
Intro-ish…
MLFSOM is not the first program written to simulate diffraction patterns from protein crystals (XCADS ref?, Arndt & Wonacott ref?).  Indeed simulated diffraction patterns are as old as crystallography itself since understanding the diffraction phenomenon requires the construction of a model that can reproduce the data.  The goal of MLFSOM is to not only simulate the diffraction signal but also all the sources of error that corrupt it.  The so-called photon-counting error that limits the accuracy of spot intensities is perhaps the best known, but other factors such as the intrinsic noise of the detector (called read-out noise in the case of CCD detectors), timing errors of the shutter, instability in the x-ray beam, radiation damage and irregular spot shapes also affect data quality.  The relative importance of all these sources of error is not immediately clear and no doubt depends on the nature of the experiment, hence the need for a simulation.  Evaluating these sources of noise requires putting them on the same scale as the signal as it appears on the actual measuring device used: the area detector.  For this reason, the simulation in MLFSOM is performed on an absolute scale, and the inputs to the program are in real-world units.  For example, photon flux is provided in photons/s, crystal size is provided in microns, radiation damage progression is determined by dose in Gy, detector noise is provided in rms electrons/pixel, and so on.  Whenever possible, published values are used for these parameters.  For example, detector performance is taken from manufacturer’s specifications.  Parameters where no published values are available (such as the jitter in the shutter) were measured experimentally at the Advanced Light Source beamline 8.3.1, but it is a simple matter to input the characteristics of a different beamline if they are known. 
Program structure:


The programmatic structure of MLFSOM is built upon two third-party packages: the CCP4 suite (CCP4 1994), and FIT2D (Hammersley et al. 1996).  The first stage is converting the input protein data bank (PDB) file into structure factors and this is done by a script called ano_sfall.com, which decorates the molecule with hydogens using the CCP4 program HADD and calculates structure factors using SFALL.  The structure factor file (mtz format) produced by this script will also contain anomalous differences and a simplistic bulk solvent contribution (described below).  This or any other mtz formatted file may be input into the second script: mlfsom.com.  This script computes the spot positions and intensities as well as the various background contributions and noise levels and then writes an input file for FIT2D, using various features of that program to plot Gaussians and other shapes on a pixel field, applying noise and then outputting the pixel field as binary integer data.  The addition of an SMV-format (ref?) header allows these simulated images to be input into standard data processing programs.
Disordered solvent contribution:
In order for solvent flattening and model refinement to function normally the disordered or “bulk” solvent must be taken into account.  This is implemented with a simplistic model where an electron density of 0.27 e-/Å3 is assigned to each voxel in the unit cell more than 2.7 Å away from any atom listed in the PDB file.  This is far simpler than the “true” electron density distribution in a real crystal (Lounnas et al. 1994; Phillips & Pettitt 1995; Burling et al. 1996; Makarov et al. 2002; Zhang et al. 2007 ref?), and indeed simpler than that implemented in most popular refinement packages (Tronrud 1997; refmac ref, phenix.refine ref?).  Therefore, in this work, the systematic error of the solvent model arises from lack of sophistication in this simulation.  However, the topic of this work centers on the feasibility of obtaining an interpretable electron density map from SAD data and solvent flattening, so this simple solvent model should suffice.
Anomalous scattering:


The anomalous contribution of each atom was calculated using the structure factor of atomic core electrons.  This was implemented using the “Ano” atom type in the CCP4 program SFALL (CCP4 1994) which is equivalent in real space to constructing a single Gaussian at each atomic position with unit volume and width equivalent to the atomic B-factor.  This “unit” structure factor was then converted into the anomalous and dispersive contributions of each atom using values of f’ and f” calculated by the program CROSSEC (Cromer 1983; Waasmaier & Kirfel 1995 and references therein).  The anomalous contribution of all atoms in the PDB file was accounted for, including carbon, nitrogen and oxygen.  The summed anomalous signal was then added to or subtracted from the total structure factor of the protein and solvent to form F+ and F-, respectively using SFTOOLS (CCP4).

Spot locations:


The locations of diffraction spots on the detector were computed using the coordinate system and matrix formalism described in Arndt and Wonacott (1977) chapter 7.  The real-space unit cell with edges a, b, c and angles α, β, γ was converted into three reciprocal lattice vectors a*,b* and c* in a right-handed x-y-z coordinate system where x is the direction of the x-ray beam, z is the spindle axis
 and y is “up”
.  The spindle is right handed in the sense that a crystal rotation (Φ) of +90° will rotate a vector lying along the positive x axis onto the positive y axis.  Taking the popular “reference orientation” where a* lies perfectly along the x-axis and b* lies perfectly within the x-y plane, the x,y,z components of the three reciprocal lattice vectors were written as a 3 x 3 matrix called B:
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a* = bc sinα/Vcell
b* = ca sinβ/Vcell
c* = ab sinγ/Vcell
cos α* = (cosβ cosγ-cosα)/(sinβ sinγ)

cos β* = (cosγ cosα-cosβ)/(sinγ sinα)

cos γ* = (cosα cosβ-cosγ)/(sinα sinβ)

Vcell =
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Where a* is the length of the a* vector, α* is the angle between b* and c*, and so on.  Other reference positions are possible, but this convention has been historically popular and will be used exclusively here. This B-matrix was then rotated using either a unitary matrix U, or by specifying three “missetting” angles about the x, y and z axes
 that generate a U matrix.  The product BU is called the A matrix, and represents the reciprocal lattice setting in the lab frame when the spindle position Φ is at 0.  Multiplying the A matrix by a column vector of the Miller indices {h,k,l} yields the x-y-z coordinates of the corresponding reciprocal lattice point (relp), and rotating the spindle by an angle Φ will rotate the relp by the same angle about the z axis
.  Diffraction occurs when the relp intersects the surface of the Ewald sphere, which is nominally centered at (x,y,z) = (-1/λ,0,0) and has radius 1/λ.  By definition the Ewald sphere surface must intersect the origin of reciprocal space, but if the incident x-ray beam is not perfectly perpendicular to the spindle, then the center of the Ewald sphere swings away from the x-axis in the corresponding direction.
Spot intensity:


Once the total structure factors of the crystal have been computed, they must be converted into intensities.  The relationship between the intensity of a fully-recorded spot and the square of the structure factor is given by Darwin’s formula (Darwin, 1914; Blundell & Johnson 1971).  
(1)
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Where:

I(hkl)
- integrated spot intensity (in photons)

Ibeam
- intensity of the incident beam (photons/s/m2)
re
- classical electron radius (2.818 x 10-15 m/electron)

Vxtal
- volume of the crystal (in m3) 

Vcell
- volume of the crystal unit cell (in m3/cell)
λ
- x-ray wavelength (in m)
ω
- angular velocity of the crystal (radians/s)
L
- Lorentz factor

P
- polarization factor

A
- x-ray transmittance of the path through the crystal to the spot

F(hkl)
- structure factor (equivalent electrons/cell)

The structure factor is defined as the ratio of the scattering from one unit cell to that of a single classical electron, so the classical electron cross section (re2) is included.  The intensity will also be proportional to the number of unit cells in the beam, which is given by the crystal volume divided by one of the unit cell volume terms.  This relation holds regardless of the mosaic structure of the crystal (Woolfson 1970).  It should be noted that the units of the spot intensity (photons/spot) are not the same as that of the incident beam (photons/s/m2) nor those of the classical electron scattering (photons/steradian).  Despite this, all of these quantities remain commonly referred to as “intensity”, which can lead to a considerable amount of confusion if the units are not given explicitly.  The change of units arises because the spot intensity must be integrated over the reciprocal lattice point (hkl or “relp”) as it moves through the Ewald sphere and several geometric factors must be taken into account (described below).  Although it is unusual to express x-ray wavelengths in meters, it is very important that values input into Equation 1 be converted into the units indicated, or very large errors can result.  For example, taking typical values for a 2 Å hkl from a protein crystal
 and typical beam characteristics
, we arrive at an integrated full spot intensity of 27,251 photons, which we will see later is remarkably consistent with experiment.
Lorentz factor


