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Abstract —
problem of congestion control in IP networks, in-

We provide a short overview of the

cluding a discussion of some related work in coun-
tering denial-of-service attacks and packet classifica-
tion. Then, we propose an adaptive packet filtering
method for achieving aggregate-based congestion con-
trol. The method emphasizes approaches based on
unsupervised learning, in combination with conges-
tion detection. Initial simulation results suggest sub-
stantial improvements can sometimes be obtained.

Keywords — Packet Filtering, Congestion Control, In-
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I. INTRODUCTION

As the Internet becomes larger and more complex, the
problem of network management becomes more difficult. Re-
cent work has suggested the creation of a knowledge plane that
will provide a distributed control mechanism as an overlay to
the existing data network. As a step in this direction, the
research discussed here initially focuses on two important and
related problems in current IP networks. These networks are
vulnerable to denial-of-service (DoS) attacks and flash crowds.
In both cases, the amount of traffic at particular servers can
be so high as to significantly degrade their performance. Ad-
ditionally, the traffic in specific links near the servers may be
sufficient to adversely affect other network traffic.

One of the main problems in the above scenario is the lack
of information about the global (distributed) network state
available at each node, thereby limiting its decision making.
Some processing can be done locally on the network routers,
and it is here that we shall first concentrate. Specifically, if
there is congestion, one typically needs to discard packets.
Determining which ones is not an easy problem. A useful
paradigm is to filter the individual packets traversing the link
into some number of classes so that each class can be rate
limited. Gupta and McKeown [1] provide an overview of some
of the standard packet filtering approaches. Typically, the
destination address is the most important parameter, and a
one-dimensional classification is often done based on this field.

Mahajan et al. [2] point out that the problem of network
congestion is neither due to a single flow refusing to use end-
to-end congestion control nor is it due to a general increase
in overall network load. Instead, one can characterize the
increase in traffic as coming from an aggregate of flows. They
further suggest that it is useful to base a congestion control
algorithm on the detection of these aggregates, as opposed
to concentrating on either per-flow control or active queue
management. The basic reasoning is that the number of flows
may be so large and transient, that it is a waste of system
resources to attempt to track each flow separately. Instead, if
one can cluster the flows into a smaller number of aggregates,
then it is possible to process (e.g. queue and rate control) each
aggregate separately, depending on the level of congestion of
each outgoing link and local a priori policies.
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Two questions immediately come to mind: (1) should the
aggregates be related to specific categories/classes of traffic as
opposed to certain destination addresses, and (2) how should
the segmentation into aggregates actually be done? Typi-
cally [2], the aggregation is done based on the destination
address. One potential problem with this approach is that
the congestion may be caused by a single server responding
to requests from multiple addresses. For example in a flash
crowd caused by many requests for a video stream, the short
request packets may get to the server but the congestion is
actually caused by the multiple copies of the video stream
headed to many different destinations. Automatic software
updates from a common server also fit this scenario. To help
answer these questions, we look at other work aimed at pre-
venting denial-of-service attacks and in flow classification.

While neural networks and support vector machines can be
used to build powerful classifiers [3], the standard supervised
learning methods for training imply the existence of a set of la-
beled training data. That is, a sequence of input/output pairs
where the output is the desired classification. Our concern is
that the existence of such training data may be quite lim-
ited or non-existent. Consequently, we initially propose using
unsupervised statistical learning based on the k-means clus-
tering algorithm [3]. Further extensions using self-organizing
maps [4] and independent component analysis [3] are also pos-
sible. Recently, there has been some interesting work on using
both labeled and unlabeled data for designing classifiers [5] [6],
and we also discuss the use of such techniques for this problem.

The outline of the rest of this paper is as follows: Section II
describes some related work on dealing with denial-of-service
attacks. Section IIT considers traffic flow classification, and
it includes the description of our proposed system and algo-
rithms. Section IV then provides some initial results, and the
final section discusses further research directions.

