Phase determination by the two-wavelength method of Okaya \& Pepinsky. By C. M. Mitchell, Physical Metallurgy Research Laboratories, Department of Mines and Technical Surveys, Ottawa, Ontario, Canada

(Received 14 January 1957 and in revised for 22 March 1957)

In a recent article Okaya \& Pepinsky (1956) have treated the problem of phase determination for noncentric crystals in which one or more atoms scatter anomalously. Relations are obtained for the structure factors $\left|F_{\mathbf{h}}\right|^{2}$ and $\left|F_{-\mathbf{h}}\right|^{2}$ which, when the positions of the anomalous atoms are known, reduce to a quadratic equation giving two possible solutions for the components of the structure amplitude, and the phase of the reflection $\mathbf{h}(h k l)$. A number of methods of choosing one solution are proposed, including the use of a second incident wavelength producing normal seattering for all atoms; this will provide a second quadratic equation.

In the present communication the method of using two incident wavelengths is examined. Linear equations in the components of the structure amplitude are obtained which give a single solution when the positions of the anomalously scattering atoms are known. One equation permits the method to be extended to centrosymmetric structures. The relations are derived for the general case in which both radiations produce anomalous scattering. This is necessary, since, with heavy atoms, anomalous scattering occurs for all wavelengths in the normal target range, due to the electrons in L and higher levels. In cases where incident wavelengths can be chosen such that one atom only in the unit cell scatters anomalously, direct phase determination is possible, using only the observed $\left|F_{\mathbf{h}}\right|^{2}$ and $\left|F_{-\mathbf{h}}\right|^{2}$ values.

The atomic scattering factor for anomalous dispersion

$$
f_{j}=f_{j}^{0}+\Delta f_{j}^{\prime}+i f_{j}^{\prime \prime},
$$

where Δf_{j}^{\prime} and $f_{j}^{\prime \prime}$ are the in-phase and out-of-phase increments to the normal scattering factor f_{j}^{0}. The structure amplitude for the reflection $\mathbf{h}(h k l)$ is

$$
F_{\mathbf{h}}=A_{\mathbf{h}}+i B_{\mathbf{h}}
$$

which can be resolved into real and imaginary components as

$$
F_{\mathbf{h}}=A_{\mathbf{h}}^{\text {n.s. }}+\Delta A_{\mathbf{h}}^{\prime}-B_{\mathbf{h}}^{\prime \prime}+i\left(B_{\mathbf{h}}^{\text {n.s. }}+\Delta B_{\mathbf{h}}^{\prime}+A_{\mathbf{h}}^{\prime \prime}\right),
$$

where

$$
\begin{aligned}
& A_{\mathbf{h}}^{\mathrm{ns.}}=\sum_{j=1}^{n} f_{j}^{0} \cos 2 \pi\left(\mathbf{h} \cdot \mathbf{r}_{j}\right), \quad B_{\mathbf{h}}^{\mathrm{n} . \mathrm{s} .}=\sum_{j=1}^{n} f_{j}^{0} \sin 2 \pi\left(\mathbf{h} \cdot \mathbf{r}_{j}\right) ; \\
& \Delta A_{\mathbf{h}}^{\prime}=\sum_{j=1}^{n} \Delta f_{j}^{\prime} \cos 2 \pi\left(\mathbf{h} \cdot \mathbf{r}_{j}\right), \quad \Delta B_{\mathbf{h}}^{\prime}=\sum_{j=1}^{n} \Delta f_{j}^{\prime} \sin 2 \pi\left(\mathbf{h} \cdot \mathbf{r}_{j}\right) ; \\
& A_{\mathbf{h}}^{\prime \prime}=\sum_{j=1}^{n} f_{j}^{\prime \prime} \cos 2 \pi\left(\mathbf{h} \cdot \mathbf{r}_{j}\right), \quad B_{\mathbf{h}}^{\prime \prime}=\sum_{j=1}^{n} f_{j}^{\prime \prime} \sin 2 \pi\left(\mathbf{h} \cdot \mathbf{r}_{j}\right) .
\end{aligned}
$$