The Lorentz factor L in Equation 1 is always greater than one and is not to be confused with its inverse
, the Lorentz correction L-1 which data processing programs such as MOSFLM multiply by observed integrated intensities to correct for the Lorentz factor.  The Lorentz factor first appeared in Debye (1914), and is the ratio of the speed of the relp in reciprocal space to the component of its velocity vector that is normal to the Ewald sphere surface.  This factor reflects how different relps will spend different amounts of time passing through the Bragg condition, so this geometric correction is grouped with other geometric factors in Equation 1 such as the angular velocity of the crystal.  The cube of the wavelength and one of the unit cell volume terms are also geometric corrections since these determine the size of the relp in reciprocal space, and hence the integration volume (Woolfson 1970).  The relationship between the Lorentz factor and the detector surface will obviously depend on the camera geometry, but in the common case where the crystal rotation axis is perpendicular to the x-ray beam, the Lorentz factor is given by:

 (2)
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Where:

θ
- Bragg Angle

ζ
- λd*∙
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 normalized projection of the relp vector onto the rotation axis (z)
ζ┴
- ζ in terms of spot coordinates on a flat detector normal to the incident beam
Zdet
- coordinate of the diffraction spot on the detector along the axis parallel to the rotation axis (relative to beam center in mm)

Dxtf
- sample-to-detector distance along direct beam path (in mm)
The polar coordinate ζ is calculated by taking the z-component of the relp vector
 d* and multiplying it by the x-ray wavelength λ in Å.  Note that as d* approaches the z-axis ζ approaches λ/d = 2sinθ and L approaches infinity
.  The denominator of Equation 2 reaches zero when d* passes into the “blind region” where the rotating relp never touches the Ewald sphere and the Lorentz factor becomes undefined.  
In the also common case where the detector is a flat plane and normal to the incident x-ray beam, ζ becomes ζ┴, which can be calculated from the position of the spot the detector as shown.  However, for arbitrary detector positions, ζ must be computed from the spindle geometry, and in the general case of the beam not perfectly normal to the rotation axis, L must be calculated by taking the projection of the relp velocity vector along the diffracted ray which was done in this work.  
Polarization factor:

The polarization factor P is always less than one and accounts for losses of scattering efficiency when the incident and scattered beam polarization vectors do not line up.  First described by Azaroff (1955) and re-formulated for synchrotron radiation by Kahn et al. (1982), we use here the expression given by Drenth (1999):

(3)
P = (1 + cos22θ - cp cos 2ψ sin22θ)/2  
where:

P
- polarization factor used in Equation 1
θ
- Bragg angle

ψ
- angle between the polarization E-vector
 and the projection of the diffracted ray onto a plane normal to the incident beam

cp
= degree of polarization
The input “degree of polarization” cp ranges from 1 to 0 to -1 as the beam polarization varies from “horizontal” (along the rotation axis) to unpolarized to “vertical” respectively.  Note that the polarization factor becomes zero for scattering directly down the polarization axis
 and there is no scattering of x-rays in this direction, which is why the rotation axis is usually designed to be coincident with the polarization vector.
Sample Absorption:


The absorption factor A depends on the size, shape and atomic composition of the crystal and any other objects in the path taken by the x-rays on their way into the crystal and out to the spot of interest.  The profile of the beam is also a factor, and for full accuracy photons from each point in the x-ray source must be ray-traced to every accessible part of the crystal volume and from there out into the spot.  The average x-ray transmittance along all these paths is the absorption factor:

(4)


[image: image6.wmf]dxdydz

...)

)

z

,

y

,

x

(

t

μ

)

z

,

y

,

x

(

t

μ

)

z

,

y

,

x

(

t

μ

exp(

)

z

,

y

(

I

I

V

1

A

xtal

loop

loop

xtal

xtal

air

air

prof

beam

xtal

òòò

-

-

-

-

=


Where:

A
- absorption factor (transmittance)

Vxtal
- volume of the crystal

Ibeam
- total intensity of the incident beam

Iprof
- intensity of the beam profile at the coordinate 0,y,z

μx
- attenuation coefficient of substance x; μx-1 is the attenuation length
tx
- component of total path taken by x-ray through substance x, via crystal coordinate x,y,z

The value of μx may be obtained using the density of the material and the x-ray cross section of the elemental composition of substance x (NIST XCOM ref?), but there is no analytic solution for the integrated absorption factor A for anything but the simplest shapes, such as a flat slab-shaped crystal (International Tables C §6.3.3 p. 595).  Even a perfect sphere must be evaluated numerically but the sphere is a convenient “average shape” for a protein crystal and look-up tables are available for this integral (Dwiggins 1975).  For the calculation here we will consider a spherical crystal of radius R with uniform attenuation coefficient μ and denote the total transmission of a beam diffracting at angle 2θ simply as A = Tsphere(2θ,μ,R).  A convenient program for accurate calculation of μxtal is RADDOSE (Murray et al. 2004), and for a typical elemental composition of protein
 in a crystal that is 50% water, μxtal-1 = 3.6 mm and the value of A for a 2 Å spot through a 100 μm diameter crystal is 0.979, so A is usually a small correction.
Average signal
The average Lorentz-Polarization factor:

The average value of the product of the Lorentz and polarization factors for measurable spots
 at a given resolution of interest can be approximated to within 1% error by:

 (5)
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Note that the average value of LP does not depend on the degree of polarization, as the asymmetry of the polarization factor “averages out” upon integration around a constant-resolution circle, and also that
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 tends to cancel one of the λ terms in Equation (1), but not exactly.

Average structure factor:
Note that the unit cell volume occurs twice in Equation 1.  One of these is involved in the number of unit cells contributing to the spot (Vxtal/Vcell), and the other is a geometric factor of integration because the “size” of the reciprocal lattice point is inversely proportional to Vcell (Woolfson 1970).  However, the apparent amplification from double-counting Vcell is effectively cancelled by the <F2> term.  This is because the average square structure factor of a random distribution of atoms rapidly approaches the sum of the individually-squared atomic structure factors, and the average scattering from a protein beyond ~4 Å resolution can be approximated by a random atomic distribution (Wilson 1949).  Since the disordered solvent contribution to Bragg peaks is weak at high angles, the number of atoms contributing to a high-angle spot can be taken as the number of ordered protein atoms in the unit cell:

(6a)
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(6b)
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(6c)
Vcell = nsymop∙nASU∙Mr∙VM
Where:

Ncell 

total number of atoms in the unit cell (including hydrogen)

<(a(s)2>
number-averaged squared atomic structure factor of protein (~5 at s = 0)
NEe 

total number of atoms of element Ee

(Ee(s)

structure factor of element Ee
<F(s)2> 
average value of the squared structure factor of the crystal
nsymop

number of symmetry operators in the space group

nASU

number of protein molecules in the asymmetric unit
Mr

molecular weight of the protein (Daltons or g/mol)

<Ma>

number-averaged protein atom mass (Mr/Nprotein ~7.1 g/mol)


s

reciprocal scattering vector length (sin(θ)/λ)

B

average (Wilson) B factor (in Å2)

Vcell

volume of the unit cell (in Å3)

VM 

Matthews’s coefficient (Å3/Dalton)
Note that F and (a depend on s.  Although one might expect that the average structure factor and average atomic mass of a protein would be closer to that of carbon or nitrogen, half of the atoms in protein are hydrogen, and this brings down the number-averaged quantities.  However, counting hydrogen also brings down the number-averaged atomic mass and the ratio (N(s)2/14 is fairly equal to <(a(s)2>/<Ma>.  So, if only a rough approximation is desired the protein can be considered to be made of nitrogen.  Since (a and Ma are essentially constants for protein
 and VM also has a restricted range (Matthews 1968; Kantardjieff 2003) Equation 6b reduces to ~ 0.2 Vcell
 and this is what tends to cancel one of the 1/Vcell terms in Equation 1.  That is, given two protein crystals with the same Vxtal (and Wilson B factor) but one with Vcell twice that of the other, the average spot intensity from the large unit cell crystal will be half of that from the smaller unit cell crystal.  This is because there are half as many unit cells in the crystal and is also required by conservation of energy since the total number of photons scattered by a fixed number of atoms must be divided over the total number of spots.