II. DENIAL-OF-SERVICE ATTACKS

There has been a relatively large amount of work [7] [8] [9]
[10] [11] in the related areas of intrusion detection (ID) and
countering denial-of-service attacks. It is useful to make the
distinction between network-based and host-based intrusion
detection; the former is concerned with detecting the pres-
ence of intruding packets and packet flows into a network or
subnetwork, while the latter detects intrusion into a specific
end system. In this work, we are interested in network-based
intrusion detection, especially its relationship to DoS attacks
and congestion control.

Intrusion detection is often considered as a problem of
anomaly detection !; this paradigm tries to find a baseline
of normal behavior and then determine if the current behav-
ior deviates sufficiently from normal. At a single router, the

! An alternative paradigm is one of misuse detection [8], where
attacks on a system are modeled as specific patterns. The misuse
detector then scans the system for occurrences of these patterns.
Since the patterns must be known a priori, this viewpoint is more
suitable for host-based intrusion detection.



goal is to determine whether or not each network link is in a
normal state. If not, then it is possible that an attack is tak-
ing place, and the classification problem becomes determining
the attack packets so that they can be filtered out. Both rule-
based and statistical approaches have been developed in the
literature. The latter approach is formulated as a statisti-
cal hypothesis testing problem, which can be addressed by a
number of methods. Feinstein et al. [7] compute the entropy
and chi-square statistics of the packets. Alternatively, given
a training sequence containing normal and abnormal network
behavior, neural networks can be trained to classify the traffic.
For instance, Ghosh and Schwartzbard [8] use a conventional
multilayer perceptron neural network with backpropagation
training, while Zhang et al. [9] tested five different types of
neural networks including radial-basis functions.

Similarly, Huang and Pullen [10] propose a congestion trig-
gered packet sampling and filtering approach. For a given type
of attack condition, they model the packets as coming from
a binomial distribution, so they can precompute the confi-
dence intervals around given thresholds. Now if the observed
percentage of bad packets is above the top of the confidence
interval, then there is a greater than 95% probability that the
true number of malicious packet is above the threshold. While
the idea of precomputed thresholds is generally useful, they
do not specify, in general, how to determine the alarm con-
ditions; they give a couple of examples, including the case of
looking for spoofed source addresses that do not come from
the incoming ISP.

III. FLow CLASSIFICATION AND PACKET FILTERING

One definition of an IP traffic flow is a sequence of pack-
ets that share some common properties. For example, packets
with the same destination address prefix constitute a flow to
a particular area in a network. A flow of finer granularity
would be IP packets with the same source and destination
addresses and ports (IP address/port quadruple). One could
consider keeping track of all of these flows going through a sin-
gle router (the all service flow classification scheme mentioned
below does this). Aside from the serious problem of scale,
there are other problems, especially for DoS attacks. For ex-
ample, the source address can often be spoofed, and the use
of encryption at the IP layer or network address translation
may make the port numbers unreliable also.

Ilvesméki et al. [12] studied the problem of determining if
flows should be routed at the IP layer (layer 3) or switched
at layer 2. They used the IP address/port quadruples in con-
junction with a time-out value to determine flows, and they
considered four flow classification schemes: (1) all service flow
classification, (2) packet-count based flow classification, (3) se-
lected service flow classification, and (4) learning vector quan-
tization (LVQ). They specifically proposed the last method
and showed that it can provide better results than the three
previous ones. While this work is of interest, there is a poten-
tial scaling problem since they are not aggregating the flows.

In terms of aggregating the flows, one goal could be to
classify the network traffic into a relatively small number (5-
20) of application classes. Ideally, this could be treated as a
supervised learning problem, where the packet headers are the
input vectors and the application class is the output. However,
the implicit assumption is that there is a reasonable training
sequence of input-output pairs, which may not be the case.
This concern has not appeared to stop many researchers from
adopting this approach. Alternatively, one can consider the
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Figure 1: System block diagram: unsupervised learning
and queueing.

unsupervised learning problem of segmenting the packets into
a number of clusters, with each cluster processed differently.