\mathbf{r}_{j} is the position vector of atom j in the unit cell. $\Delta A_{\mathbf{h}}^{\prime}, \Delta B_{\mathbf{h}}^{\prime}, A_{\mathbf{h}}^{\prime \prime}$ and $B_{\mathbf{h}}^{\prime \prime}$ contain terms dependent only upon the position of the anomalous scattering atoms. The $A_{\mathbf{h}}^{\text {n.s. }}$ and $B_{\mathbf{h}}^{\text {n.s. }}$ terms employed here differ from those used by Okaya \& Pepinsky in that here the summation includes the normal scattering contribution of all atoms in the unit cell. For the reflection $-\mathbf{h}(\bar{h} \bar{k} \bar{l})$ the structure amplitude is

$$
F_{-\mathbf{h}}=\left(A_{\mathbf{h}}^{\text {n.s. }}+\Delta A_{\mathbf{h}}^{\prime}+B_{\mathbf{h}}^{\prime \prime}\right)-i\left(B_{\mathbf{h}}^{\text {n.s. }}+\Delta B_{\mathbf{h}}^{\prime}-A_{\mathbf{h}}^{\prime \prime}\right)
$$

The square of the structure amplitude for $\mathbf{h}(h k l)$ is $\left|F_{\mathbf{h}}\right|^{2}=F_{\mathbf{h}} F_{\mathbf{h}}^{*}=\left(A_{\mathbf{h}}^{\text {n.s. }}+\Delta A_{\mathbf{h}}^{\prime}-B_{\mathbf{h}}^{\prime \prime}\right)^{2}+\left(B_{\mathbf{h}}^{\mathrm{n} . \mathrm{s}}+\Delta B_{\mathbf{h}}^{\prime}+A_{\mathbf{h}}^{\prime \prime}\right)^{2} ;$ and for $-\mathbf{h}(\bar{h} \bar{k} \bar{l})$ it is

$$
\begin{aligned}
\left|F_{-\mathbf{h}}\right|^{2}= & F_{-\mathbf{h}} F_{-\mathbf{h}}^{*} \\
& \left.=\left(A_{\mathbf{h}}^{\text {n.5. }}+\Delta A_{\mathbf{h}}^{\prime}+B_{\mathbf{h}}^{\prime \prime}\right)^{2}+B_{\mathbf{h}}^{\text {n.s. }}+\Delta B_{\mathbf{h}}^{\prime}-A_{\mathbf{h}}^{\prime \prime}\right)^{2} .
\end{aligned}
$$

The difference of squares gives the relation

$$
\begin{align*}
& \left|F_{\mathbf{h}}\right|^{2}-\left|F_{-\mathbf{h}}\right|^{2} \\
& \quad=4\left\{\left(A_{\mathbf{h}}^{\prime \prime} B_{\mathbf{h}}^{\text {n.s. }}-B_{\mathbf{h}}^{\prime \prime} A_{\mathbf{h}}^{\text {n.s. }}\right)+\left(A_{\mathbf{h}}^{\prime \prime} \Delta B_{\mathbf{h}}^{\prime}-B_{\mathbf{h}}^{\prime \prime} \Delta A_{\mathbf{h}}^{\prime}\right)\right\} \tag{1}
\end{align*}
$$

This equation, which is linear in $A_{\mathbf{h}}^{\text {n.s. }}$ and $B_{\mathbf{h}}^{\text {n.s. }}$, has been discussed by Okaya \& Pepinsky, and in a recent article by Peerdeman \& Bijvoet (1956).

In order to obtain a second linear equation in $A_{\mathbf{h}}^{\text {n.s. }}$ and $B_{\mathbf{h}}^{\text {n.s. }}$, consider the case where two incident wavelengths λ_{1} and λ_{2} have been used. The mean square value for reflections $\mathbf{h}(h k l)$ and $-\mathbf{h}(\bar{h} \bar{k} \bar{l})$ is

$$
\begin{align*}
\mathscr{F}_{\mathbf{h}}^{2}=\frac{1}{2}\left\{\left|F_{\mathbf{h}}\right|^{2}+\left|F_{-\mathbf{h}}\right|^{2}\right\}= & \left(A_{\mathbf{h}}^{\text {n.s. }}\right)^{2}+\left(B_{\mathbf{h}}^{\text {n.s. }}\right)^{2}+\alpha_{\mathbf{h}}^{2}+\beta_{\mathbf{h}}^{2} \\
& +2\left(\Delta A_{\mathbf{h}}^{\prime} A_{\mathbf{h}}^{\text {n.s. }}+\Delta B_{\mathbf{h}}^{\prime} B_{\mathbf{h}}^{\text {n.s. }}\right), \tag{2}
\end{align*}
$$

where

$$
\alpha_{\mathbf{h}}^{2}=\Delta A_{\mathbf{h}}^{\prime 2}+A_{\mathbf{h}}^{\prime \prime 2}, \quad \beta_{\mathbf{h}}^{2}=\Delta B_{\mathbf{h}}^{\prime 2}+B_{\mathbf{h}}^{\prime \prime 2} .
$$