Angular velocity vs exposure time


Note that the exposure time (t) does not appear explicitly in Equation (1) because it is hidden in the rotation speed ω = ΔΦ/t where ΔΦ here is the rotation covered during an exposure (in radians).  What happens if the crystal is not rotated during the exposure?  Does the spot intensity become infinite?  Of course not, but in reality it does approach the intensity of the incident beam as the mosaic spread approaches zero, the crystal volume becomes large and the x-ray beam becomes perfectly monochromatic and parallel.  This limiting case is routinely achieved with the perfect silicon crystals used in monochromators where nearly 100% of the incident beam is reflected.  Equation (1) does not apply in these cases as its derivation did not take into account the drop in Ibeam due to scattering as the beam moves through the crystal as well as the possibility that the diffracted beam itself can act as a new “incident” beam and re-reflect in other parts of the crystal.  Such a complete treatment is called the dynamical theory of diffraction, which will not be considered here.  Equation (1) is based on what is known as the kinematical approximation to the dynamical theory and assumes that the mosaic domains are small compared with the attenuation length
 of the x-rays in the crystal and that the drop in the main beam intensity due to diffraction is negligible, which is generally a very good assumption for protein crystals (James 1962).


What value should we choose for ΔΦ?  It cannot be smaller than the mosaic spread if we are to fully-record the spot, but since we are interested in collecting more than just one spot we must set ΔΦ to the full rotation range of the data set and set t to the total accumulated exposure time.  Now, this means that many unique hkls will be observed more than once so an accounting must be made of the extra signal available from merging equivalent observations.  For a crystal belonging to a space group with nsymop symmetry operators a total of 2x nsymop equivalent spots
 of a typical unique hkl will be measured in a 360° rotation, so, for simplicity, we will use 360° for ΔΦ and multiply the spot intensity by 2x nsymop.  
(7)

[image: image11.wmf]360

symop

t

n

2

2

p

=

w


Where:

ω
- effective angular velocity for the data set (radians/s)

2π
- 360°

nsymop
- number of symmetry operators in the space group

t360
- total accumulated exposure time of a complete data set
  In practice, a data-collection strategy is often devised to take advantage of reciprocal-space symmetry and collect a complete data set with a shorter ΔΦ, but if a proportionally longer exposure time is used, then the increased t “cancels” the reduced ΔΦ and the total accumulated intensity of any given unique hkl will be the same as a 360° sweep.  That is, a strategized data set will contain fewer but proportionally brighter spots.  This does not mean data collection strategy is useless, we will consider background noise later.  

Absorbed Dose:


The amount of radiation damage is proportional to dose (Garman ref?), which, in this case can also be calculated from the absorption coefficient of a sphere since the fraction of incident photons that interacted with atoms in the sphere is 1-Tsphere(0,μ,R).  Not all of the stopped energy will be absorbed since some of it is scattered or in some cases fluoresced away, and this can be accounted for by using the mass energy absorption coefficient μen in place of the mass attenuation coefficient μ (Seltzer 1993).  To obtain dose we divide the absorbed energy over the volume of the sphere Vxtal=4/3πR3 and apply the beam intensity over the cross-sectional area (π R2):
(8)
D = 
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where:

D
- dose in Gy (J/kg)

e
- electron charge (1.6022 x 10-19 J/eV)

Eph
- photon energy (eV/photon)

Ibeam 
- incident beam intensity (photons/s/m2)

t
- exposure time (s)

ρ
- density of sphere material (kg/m3 or g/L)

R
- radius of the sphere (m)

μen
- mass energy-absorption coefficient of sphere material (m-1)

Note that for a cube shaped crystal of the same width as our sphere, the transmission is Tcube = exp(-μen∙2R), which implies that the (1-T) term approaches 2μen∙R when μen is much larger than R and most of the beam is transmitted
.  This means that the 1/R term in Equation # is effectively cancelled in most practical cases, but we will keep this equation in its exact form and also continue to use the sphere model for absorption since we must use the same shape to calculate the absorption factor and we don’t want the corners of a cube-shaped crystal to complicate our analysis against resolution.
In general, dose calculations are not simple, and although a sphere is the simplest possible shape, this expression comes with certain caveats.  For example, if R becomes large compared to 1/μen of the crystal material, then some fraction of the photons scattered from the core will be absorbed before escaping the sphere and some of the energy discounted to scattering by Seltzer must be added back to the dose.  A similar correction must also be made for energy assumed lost to fluorescence if R becomes large compared to 1/μen for the fluorescent photon energy.   Conversely, as R becomes comparable to the track length of a photoelectron, an additional mechanism of energy escape becomes available which was not taken into account by Seltzer, but has been estimated by Nave and Hill (2004).  Here we apply the CSDA
 approximation to the electron track, and assume the fraction of the photoelectron energy delivered to the crystal will be roughly the ratio of the crystal radius to the track length.  That is, half the photoelectrons emitted from the surface of the crystal will travel outward and deposit no energy, whereas the other half will traverse the core and deposit twice as much energy as electrons emitted from the center of the crystal, making the center the “average” emission point.  Energy from the photon that is not delivered to the photoelectron is delivered to Auger and low-energy fluorescence processes, which have a very short range in protein.
Radiation damage:


The radiochemical mechanism behind the fading of diffraction spots is not presently clear, but it has been calibrated experimentally.  Owen and Garman (2006) tested the so-called “Henderson limit” (Henderson 1990) and observed that the sum of all diffracted intensities (after correcting for the LP factor) from ferritin crystals faded linearly with dose and reached 50% after absorbing D1/2 = 43 (± 3) MGy.  However, this linear trend did not continue to 0% intensity at 86 MGy, and the authors noted a resolution dependence to the intensity falloff in the form of increasing Wilson B factors.  Kmetko et. al. (2006) found that the change in B factor was highly linear with dose, and the slope or “coefficient of sensitivity” was 0.95 B/MGy for lysozyme and 1.34 B/MGy for apoferritin.  This would appear to be inconsistent with the Owen and Garman (2006) observations since applying a B factor of 15 Å2 to observed structure factors of apoferritin (PDB ID: 2CLU) reduces the total intensity to 50%, but B = 15 Å2 corresponds to only 11 MGy, not the 43 MGy required for Owen and Garman to see intensities drop by half.  The curve of total intensity vs. applied B-factor is also roughly an exponential, it is not linear.

Howells et. al. (2005) performed a meta-analysis of twelve radiation damage studies available at that time from five different imaging fields spanning four orders of magnitude in resolution and six orders of magnitude in dose and found a general trend D1/2 ≈ 10∙d MGy where d is the feature size in Å.  This relation is remarkably consistent with both the Owen and Garman (2006) as well as the Kmetko et. al. (2006) observations if the intensity of an individual spot fades exponentially with dose:

(9a)
I = I0 exp(-2 A∙s)

(9b)
A = 2π∙ℓ
P(u) = 1/(1+(2u/ℓ)2)
(9c)
ℓ/D = H = 11x10-3 Å/MGy

where:
I
- intensity after absorbing a dose D

I0 
- intensity from an undamaged crystal
s
- reciprocal scattering vector length (sinθ/λ = 1/(2d))

u
- atomic displacement from ideal lattice position (Å)

P(u)
- Probability of a given lattice displacement (u)

ℓ
- full-width at half maximum of a Lorentzian distribution.

A
- Lorentzian Debye-Waller coefficient (not to be confused with B)

B
- canonical Debye-Waller coefficient or “temperature factor” (8π2∙<u2>)

D
- absorbed dose (MGy)

H
- ratio of Lorentzian width ℓ to absorbed dose (11x10-3 Å/MGy)

Note that the Lorentzian Debye-Waller factor A is a coefficient for s, whereas the more well-known Debye-Waller temperature factor B (8π2 <u2>) is a coefficient for s2.  This name “A” is used here for consistency with the B-factor but should not be confused with the absorption factor “A” above, which is a transmittance.    