In both the supervised and unsupervised cases, the aim is
to be able to filter (that is, either classify or cluster followed
by separate queueing and rate control) each packet that en-
ters the router. Trivedi et al. [13] take a somewhat different
approach where they build a histogram of packet lengths for
8 different application classes. A multilayer perceptron neural
network was then trained on these fifty dimensional vectors.
While the results appear quite promising, there is a significant
issue here. When testing the classifier, it is assumed that all
the packets used to make up an input histogram come from the
same application class. Yet in a real network, the packets en-
tering the router will have many different classes interspersed.
Thus, while the work is interesting, it is presently not suitable
for implementation.

In contrast to the work just mentioned, Singh et al. [14]
propose a state-of-the-art packet classification algorithm. Like
those discussed in [1], it uses a type of decision tree architec-
ture to provide fast classification. Moreover, it argues that
content addressable memories may be too limited for general
packet filtering and that algorithmic approaches may be nec-
essary. However, it is somewhat conventional in the sense that
it takes as input a set of rules, and then it develops the clas-
sifier based on them. Again, one can consider this as a type
of supervised learning in that the rules are given. In other
words, this method does not try to determine rules based on
the data.

PACKET FILTERING ALGORITHM

Fig. 1 shows the block diagram of our system. On each
output line card of a router, instead of a single output queue
there are now a number of queues. Packets entering the system
are compared to a relatively small number (e.g. 8, 16, or 32)
of code vectors, and each packet is mapped to the cluster
whose code vector is the best match. The packets in each
cluster are then put into a first-in-first-out queue. Presently,
the scheduling algorithm uses (work conserving) round robin.

The cluster design is done using the k-means algorithm [3],
with training operating in a batch processing mode. Specifi-
cally, the input packet stream is segmented into 5,000 packet
epochs. During the first epoch, only a single queue is used,
while the packets are also collected and used in the code vector
design. The resulting code vectors are then used for cluster-
ing during the next two epochs. In general, training occurs
during epochs 2n, for integer n, and the code vectors are used
for the next two epochs. To initialize the code vectors in the



base algorithm, a splitting procedure is used; first, the cen-
troid of the training samples (packets) c is found, and then it
is perturbed by a small vector € to get code vectors ¢ + € and
c — €. The k-means algorithm then gives two optimized code
vectors ¢1 and c2. The process is repeated to generate four
code vectors, then eight, then sixteen etc. The complete base
algorithm to create 8 codevectors is described below.

Base Algorithm

Compute centroid of training samples

Split centroid into 2 code vectors

Run k-means algorithm to optimize 2 code vectors
Split into 4 code vectors

Run k-means algorithm to optimize 4 code vectors
Split into 8 code vectors

Run k-means algorithm to optimize 8 code vectors

Since the algorithm uses Euclidean distance
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for p dimensional vectors x and y, there is the issue of scaling
the different dimensions. This is accomplished by normalizing
each dimension by its maximum value in the epoch.

In the work of Mahajan et al. [2], as well as in our al-
gorithm, there is an implicit assumption that roughly equal
numbers of packets go to each queue. This assumption is more
likely to be valid in [2], because they are using ranges of des-
tination addresses for the aggregation; one could presumably
measure the traffic over “normal” operating conditions and
then build the rules that determine the address ranges. Since
our algorithm is adaptively creating clusters, there is no guar-
antee that the clusters will have approximately equal sizes.
The effect on performance is discussed in Section IV.

Thus, to ensure that no legitimate traffic is dropped under
normal conditions, the two clusters with the largest numbers
of training packets are split when there is no congestion. When
there is congestion, this splitting procedure is not used, and
the initial code vectors are those from the previous epoch.
This leads to the congestion monitoring algorithm described
below. The basic idea is that the bad traffic will (hopefully)
tend to cluster into one or two of the queues, so that the rate
limiting is more effective.