Subtracting the two equations of type (2), we have

$$
\begin{align*}
& \frac{1}{2}\left\{\mathscr{F}_{\mathbf{h}_{\lambda_{1}}}^{2}-\mathscr{F}_{\mathbf{h}_{\lambda_{2}}}^{2}+\left(\alpha_{\mathbf{h}_{\lambda_{2}}}^{2}-\alpha_{\mathbf{h}_{\lambda_{1}}}^{2}\right)+\left(\beta_{\mathbf{h}_{2}}^{2}-\beta_{\mathbf{h}_{\lambda_{1}}}^{2}\right)\right\} \\
& \quad=\left(\Delta A_{\mathbf{h}_{\lambda_{1}}}^{\prime}-\Delta A_{\mathbf{h}_{\lambda_{2}}}^{\prime}\right) A_{\mathbf{h}}^{\text {n.s. }}+\left(\Delta B_{\mathbf{h}_{\lambda_{1}}}^{\prime}-\Delta B_{\mathbf{h}_{\lambda_{2}}}^{\prime}\right) B_{\mathbf{h}}^{\text {n.s. }} \tag{3}
\end{align*}
$$

It is evident that, where the positions of the anomalous scatters are known, (1) and (3) give the values of $A_{\mathrm{h}}^{\text {n.s. }}$ and $B_{\mathbf{h}}^{\text {n.s. }}$ and thus the phase of the reflection $\mathbf{h}(h k l)$.

The two-wavelength relation, equation (3), has certain interesting features which have not been previously noted in connection with anomalous dispersion. The first is that this relation alone can be used to determine the sign of the phase in centrosymmetric structures, where the positions of the anomalous scattering atoms are known; here $B_{\mathbf{h}}^{\text {n.s. }}=0$ and the relation gives magnitude and sign of $A_{\mathbf{h}}^{\text {n.s. }}$. The second is that, since only the mean square values \mathscr{F}_{h}^{2} appear, the relation can be evaluated from intensity measurements on powder specimens; this will enable such effects as primary and secondary extinction and accidental inequalities of reflection from equivalent faces in single crystal specimens to be avoided.

When a pair of wavelengths are chosen such that one atom only in the unit cell scatters anomalously, then, considering this atom as the cell origin, equation (3) reduces to
$A_{\mathbf{h}}^{\text {n.s. }}=\frac{\mathscr{F}_{\mathbf{h}_{\lambda_{1}}}^{2}-\mathscr{F}_{\mathbf{h}_{\lambda_{2}}}^{2}+\left(\Delta f_{a}^{\prime}\right)_{\lambda_{2}}^{2}-\left(\Delta f_{a}^{\prime}\right)_{\lambda_{1}}^{2}+\left(f_{u}^{\prime \prime}\right)_{\lambda_{2}}^{2}-\left(f_{a}^{\prime \prime}\right)_{\lambda_{1}}^{2}}{2\left(\Delta f_{a \lambda_{1}}^{\prime}-\Delta f_{a_{\lambda_{2}}}^{\prime}\right)}$,
and equation (1) reduces to

$$
\begin{equation*}
B_{\mathbf{h}}^{\text {n.s. }}=\frac{\left|F_{\mathbf{h}}\right|^{2}-\left|F_{-\mathbf{h}}\right|^{2}}{4 f_{a}^{\prime \prime}} \tag{5}
\end{equation*}
$$

The criteria for optimum wavelengths for phase determination are found in the denominators of equations (4) and (5); first, that one radiation gives a large value of the out-of-phase component $f_{a}^{\prime \prime}$, for one or more atoms, which will give a large difference in the observed reflections F_{h}^{2} and $F_{-\mathrm{h}}^{2}$; secondly, that the difference of the in-phase components of anomalous scattering for the two radiations, $\left(\Delta f_{a_{\lambda_{1}}}^{\prime}-\Delta f_{a_{\lambda_{2}}}^{\prime}\right)$, be as large as possible to produce a large difference in the observed mean square values $\mathscr{F}_{\mathbf{h}_{\lambda_{1}}}^{2}$ and $\mathscr{F}_{\mathbf{h}_{\lambda_{2}}}^{2}$.

The accuracy of the method is dependent upon an exact knowledge of the anomalous scattering increments
Δf^{\prime} and $f^{\prime \prime}$ to the atomic scattering factor. The table of these values calculated by Dauben \& Templeton (1955) for $Z \gtrsim 20$ is for three radiations $\mathrm{Cr} K \alpha, \mathrm{Cu} K \alpha$ and Mo $K \alpha$ only. Values for intermediate radiations can be estimated by interpolation, but for general application of this method of calculation of exact values, or their experimental measurement, a full range of radiations would be of great assistance.