Applying this resolution-dependent exponential decay using the value for H derived from Howells et al. (2005) to observed structure factors from apoferritin (PDB ID: 2CLU) results in a total intensity vs dose curve that stays within 5% of a straight line until dropping to 50% at 42 MGy, which is well within the error bars proposed by Owen and Garman (2006).  If these same “A-factor” modified data are scaled against the “zero-dose” data using SCALEIT (Howell & Smith 1992) as in Kmetko et. al. (2006), then the refined relative B-factor vs dose curve stays within 0.5 B of a straight line with slope 1.31 B/MGy up to ~130 MGy.  Since SCALEIT does not support an A-factor but rather refines an overall scale and B-factor it must converge on the best compromise between these two parameters to fit data modified by an A-factor.   A similar A-factor treatment of lysozyme data (to 1.4 Å resolution) fits a slope of 1.03 B/MGy, and both of these B/MGy slopes are in very good agreement with the “coefficient of sensitivity” reported by Kmetko et. al. (2006), and we can conclude that the equation derived by Howells et. al. is consistent with the observations of these two subsequent papers.
So, what is an A factor?  The impact of disorder on the diffraction pattern is that one must multiply the structure factors of a perfect lattice by the Fourier transform of the displacements of the atoms from their ideal lattice points (u).  If these displacements obey a Gaussian distribution, then the A-factor must be zero, since the Fourier transform of a Gaussian is another Gaussian and the Gaussian function has the form F(s) = exp(-Bs2).  However, other atomic displacement distributions are possible, and the Fourier transform of a Lorentzian distribution does have the form F(s) = exp(-As).  Since s =0.5/d, the broad-ranged 1/d dependence of damage limits pointed out by Howells et. al. (2005) strongly suggests that the atomic displacement distribution induced by radiation damage is Lorentzian.  If it were a Gaussian, one would expect a 1/d2 dependence.  

How could so many random changes not result in a Gaussian distribution as dictated by the Central Limit Theorem?  The only way to avoid the Central Limit Theorem is if the process generating the displacements is not random, but rather dominated by a single mechanism.  Although it is impossible to be certain of this mechanism from the slope of a line on a graph, the introduction of a point defect in a soft but incompressible crystal lattice does result in a distribution of atomic displacements that closely resembles a Lorentzian (not shown).  That is, the defect will pull its neighbors out of place, and they, in turn will pull their neighbors out of place by a lesser amount.  In general, the histogram of the atomic displacements will depend on the relative spring constants holding the lattice points together, but an incompressibility constraint (springs along the diagonal lattice vectors) results in a broad-tailed Lorentzian-like distribution.  A simple example of this can be seen by pushing a pointed object into a block of rubber.  

Therefore, the general mechanism of resolution loss due to radiation damage in frozen hydrated biological samples may well simply be mechanical strain propagating out through the soft material from the damage sites.  The width of the Lorentzian distribution of atomic displacements will be proportional to the force acting at the defect site, and the value H has the reciprocal units of the Young’s modulus.

In order to incorporate this exponential decay into our expression for spot intensity, we must integrate intensity over some exposure time (t), which might as well be infinity as we will consider the accumulation of background scattering later.  The total amount of photons that can be extracted from a spot (Imax) will correspond to some “effective” exposure time (teff) that would give a spot with intensity Imax if there were no such thing as radiation damage (equation 1).  This teff will be the integral of the time-dependent fractional reduction in spot intensity due to radiation damage.  Integrating our expression for dose and converting photon energy into wavelength (eEph = hc/λ = J/photon):
(10a)
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Where:
teff
- the “effective” exposure time that would give Imax in the absence of radiation damage (seconds)
Imax 
- maximum possible spot intensity due to radiation damage limits (photons)

I
- spot intensity given by Equation 1 (no radiation damage)

D(t)
- dose accumulated at time t (Gy)
H
- Howells’s coefficient (11 x 10-3 Å/MGy)

s
- reciprocal scattering vector length (sinθ/λ in 1/Å)

0.1
- conversion from Å to m, g/cm3 to kg/m3 and MGy to Gy

λ
- x-ray wavelength (Å)

h
- Plank’s constant (6.626 x 10-34 J∙s)

c
- speed of light (299792458 m/s)

R
- radius of the spherical crystal (m)

ρ
- density of crystal (~1.2 g/cm3)

Ibeam 
- incident beam intensity (photons/s/m2)

μen
- mass energy-absorption coefficient of sphere material (m-1)

substituting all these expressions into equation 1, we get:
 (11)
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Where:

<I max > (s)
- maximum possible average spot intensity (photons) at “s”

s
- sin(θ)/λ or 0.5/d if d is the d-spacing of interest (Å-1)
θ
- Bragg angle
re
- classical electron radius (2.818 x 10-15 m)

1029
- conversion from m4 to Å4, g/cm3 to kg/m3 and MGy to Gy

ρ
- density of crystal (~1.2 g/cm3)

R
- radius of the spherical crystal (m)

λ
- x-ray wavelength (Å)
h
- Plank’s constant (6.626 x 10-34 J∙s)

c
- speed of light (299792458 m/s)

H
- Howells’s coefficient (11 x 10-3 Å/MGy)

nASU
- number of proteins in the asymmetric unit
Mr
- molecular weight of the protein (Daltons or g/mol)

VM
- Matthews’s coefficient (~2.4 Å3/Dalton)

<(a(s)2>number-averaged squared protein atom structure factor (electron units2)
<Ma>
- number-averaged atomic weight of a protein atom (~7.1 Daltons)

B
- average (Wilson) temperature factor (Å2)

μ
- attenuation coefficient of sphere material (m-1)
μen
- mass energy-absorption coefficient of sphere material (m-1)
Note that the incident beam intensity is missing from this equation because by the maximum possible spot intensity was integrated out to an infinite exposure time.  Also note that one R in the R4 term is effectively cancelled by the (1-T) term for small crystals and also that one λ in the term is roughly cancelled (within ~10% in typical cases) by the <LP> correction.
Minimum useful crystal size:


At this point we are now prepared to calculate the size of the smallest protein crystal that can ever be expected to produce useful spots at a desired resolution.  For example, if we require a signal-to-noise ratio of 2 in the outer resolution bin of say 2 Å, then the average spot in the 2 Å bin must contain at least four photons
, and Equation (11) predicts that with a 1 Å x-ray beam a 1 μm wide perfect
 lysozyme crystal
 will scatter an average <Imax> of four photons each into 2 Å spots before they fade away completely.  This limit is independent of exposure time since the total integrated number of photons diffracted will level off at infinite dose.  We are also presently only considering photon-counting statistics and ignoring all other sources of noise, including background scattering.  


Theoretically, however, background can be virtually eliminated with a perfect crystal, a near-zero emittance beam focused on a noiseless detector with very small pixels and very fine rotation steps.  It is doubtful that such a device will ever be built or that perfect protein crystals will ever be common, and this makes the 1.0 μm wide lysozyme crystal a fundamental limit.  That is, unless some way is found to mitigate global damage, a lysozyme crystal smaller than 1 μm will never yield a complete data set to 2 A.  Crystals with larger unit cells will have to be bigger than 1 μm.  For example, a lysozyme crystal with a Wilson B factor of 20 Å2 must be 2.4 μm wide to produce 4-photon spots in the 2 Å bin, and a 10 MDa asymmetric unit with VM = 2.4 must be at least 13.4 μm wide to produce 4-photon spots at 3.5 Å.  
The wavelength dependence of the minimum crystal size is also

Note that these are minimum requirements. The reality of finite mosaic spread and pixel size set a practical lower limit on how much background scattering will contribute to a given spot measurement, and this means that more than four Bragg-scattered photons will be required for a desired signal-to-noise ratio.  
Background scatter:


Scattering from air and other non-crystalline substances was calculated by:

(#)
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Ibg
- intensity of background scattering (photons/pixel)

Ωpixel
- solid angle subtended by a pixel (steradians/pixel)

Ibeam
- intensity of the incident beam (photons/s/m2)

t
- exposure time (s)

re
- classical electron radius (2.818 x 10-15 m/electron)

NA
- Avogadro number (6.022 x 1023 molecules/mol)

ρ
- density of the substance (g/cm3)

V
- volume of substance exposed to the beam (cm3)

Mr
- formula weight of the substance (g/mol)

P
- polarization factor

A
- absorption factor

fbg
- structure factor of the substance (electrons)

s
- reciprocal scattering vector length (sin(θ)/λ)

Note that the NAρV/Mr term is simply the number of molecules of the substance in the beam.  For monatomic gasses, fbg is the atomic structure factor, but for more complex substances such as air (a diatomic gas mixture), liquids and amorphous solids the interference between scattering from different atoms must be accounted for in fbg.  In general, fbg is the convolution of atomic structure factors with their respective pair distribution functions, but in practice it is simplest to calibrate fbg by measuring the scattering from a known quantity of the substance of interest.  For this simulation, calibrated values of fbg vs s for several substances such as helium, air, liquid water and Paratone-N oil were stored in text files and a simulation run specified the thickness, density, and formula weight of the substance exposed to the x-ray beam to generate a background level on an absolute scale.  For example, a 35 mm air
 gap between the collimator and beam-stop will scatter 434 photons/s into a low-angle 100 μm wide pixel that is 180 mm away from the sample area
 when the flux is 1012 photons/s
.
Diffuse scattering:


