lambda \rightarrow$ Neutron rich Λ hypernuclei, charge symmetry
- Large angular momentum transfer \rightarrow Similarly to (π^+, K^+) reaction
- Spin-flip amplitude \rightarrow Unnatural parity hypernuclear states
- Sub MeV resolution ← High quality primary beam

Kinematics of the (e,e'K⁺) reaction

Previous experiment (E89-009)

The first (e,e'K+) experiment

- In Hall C
- Electron spectrometer --- Enge split pole
- Kaon Spectrometer --- SOS (existing)

the energy resolution - <u>500keV</u>

– 0 degree tagging geometry.

large backgrounds of electrons/positrons

from pair creation.

In the new experiment,

- Need to
 - 1 Reduce the accidental rate in e' arm.
 - 2 Improve the energy resolution in Kaon arm.

Tilt method for ENGE to reduce the accidental rate

Optimization of the tilt angle

New spectrometer HKS

Configuration Central momentum Dispersion Momentum resolution Solid angle Momentum acceptance

Q+Q+D 1.2 GeV/c 4.7 cm/% 2 x 10⁻⁴(FWHM) 16 msr w splitter 12.5 %

Dipole

Made in Japan_o

Q1

Q2

HKS detector package

1X 1Y AC 2X WC 1X 1Y AC 2X WC K+ K+ DC1 DC2 HKS arm **Detectors:**

- Drift chamber
- TOF
- Aerogel cherenkov (veto π)
- Water cherenkov (veto p)

Expected Energy Resolution

Item	Contribution to the resolution (keV, FWHM)			
Target	¹² C	²⁸ Si	51V	⁸⁹ Y
HKS momentum	230 (← 500 -SOS)			
Beam momentum	< 180			
Enge momentum	120			
K ⁺ angle	134	56	32	18
Target thickness	< 180	< 171	< 148	< 138
Overall	< 390	< 360	< 350	< 345

~400 keV

Experimental setup

Tilted ENGE spectrometer

HKS + ENGE + Splitter

Performance of detectors

HKS (K⁺ detection)

- Drift chambers
 Position resolution σ~220 μm
 Detection efficiency ~98%
- TOF counters
 σ~250 ps
- Aerogel cherenkov (veto π) index = 1.05, efficiency >98%
- Water cherenkov (veto p) index = 1.33, efficiency >98%

Enge (e' detection) •Drift chamber : Position resolution $\sigma = 300 \sim 370 \ \mu m$ Detection efficiency >99% •Hodoscope : $\sigma \sim 150 \ ps$

Grouping trigger in K⁺ arm

Hit pattern correlation between HTOF 1X & HTOF2X.

Grouping trigger

- •6 segments.
- •Select Good trajectory.
- •Reduce Kaon accidental kill.
- •HKS rate decreases by 35%.

Trigger condition

- HKS (Kaon trigger) --- 12 kHz

 1X & 1Y & 2X & AC & WC
 (1X 2X -1.1 MHz_)__

 Rejection rate by AC / WC

 is 1/100
- ENGE ---- 1.2 MHz <- 100MHz Hodoscope 1layer & 2layer
- Coincidence trigger
 ~500 Hz
 DAQ dead time ~5%

*Rates are with carbon target (100 mg/cm²) , 26 μ A

E89-009 vs. E01-011

E89-009 vs. E01-011

- Beam intensity
 1 μA : 26 μA
- Target thickness 20 mg/cm² : 100 mg/cm² Luminosity 1 : 130
- Singles rate of e' arm >100 MHz : 1.2 MHz

Tilt method is quite useful!

10-4

6 msr : 16 msr

(Coincidence trigger 500 Hz with 5% dead time)

- Kaon acceptance
- Energy Resolution 750keV : 400 keV Kaon arm ($\Delta p/p$) 5x10⁻⁴ : 2x10⁻⁴

Ratio of true / accidental in coincidence time

With 1 μ A, CH₂ target

With 1.5 μ A, CH₂ target

Kaon PID

Calibration data

- Need new optics parameters for both arms. Enge is tilted. HKS is new.
- Angle calibration.

Data with sieve slits were taken.

• Momentum calibration.

 \bigcirc p(e,e'K⁺) Λ/Σ^0 reactions wirh CH₂ target

 Λ, Σ^0 masses are well known.

 $\odot^{12}{}_{\Lambda}$ B ground state

binding energy was measured in the previous experiment (E89-009 and emulsion exp.)

Calibration data from the p(e,e'K⁺)Λ/Σ⁰ reactions

Carbon (${}^{12}_{\Lambda}B$) data

Status of experiment

Calibration runs with CH₂ and carbon targets finished.

Optics tuning is in progress.

- Production run with Si target (²⁸_ΛAl) is now on going. ~ 5days
- Rate studies for heavier target
 V, Y, ...

Summary

- Experiment with the tilted ENGE and the new spectrometer HKS started in this July.
- Comparing with the previous experiment, the accidental rate decreases dramatically and the kaon grouping trigger works well to take data with ~5% dead time of DAQ for 26 μA beam.
- Calibration run finished. Λ/Σ^0 peaks and ${}^{12}_{\Lambda}B$ ground state are clearly observed. Optics study is in underway with those and sieve slit data.
- Now, production run with Si target.
- The data will provide medium-heavier hypernuclear spectra with good statistics and good resolution.