References

Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.
Okaya, Y. \& Pepinsky, R. (1956). Phys. Rev. 103, 1645.
Peerdeman, A. F. \& Bijvoet, J. M. (1956). Acta Cryst. 9, 1012.

Acta Cryst. (1957). 10, 476

The crystal structures of thorium bismuthides. By Riccardo Ferro, Chemical Institute, Laboratory of Physical Chemistry of Genoa University, Genoa, Italy

(Received 3 April 1957)

The diagram of the thorium-bismuth alloys, obtained in vacuo by direct synthesis from the elements, has been studied by means of X-rays; the examination was performed by the powder method using $\mathrm{Cu} K \alpha$ radiation $\left(\lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1 \cdot 540500 \AA\right)$. The only impurity in the thorium used (prepared by reduction of ThO_{2} with Ca) was about $0 \cdot 3 \%$ oxygen, mainly as ThO_{2}; the bismuth had a purity higher than 99.9%, with traces of lead.

In the part of the diagram richer in bismuth the alloys show the existence of the compounds $\mathrm{Th}_{3} \mathrm{Bi}_{4}$ and $\mathrm{Th} \mathrm{Bi}_{2}$. No other compounds having higher quantities of bismuth have been observed, as alloys of a composition of around $80 \% \mathrm{Bi}$ (both quenched from $1000^{\circ} \mathrm{C}$. or annealed up to 400° C.) showed only the Debye reflexions of ThBi_{2} and elementary bismuth.

The X-ray examination of the central part of the diagram shows the possible existence of two phases of a composition near to ThBi ; however, it was not possible (with several thermal treatments, including also annealing and heating to higher temperatures) to obtain a cubic phase of the NaCl - or CsCl-type, as might expected by comparison with similar systems of thorium and uranium with other metalloids. With regard to these alloys it must be remarked that, if heated in vacuo at approximately 1500° C., they undergo alteration by bismuth distillation.

Finally, the alloys with a low bismuth content have not shown (after heating at a high temperature and cooling) the formation of other compounds: samples which on analysis had a composition around $30 \% \mathrm{Bi}$ show mainly the reflexions of elementary thorium.

As with bismuth and the intermediary phases, the photographs exclude the formation of appreciable solid solution for thorium. All the alloys are fairly pyrophoric.

$\mathbf{T h}_{3} \mathbf{B i}_{4}$

The compound $\mathrm{Th}_{3} \mathrm{Bi}_{4}(45 \cdot 44 \% \mathrm{Th})$ is body-centred cubic with

$$
a_{0}=9.559 \AA, Z=4, \varrho=11.65 \mathrm{~g} . \mathrm{cm} .^{-3} .
$$

The structure is of the $\mathrm{Th}_{3} \mathrm{P}_{4}$ type (Meisel, 1939), $D 7_{3}$ type (Strukturbericht, 1943) with:
Space group No. 220 (International Tables, 1952): I $\overline{4} 3 d$.
Atomic positions:

$$
\begin{gathered}
12 \mathrm{Th} \text { in }(a)\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+\frac{3}{8}, 0, \frac{1}{4} ; Q . \\
16 \mathrm{Bi} \text { in }(c)\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+x, x, x ; \\
\bigcirc \text { with } x=\frac{1}{1} \frac{1}{2} .
\end{gathered}
$$

Each thorium atom is thus bound to 8 bismuth atoms at the distance of $3.32 \AA$.

$\mathbf{T h B i}_{2}$

The compound $\mathrm{ThBi}_{2}(35 \cdot 70 \% \mathrm{Th})$ is tetragonal with

$$
\begin{gathered}
a_{1}=4 \cdot 492, a_{3}=9 \cdot 298 \AA, a_{3} / a_{1}=2 \cdot 070, Z=2 \\
\varrho=11 \cdot 50 \mathrm{~g} \cdot \mathrm{~cm} .^{-3}
\end{gathered}
$$

The structure corresponds to the C38 type (Strukturbericht, 1937) with:

Space group No. 129 (International Tables, 1952): P4/nmm.

Atomic positions:

$$
\begin{aligned}
& 2 \mathrm{Bi}_{\mathrm{I}} \text { in (a) } 0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0 \\
& 2 \mathrm{Bi}_{\mathrm{II}} \text { in }(c) 0, \frac{1}{2}, x ; \frac{1}{2}, 0, \bar{x} \text { with } x=0.63 . \\
& 2 \mathrm{Th} \text { in }\left(c^{\prime}\right) 0, \frac{1}{2}, t ; \frac{1}{2}, 0, \bar{t} \text { with } t=0.28
\end{aligned}
$$