Amorphous substances are not the only thing that contributes to background scattering.  An imperfect crystal will also contribute to background since the number of photons scattered by the atoms in the crystal is fixed, but the spot intensities depend on the B factor, and these “extra photons” must go somewhere.  In general, the diffuse scattering from a crystal can contain information about the molecular motions that lead to excursions from a perfect lattice, but no attempt was made to simulate this here.  Instead, only the first-order (centrosymmetric) term of the diffuse scattering was implemented:
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Ids
- intensity of the crystal diffuse scattering (photons/pixel)

Ωpixel
- solid angle subtended by a pixel (steradians)

Ibeam
- intensity of the incident beam (photons/s/m2)

t
- exposure time (s)

re
- classical electron radius (2.818 x 10-15 m)

Vxtal
- volume of the crystal (m3)

VASU
- volume of the crystal asymmetric unit (m3)

P
- polarization factor

A
- absorption factor

∑
- is over each atom in the asymmetric unit

fa
- structure factor of atom a (electrons)

A
- is the Debye A factor derived for radiation damage above

Ba
- is the Debye-Waller temperature factor of atom a (Å2)

s
- reciprocal scattering vector length (sin(θ)/λ)

Note that the diffuse scatter contributed by each atom corresponds to the background scattering that atom would produce if it were a monoatomic gas minus the photons that go into the Bragg spots, and the intensity of this diffuse scatter increases as the d-spacing decreases, making it more difficult to measure the weakening outer spots as the average B factor increases.  

Compton scattering:


In a similar way to the conservation of photons that leads to diffuse scattering, the finite size of the atomic form factor implies that photons scattered from electrons in the atom that do not constructively interfere must also go somewhere.  This is a fairly good approximation to Compton scattering, which arises from all atoms (James 1947).  The fine structure of the inelastic scattering can contain information about the energy level structure in the substance, but no attempt was made to simulate this here. Instead, the following first-order approximation to Compton scattering was used:
(#)
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Ids
- intensity of the crystal diffuse scattering (photons/pixel)

Ωpixel
- solid angle subtended by a pixel (steradians)

Ibeam
- intensity of the incident beam (photons/s/m2)

t
- exposure time (s)

re
- classical electron radius (2.818 x 10-15 m)

Vxtal
- volume of the crystal (m3)

VASU
- volume of the crystal asymmetric unit (m3)

P
- polarization factor

A
- absorption factor

κ
- photon energy (keV) / 511 keV

∑
- is over each atom in the asymmetric unit

Z
- atomic number of atom a (electrons)

fa
- structure factor of atom a (electrons)

s
- reciprocal scattering vector length (sin(θ)/λ)

Note that the structure factor term is not squared here since this is inelastic scattering and there is no constructive interference between the scattering of different electrons.  This equation accounts for Compton scattering from atoms in the crystal, and not the disordered atoms in the solvent channels and surrounding droplet.  The Compton scattering from these amorphous substances is already included in the empirically calibrated value of fbg, provided the wavelength of the simulation is similar to that used in the calibration.

Spot shape:


Equation 1 gives the integrated spot intensity in photons which is the signal to be measured but the noise associated with that signal will depend heavily on the shape of the spot as this determines how many pixels are involved in the spot as well as how much one spot profile resembles another
.  The shape of a diffraction spot is essentially the convolution of six processes: beam profile, beam divergence, spectral dispersion, crystal size and shape, crystal mosaic spread and detector point-spread function.  However, this is not a simple convolution as it has certain geometric constraints.  For example, parts of the incident x-ray beam profile that do not intersect any part of the crystal volume obviously do not contribute to diffraction spots, so the crystal extent “cuts off” the beam profile, or vice versa if the beam is smaller than the crystal.  The convolution is further constrained by Bragg’s Law itself, which is never violated.  For example, consider a Laue diffraction pattern.  Although the wavelength has a broad range this will have no effect on spot shape if the mosaic spread of the crystal is zero.  This is because for a given d-spacing and crystal orientation there will be one and only one sharply-defined wavelength for which the Bragg condition is satisfied.  This will change if the crystal rotates, and a mosaic spread is equivalent to an isotropic rotation.  This is why a finite mosaic spread leads to radial streaking of Laue spots.

If all six of the above spot-broadening processes have “zero” width, then the diffraction spot really is an incredibly sharp point, and as the crystal rotates through the Bragg condition, all of the unit cells will diffract simultaneously and instantaneously to produce a spot with the integrated energy defined by Darwin’s formula. This is an important limiting case since improvements in beamline technology and crystal quality can theoretically approach zero background.  As this limit is approached, radiation damage becomes the only factor limiting data quality.

However, if the “width” of one of the above parameters is not zero, then different parts of the crystal (mosaic domains) will diffract at different times, giving rise to the so-called “rocking curve” as the crystal is rotated (described below), but also giving rise to finite spot size.  Both of these factors determine how much background scattering accumulates in the spot.  We will now discuss each of these effects in turn starting at the detector.
Detector point-spread function


The point-spread function (PSF) of any detector represents how the signal from an absorbed photon spreads out in space during the detection process, and is the spot shape that would be observed if the detector were hit with an infinitely sharp x-ray beam.  The shape of the PSF must therefore convoluted with the “native” spot shape in order to reproduce a realistic spot, and it was found in these studies that the PSF does indeed dominate the visual appearance of spots.  The PSF of a fiber optic coupled CCD detector is not a Gaussian, but rather follows the equation for the solid angle subtended by a pixel from a point source some distance g above the pixel plane:

(#)
PSF(r) = g/2π∙(r2+g2)-3/2
Where r is the distance in the pixel plane from the point directly under the beam and g is ~30 μm for an ADSC Q315r detector.  This value for g was derived empirically by analyzing and averaging the pixels of 1800 spots generated by a ~20 μm x-ray beam
, and the above equation was found to be accurate within experimental error out to ~2 mm from the center of the spot, where the intensity had fallen five decades.  This PSF is very sharp, so care must be taken that it is properly integrated over a pixel of interest.  The analytic expression for the integral of this PSF in Cartesian coordinates is:
(#)
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and the integral of the PSF over a pixel is computed by summing the value of this integral expression at the upper right
 and lower left corners of the pixel and then subtracting the value at the upper left and lower right corners.  For example, if a sharp beam delivers 106 photons to the detector, then 215 photons worth of signal will be delivered to a 0.1 x 0.1 mm pixel located 1.0 mm in x and 0.5 mm in y from the point of impact if the PSF characteristic distance g is 0.03 mm. 
The physical meaning of g is not entirely clear, but it can be thought of as an effective “scattering thickness” of the phosphor and taper.  That is, the visible light photons generated by an x-ray photon impact will spread out uniformly and their intensity must obey the inverse square law regardless of how much they are scattered by the medium
.  When these photons are grouped into pixels, the solid angle subtended by the pixel determines how many photons enter it (the above equation).  However, in a fiber optic taper, the scattering length is not uniform and photons will travel a much greater distance down the axis of the taper (down the fibers) before being scattered than they will along the other two axes (across the fibers).  This means that the small amount of scattering as the photons move down the taper will spread out a spot in exactly the same way as a much thinner layer of powdered glass (with thickness g).  No doubt the phosphor itself also contributes to g, and it may have some photon energy dependence, but this hypothesis was not tested in this work.

Interaction of an x-ray beam with a real detector:
The sensitivity of a typical x-ray detector changes with incident photon energy and angle of incidence.  This is because the front face of most any x-ray detector consists of some kind of protective window material, followed by the x-ray sensitive layer, which has a finite thickness.  Some of the incoming photons will be lost in the front window and not all of the photons that penetrate the window will be absorbed in the x-ray sensitive layer.  The fraction of the incoming beam that is absorbed in the x-ray sensitive layer will depend on the absorption coefficient (μ)
 of the materials used and the incidence angle.  Specifically, if the incoming beam deviates from perpendicular to the detector surface by some angle β, then the effective thickness of both the window and the x-ray sensitive layer increase by a factor 1/cosβ.  Note that in the common situation where the detector plane is perpendicular to the direct beam path, β = 2θ where θ is the Bragg angle, but we will use β here for generality.

In the case of most modern CCD detectors, the window is beryllium or aluminized plastic and the x-ray sensitive layer is a finely powdered Terbium-doped Gd2O2S phosphor on the order of 20-40 μm thick.  Once an x-ray photon is absorbed by a phosphor, a fixed fraction of its energy
 is converted into visible light which is emitted in all directions.  Some of these visible light photons are picked up by the “optical chain” of the detector
 and eventually a fraction of them create storable electrons in the CCD chip.  The number of CCD electrons created for each incident x-ray photon is called the electro-optical gain, and ranges from 5 to 7 in current product literature (ref?).  Since the initial flash of visible photons is isotropic and the losses in the optical chain are fixed, the dependence of detector sensitivity on the angle and energy of the incident x-ray photon are determined largely by the thickness of the phosphor and window.  The total electro-optical gain is then given by:  

(#)
Geo = exp(-μwtw/cosβ)(1-exp(-μphostphos/cosβ))∙Eph
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where:

Geo 
- electro-optical gain (CCD electrons/x-ray photon)

μx
- absorption coefficient of window (w) or x-ray sensitive layer (phos)

tx
- thickness of window (w) or x-ray sensitive layer (phos)

β
- deviation of beam from normal incidence

Eph
- photon energy (eV)

W
- energy required to produce a visible light photon (~ 25 eV)

TR
- fiber optic taper ratio (3.7)

Tbond 
- transmission of the phosphor-taper and taper-CCD bonds (~70%)

QECCD
- detective quantum efficiency of the CCD (~25%)

The integer values placed in the image file (“area detector units” or ADU) are the result of amplifying and digitizing the number of electrons given by Geo∙photons.  Usually, this amplifier gain is 3 or 4 electrons per ADU, giving ADU = photons∙Geo/Gamp.  For example, consider a beam containing 100 1 Å photons
 impacting a typical detector
 at 30°.  On average, 96.1 of these photons will be absorbed by the phosphor, which will generate 47,660 visible light photons.  Using the bond transmission and taper ratio indicated above, only 2,437 of these will reach the CCD and produce 609 electrons of stored charge, giving a final Geo of 6.1 electrons/x-ray photon and a total of 152 ADU divided over the spot if Gamp = 4.  Although the photon losses are quite high, it is important to note that the noise is still dominated by x-ray photon counting statistics.  That is, from experiment to experiment, the intrinsic variability of a spot containing an average of 100 photons will be 10%
, but the variability in producing an average of 47,660 photons is only 0.46% and the variability in generating 609 electrons is 4.05%.  Propagating errors
, the total fractional noise is 10.8% or the same signal-to-noise one would get with an average of 85.7 photons incident upon a “perfect” detector, so the effective overall detective quantum efficiency
 (DQE) is 85.7%.  For a given optical chain described by the above equation this DQE is independent of the average number of incident photons, but there are other sources of noise such as the CCD read-out noise and fractional errors in the pixel sensitivity calibration that are not taken into account by this expression of the DQE.  Read noise and fractional noise will maximally affect very weak and very strong spots respectively, and this has led to some intensity-dependent definitions of the DQE, but these will not be used here.  Instead, the other sources of noise will be modeled explicitly and what will be called “DQE” here is the combined effects of photon-counting noise and electron-counting noise, which is more true to the layman’s concept of a DQE as the fraction of incident photons that are “detected”.
 
Note also that there is some optimal value
 of β for each photon energy that maximizes Geo. Some additional energy dependence may arise if visible photons generated at different depths in the phosphor layer have different collection efficiencies, but this was not modeled here.

Spot distortion at the detector:

The finite depth of the detector also influences spot shape and spot position.  Consider a diffracted beam of width w hitting the detector plane at angle β (where β = 0 at normal incidence).  At the plane of the detector surface the footprint of this beam will be w/cosβ long
 and w wide
, and the increase in length 1/cosβ is called the obliquity factor.  If the x-rays are strongly absorbed by the phosphor, then obliquity will define the spot shape and the centroid of the spot will be the impact point of the center of the beam.  But, if the x-rays are highly penetrating and the phosphor layer is tphos deep, then the beam will continue to generate light as it passes through the phosphor, and add another tphostanβ to the radial spot size before exiting the bottom of the phosphor layer.  This is called the parallax factor and both adds to the total length of the spot as well as shifts the centroid of it.  Normally, the intensity of the beam falls off as it moves through the phosphor, so the effective depth is never the full tphos, but some fraction of it: teff.  For this calculation, teff was assigned to the depth at which half of the beam intensity had died away.  The combined obliquity and parallax (OP) effect is therefore given by:
ℓr = wr/cosβ + teff tanβ

ℓt = wt 


teff = - cosβ / μphos ln((1+exp(-μphostphos/cosβ))/2)
Where:

ℓr,t 
- radial/tangential size of spot on detector

wr,t 
- radial/tangential width of diffracted beam just before hitting the detector

β
- angle of incidence of the beam on the detector face (assumed in radial direction)

μphos
- mass energy absorption coefficient of phosphor

tphos
- phosphor thickness (μm)

teff
- effective phosphor thickness (μm)

Crystal size and beam profile:


Consider now the origins of w, the width of the diffracted beam just before it arrives at the detector.  If the beam divergence, spectral dispersion and mosaic spread are all zero, then w will not change as the beam propagates from the crystal to the detector and the spot size will be dominated by crystal and beam size effects.  That is, the diffracted beam originates in the volume of the crystal that is illuminated by the incident beam and this volume will have the width of the incident beam
 and the same thickness
 as the crystal.  When viewed from the detector at the spot location, this volume will still appear as wide as the beam in the tangential direction but elongated in the radial direction
:

wrx = ℓbox cos2θ + ℓxtal sin2θ

wtx = ℓbox
where:

wrx 
- width of the beam in the radial direction due to the crystal/beam size

wtx 
- width of the beam in the tangential direction due to the crystal/beam size

ℓbox 
- linear size of the beam or crystal (whichever is smaller)

ℓxtal 
- linear depth of the crystal (along axis of incident beam)

θ
- Bragg angle

In general, the radial size (but not the tangential size) of the resulting spot on the detector surface will be longer still due to obliquity and parallax, which was described above, but obliquity and parallax depend on detector orientation, whereas the width of the beam just before hitting the detector (w) does not.  

Beam Divergence:


Since no real x-ray beam is perfectly collimated it must spread out to some extent as it propagates through space.  The rate of this spreading out can be described as an angle γ which will be called “divergence” here, but is also sometimes called “crossfire”.  As long as γ is a relatively small angle, the increase in beam width after the beam propagates another t meters through space will be tγ if γ is given in radians
.  For example, if an x-ray beam with divergence 1 milliradian passes through a 0.1 mm hole, it will be 0.1 mm wide immediately after the hole, but 1.1 mm wide one meter away from the hole.  This “hole” can also be a protein crystal and the diffracted ray will “inherit” the divergence of the incident beam
.  That is, consider a crystal with zero mosaic spread rotating in an incident beam with divergence γ.  The incident beam can be thought of as a collection of zero-divergence beams that all impact the crystal at different angles.  For each of these “perfect” beams, the divergence of the diffracted ray is also zero since Bragg’s Law is satisfied at one and only one angle of crystal rotation, and if the crystal is stationary no more than one of these “perfect” beams will produce a diffracted ray.  However, as the crystal is rotated each of the “perfect” beams will produce a diffracted ray in turn as each of them satisfies Bragg’s Law, and the distribution of diffracted angles is the same as the distribution of incident angles.  In fact, divergence can be thought of as equivalent to a spindle rotation in a zero-divergence beam where the detector rotates with the crystal.  Since divergence is generally different in the horizontal and vertical directions, they can each be though of as a separate rotation and the effect of beam divergence on spot shape is simply to add to the existing beam width to the width induced by divergence:

wh = tair γh
wv = tair γv
where:

wh 
- width of the beam in the horizontal direction due to divergence

wv 
- width of the beam in the vertical direction due to divergence

tair 
- distance from the crystal to the spot on the detector

γh,γv
- horizontal, vertical divergence, respectively (in radians)

Note that for the obliquity and parallax (OP) calculation, the angle of incidence β is not generally directed in the horizontal or vertical, so when adding the OP effects to the divergence effects the components of β in the horizontal and vertical directions must be used to calculate the OP component in the horizontal and vertical separately.  A similar decomposition of β may be needed to account for OP in the radial and tangential directions if the detector plane is not normal to the incident beam.


If the x-ray beam is focused on the detector, then the divergence will be negative and the spot on the detector can indeed be smaller than the crystal.  But, for any real optical system the beam cannot have an infinitely small focal spot and the product of 
Mosaic spread:
Now consider the effect of mosaic spread on spot shape.  By definition, the mosaic spread is a rotation, and rotating the crystal cannot change the d-spacing of a given reciprocal lattice point (relp).  That is, the relp is constrained to lie on the surface of a sphere of radius d* centered on the origin of reciprocal space, regardless of the mosaic spread or any other crystal rotation.  So, in the limit of “infinite” mosaic spread the diffraction spot becomes a powder ring
.  However, mosaic spread generally refers to small rotations so the range of a particular relp due to mosaicity is a tiny patch of this sphere’s surface, which is called a spherical cap.  Each point in the cap represents a slight rotation relative to the “average” crystal orientation, and the mosaic domains of the crystal can be represented as a collection of points bounded by the cap.  This means that the mosaic spread has no effect on the radial size of the spots
 but only broadens the spots in the tangential direction.  This broadening must still satisfy Bragg’s Law, so the broadening induced by a (small) mosaic spread is:
wtm = tair (2η) 2sinθ

where:

wtm
- width of the beam in the tangential direction due to mosaic spread

2η
- the mosaic spread (full width of angle distribution in radians)

the factor 2sinθ arises because the mosaic rotation is about the origin of reciprocal space (amplified by the length of d*), but the diffracted ray evolves from the center of the Ewald sphere (de-amplified by the length of λ*), and Bragg’s Law dictates that the d* vector is a fraction 2sinθ of the length of λ*.  The value 2η is kept separate here because the symbol η is generally used to describe the radius of the spherical cap, but we are interested in the full width of the mosaic spread.

Spectral dispersion and unit cell variation:


No x-ray beam is perfectly monochromatic, and the range of available wavelengths Δλ relative to the average wavelength λ is called the spectral dispersion Δλ/λ.  Dispersion has no effect on the tangential spot size because changes in wavelength do not rotate the crystal, but the increase in radial spot size due to spectral dispersion can be obtained by differentiating Bragg’s Law:

λ = 2 d sinθ and Δλ/Δθ = 2 d cosθ → Δθ = Δλ/λ tanθ

if θ is in radians, then the take-off angle of the spot (2θ) changes by Δ(2θ) ~ 2 Δθ and:

wrd = tair Δ(2θ) = tair Δλ/λ 2tanθ

where:

wrd
- width of the beam in the radial direction due to spectral dispersion

Δλ/λ
- fractional spectral dispersion (full width)

It should be noted that although mosaic spread formally cannot enlarge spots in the radial direction, any variability of unit cell dimensions will enlarge spots in the radial direction in exactly the same way as spectral dispersion:

wra = tair Δa/a 2tanθ
where :

wra
- width of the beam in the radial direction due to unit cell non-uniformity

Δa/a
- fractional variation of unit cell edge a.

There is no “differential amplification” factor of λ* vs d* here as there was for mosaic spread because Δλ/λ and Δa/a are fractional quantities.   

The total spot shape:


Combining all of these spot shape effects together requires convoluting the spot shapes that would result from each effect separately (see below), but this convolution is complicated by spot partiality.  For example, consider a horizontal beam divergence large enough to make a fully-recorded spot 10 pixels wide but we position the crystal so that the relp is equally divided between two images.  On one image, only the “left” half of this 10-pixel wide spot will appear because half of the available angles in the beam did not satisfy Bragg’s Law, but do on the next image, where the “right” half of the spot appears.  These two spots obviously have different shapes, and similar cut-off problems exist for every combination of mosaic rotation dispersion and divergence.  Furthermore, all of the above expressions for spot shape as well as the expression for the rocking width are first-order approximations and only apply for relatively small values of mosaic spread, dispersion and divergence.  For example, in the absence of dispersion and divergence and mosaic spread above ~0.5° the spots start to form little arcs, and eventually turn into powder rings when the mosaic spread becomes 180°.  For this simulation, these cut-off and nonlinearity problems of spot shape were solved by breaking up divergence, dispersion and mosaic spread into sub-ranges small enough for the above expressions to apply and performing the convolution for each combination of sub-ranges individually.

Rocking Range:


The reflecting range of each of these sub-beam and sub-crystal combinations was calculated using the equations derived by Greenhough and Helliwell (1982):
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Where:

ΔΦx
- reflecting range (full range in radians) due to the effect of “x”
2η
- mosaic spread (full width of rotation distribution in radians)

L
- Lorentz factor

Δλ/λ
- spectral dispersion (full width)

γH
- horizontal
 divergence (full width in radians)

γV
- vertical divergence (full width in radians)
θ
- Bragg angle

All of the ranges in these equations are full widths, as opposed to half widths.  Note the value 2η has been used for the full width of the crystal mosaic spread.  This is because η usually appears in the literature as the radius of the spherical cap traced out by the orientations of the mosaic domains, but the full mosaic spread is of interest here.  The last equation is an expression for the convolution of all these effects if they all have a “top-hat” shape, the mosaic spread is isotropic and the divergence profile has an elliptical shape.  If, for example, the divergence has a rectangular shape
, then in cases where the relp passes through the Ewald sphere in a corner-to-corner orientation, the true rocking range will be as much as 30% higher than that predicted by this last expression. 
Shape of the Rocking Curve:

The last section dealt with determining the “start” and “end” values of a Bragg reflection, which determines the limits of integration needed by data processing programs, but the distribution of intensity between these extremes is also important for determining accurate crystal orientation.  Although often taken as the integral of a disk or sphere passing through the Ewald sphere, the exact shape of the rocking curve is more complex and indeed is different for every reflection.  We shall begin as above by taking the influence of each effect in turn.  
If all other parameters are negligible, the rocking curve due to a top-hat distribution of spectral dispersion or either vertical or horizontal divergence is itself a top-hat distribution.  That is, the integral of spot intensity plotted against Φ is zero up until the “starting” Φ, unity at and after the “ending” Φ and forms a straight line between these two points.  For example, in the case of zero mosaic spread, zero dispersion and zero horizontal divergence one can consider a finite vertical divergence to be a “fan” of evenly-spaced and zero-divergence beams impinging on the crystal.  In the case of vertical divergence
 the “fan” has the same axis as the Φ rotation for every spot and the effect is obvious: as the crystal is rotated, each of these beams will satisfy the Bragg condition in turn, contribute an equal amount of x-rays to the spot and their influence will be evenly divided over the Φ rotation.  Hence, the rocking curve has a top-hat shape.  An equivalent geometric construction is to consider the relp to be an evenly-spaced series of “sub-relps” forming a line in reciprocal space centered on the “average” relp position.  For a drawing, see Arndt and Wonacott (1977).  The same model can be made of the horizontal divergence.  In this case, the row of sub-relps is not aligned with the Φ rotation, but they are still evenly spaced and must pass through the Ewald sphere one at a time.  The spacing between the sub-relps in terms of Φ rotation will depend on the orientation of this line in reciprocal space, but as long as the full rocking range is small enough for the Ewald sphere surface to be considered flat, the spacing must be even and the incremental intensity per unit ΔΦ will be a constant.  A similar construction can be made for spectral dispersion: an equivalent model to constructing a range of equally-spaced Ewald spheres
 is to break up each relp into a radial distribution of sub-relps.  These, again form an evenly-spaced line of sub-relps that pass through the Ewald sphere at a constant rate.
Since the only difference between the shape of all these top-hat rocking curves when plotted against Φ is the distsance between Φstart and Φend, it is convenient to normalize the progression into the rocking curve (Φ-Φstart) by dividing it by ΔΦ to yield ε.  Once this is done, the plot of “partiality” p
 against ε is simply a line with slope equal to one:
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Where:

pline
- cumulative fraction of full intensity recorded

ε
- (Φ-Φstart)/ΔΦ normalized coordinate of rocking curve

The rocking curve due to mosaic spread, however, is not as simple since the spherical cap is a two-dimensional object in reciprocal space, but the rocking curve is still the integral of the shape of the relp as it passes through the Ewald sphere.  Provided the mosaic spread is isotropic and small enough for the Ewald sphere to be considered flat, this rocking curve will be the integral of a disk:
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Where:

pdisk
- partiality of a disk-shaped relp
Note that both p and ε are normalized quantities that range from 0 to 1.  Each spot will have a different ΔΦ, and this will “stretch” the rocking curve when plotted against Φ, but normalizing any mosaicity-only rocking curve using ΔΦη from Equation (#) will yield a curve that follows Equation (#).  However, this is only true when the divergence and dispersion are zero.  If either are significant, then not only does ΔΦ increase, but the shape of the rocking curve will lie somewhere between equations (#) and (#).  Take for example a finite horizontal divergence and a finite mosaic spread.  In this case, instead of a row of points the relp will be a stack of disks, forming an oblique cylinder in reciprocal space and the rocking curve will be the integral of this volume as it passes through the Ewald sphere.  The exact shape will therefore depend on the angle made by this oblique cylinder with the Ewald sphere surface, so it is easy to see how each spot essentially has a unique rocking curve shape.  Formally, the total rocking curve is the convolution of the curves arising from the mosaic spread, divergence and dispersion.  If all these effects have similar ΔΦ, then the total rocking curve is reasonably approximated by that of a sphere passing through the Ewald sphere, but this assumption breaks down if one effect dominates.
Gaussian kernels in spot shape:


The convolution of two arbitrary functions is a computationally expensive process, but the convolution of two Gaussians can be performed analytically by taking the quadrature sum of the two parent Gaussian widths.  This is because any convolution is a product in Fourier space and the Fourier transform of a Gaussian is another Gaussian with a width that is the inverse of the width in real space.  Since the width term is in the denominator of the exponent the real space width of the convolution is the square root of the sum of the squares of the two real-space Gaussian widths.  For two-dimensional Gaussians with different widths in different directions, the convolution is a Gaussian whose covariance matrix is the sum of the covariance matrices of the two convoluted Gaussians:

a = cos2(θ)wr2+sin2(θ)wt2
b = -sin(2θ)wr2 +sin(2θ)wt2
c = sin2(θ)wr2+cos2(θ)wt2
G(x,y) = exp(-(ax2 + bxy + cy2))

G1( G2 = exp(-((a1+a2)x2 + (b1+b2)xy + (c1+c2)y2))

wr   = ((a+c - sqrt(a2+b2+c2-2ac))/2)½
wt   = ((a+c + sqrt(a2+b2+c2-2ac))/2)½
θ = ArcTan(-b/(a-c))/2

where subscripts denote the two Gaussians to be convoluted, wr and wt are the major and minor widths of a Gaussian, respectively, θ is the angle between the major axis and the x axis, and ( is the convolution operator.  Note that upon reducing to the one-dimensional case (θ=0;wt=0), the value of wr for the convolution reduces to the quadrature sum of wr of the two convoluted Gaussians.


The value of the above convolution algorithm in computing spot shapes lies in the fact that most any function can be approximated by a sum of Gaussians, and the convolution of a sum is the sum of the convolutions of each element of the sum.  For example, a top-hat function
 can be approximated by a row of evenly-spaced Gaussians that all have the same height and width.  Moreover, the row of Gaussians is a very good approximation to a top-hat function convoluted with a Gaussian.  For purposes of spot shape calculation all that is required is that the total idealized intensity laid down on the image be equal to the total integrated spot intensity given by Darwin’s formula and that the deviations from the ideal spot shape be small when compared to photon-counting noise and the size of a pixel.


Take for example an x-ray beam divergence with a top-hat shape.  If the divergence was high enough to spread a given spot over three pixels, then the incident beam was divided into three independent beams, each with one third of the flux, one third of the divergence, and with a Gaussian profile.  One beam took the same direction as the original beam, and the outer two deviated by 1/3 of the divergence in either direction.  This algorithm places the outer edges of the row of Gaussians at the same position as the edges of the original top-hat, which represents the least-squares best fit of a train of three Gaussians to a top-hat function.  Continuing the example, if the spectral dispersion of the beam was large enough to spread the Bragg spots over more than one pixel, then each of the three divergence “sub-beams” was subsequently broken up into more sub-beams, each with different photon energy.  In a similar way, large mosaic spreads were broken down into “sub-crystals” with different orientations.  The spots produced by each combination of sub-beam and sub-crystal were then calculated using Bragg’s Law, and the resulting “sub-spots” all plotted separately and summing to the total integrated intensity of the full Bragg reflection.  This algorithm can lead to a combinatorial explosion of sub-spots, especially for spots that lie close to the so-called “blind region” near the rotation axis in reciprocal space.  Such spots are usually rejected by integration software, so this simulation was set up to neglect spots that broke down into more than 10,000 sub-spots.

� Considered to be horizontal


� Opposing gravity


� Applied in the order z, y then x in keeping with the convention used in MOSFLM


� Although the reciprocal unit cell angles are not the same as the real cell angles, any rotation in real space corresponds to an identical rotation in reciprocal space.


� 100 μm wide crystal (sphere), F = 170 electrons, 50 Å cell edge, A = 96%


� 1012 ph/s, 100 μm wide beam (round), 1 Å wavelength, rotating at 1°/s, L = 2.2, P = 0.92


� Nor with the “Lorentz factor” in the theory of relativity


� Half the angle between the direct beam path and the diffracted ray


� Which has length d* = 1/d where d is the d-spacing


� 2sinθ > sin2θ for 0° < θ < 90°


� Generally the z-axis defined here


� Generally the y-z plane defined here


� 2θ = 90° and ψ = 0°


� C31.8N8.56H49.8O9.54S0.249, protein density 1.35 g/cm3, 1 Å x-rays


� Located outside the “blind region”


� <fa> ≈ Boron, Ma = 7.1


� for VM = 2.5, and s equivalent to a Bragg spacing of 2.5 Å


� Absorption is one component of attenuation, scattering is another mechanism of attenuation


� Including I+ and I- as separate observations


� The limit of 1-exp(-x) as x → 0 is x


� Continuous slowing down approximation


� I/σ = 4/sqrt(4) = 2


� No mosaic spread and Wilson B = 0.


� Mr = 14.3 kDa, nASU = 1, VM = 2.0


� Density: 1.2 mg/cm3, Mr ~ 28 g/mol, fbg ~ 14 electrons inside 10 Å resolution


� Ω ~ (100 μm/180 mm)2


� Regardless of beam size since the volume of illuminated air is proportional to beam size


� the basic assumption of profile fitting


� Using a 15 μm round hole in a tantalum pinhole 85 mm from the detector surface with the beam divergence stopped down to 50 x 50 μrad.


� Most positive values of x and y


� as long as the medium is uniform and absorption is negligible


� which depends on photon energy


� usually about 10% or one visible photon per ~25 eV of absorbed energy


� usually a fiber optic taper


� Eph = 12398 eV


� tw = 13 μm; μw-1 = 610 μm ; tphos = 40 μm; μphos-1 = 11 μm


� Signal = 100; noise = √100


� (σtotal/Itotal)2 = (σx-ray/Nx-ray)2 + (σvis/Nvis)2 + (σelectron/Nelectron)2


� fraction of incident photons “detected”; DQE = (I/σ)out / (I/σ)in


� 43.7° in the example case


� In the radial direction: that of the plane containing β


� In the “tangential” direction: normal to the beam and contained within the detector surface plane


� or the width of the crystal, whichever is smaller


� along the direction of the incident beam


� along the line containing the spot and the direct beam


� The so-called “small angle approximation”


� although it propagates in a new direction


� The intersection of the Ewald sphere with the d* sphere


� In a monochromatic beam, powder rings are sharp


� along spindle axis


� As is the case if the divergence is controlled by orthogonal flat-bladed slits


� Defined here as normal to the rotation axis


� That is, with radii equally spaced between the maximum and minimum values of λ


� The fraction of the final full intensity recorded


� Also known as the “rectangular function” or “boxcar” function
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