Congestion Monitoring Algorithm

if ( average traffic load < threshold) ) then
Base Algorithm
Split 2 largest code vectors
Run k-means to optimize 10 code vectors
else
Use 10 code vectors from previous epoch
Run k-means to optimize 10 code vectors
end if

IV. PRELIMINARY RESULTS

First let us consider the problem of classifying packets into
the following four application classes: (1) ftp, (2) smtp, (3)
http, and (4) other/bad. The data is taken from an OPNET
simulation where packets traverse a particular link in a small
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Figure 2: Simple test network topology.

network (11 subnets for a total of 500 end-user devices, 3 http
servers, one ftp server and one mail server). The topology of
the network used in the simulation is shown in Fig. 2. The le-
gitimate traffic is a combination of http, smtp and ftp packets
arranged as follows: the major contribution comes from http
which represents 90% of the total traffic in bits, then smtp and
ftp, which contribute 5% each. Thus, each application is char-
acterized with a pre-defined OPNET profile and attributes.
Based on the attack model developed in [15], 3 attackers from
3 different subnets are trying to overflow the bottleneck link
of the network by sending UDP packets from spoofed IP ad-
dresses. Over 10 minutes of simulation, the network is un-
der attack for about 4 minutes. Each packet header is repre-
sented by a six-dimensional vector that contains: (1) source
address, (2) destination address, (3) protocol, (4) packet size,
(5) source port, and (6) destination port.

BASE ALGORITHM

In this subsection, we discuss the performance of the base
algorithm. We start with a single simulation, where 120,475
packets are sent through a single queue into the output link of
the router. 20,001 of these packets are “bad”, in the sense that
they are coming from the three attackers. During periods of no
congestion, the link is about 65 percent full on average, while
during the congested period, the offered load is somewhat over
100 percent of capacity. Table 1(A) shows the total number of
packets (first row) and the number of packets dropped (second
row) for each application type for the original system where
there is a single output queue. The total number of good
packets (i.e. ftp, smtp, http) dropped is 4,558, while 1,907
bad packets are dropped.

Next, we use the base clustering algorithm and multiple
output queues, as discussed in Section III. The length of
each of the eight queues is one-eighth of the length of the
single queue, so that there is no net increase in memory us-
age. Table 1(B) shows the total packets (top 8 rows) and
packets dropped (bottom 8 rows) when there are 8 clusters
and queues. Now, a total of 1,831 good packets are dropped,
along with 3,034 bad packets for this simulation run. Most
of the good dropped packets come from the http traffic class,
primarily because the clustering algorithm is sufficiently good



| Cluster | ftp | smtp | http | other/bad |
1 3,108 | 6,514 | 90,852 20,001
1 93 204 | 4,261 1,907
1 0 0 | 10,759 4,834
2 1,227 | 1,382 | 3,242 0
3 0 0 | 12,253 2,718
4 573 | 1,610 | 15,262 0
5 0 0| 7,968 7,791
6 674 | 1,805 | 14,783 0
7 0 0 | 12,401 4,658
8 477 | 1,247 | 13,698 0
1 0 0 232 0
2 7 15 153 0
3 0 0 969 37
4 0 0 0 0
5 0 0 4 1,116
6 1 21 372 0
7 0 0 0 1,881
8 0 0 57 0
Table 1: % Total packets and packets dropped for

(A) 1 cluster/queue and (B) 8 clusters/queues with round
robin scheduling.

to form large clusters (e.g. 15,262 packets). Still, the total
number of good packets dropped is decreased.

CONGESTION MONITORING ALGORITHM

The Congestion Monitoring Algorithm, however, provides
greatly improved performance without requiring additional
memory. We set the congestion threshold at 80 percent of
capacity, and the ten queues have lengths of one tenth the
single queue. In our attack model, the bad packets come from
three different sources that start transmitting at slightly dif-
ferent times. As the link initially becomes congested, the at-
tack packets are clustered into the existing ten clusters. Once
the next training epoch is reached, the system designs ten new
code vectors, using the ones from the previous epoch as the ini-
tial locations. Table 2 shows the distribution of packets among
the ten clusters/queues for a single simulation run. One can
see that the attack traffic has enough self-similarity so that it
ends up almost in a single cluster, whence it is easy to rate
limit. As a result, no good packets are dropped, while 4,084
bad packets are dropped, compared to 4,558 good packets and
1,907 bad packets for a single queue system. The main reason
for this difference is that the good traffic uses TCP, while the
attacks use UDP. Examining the code vectors created before
and after congestion shows that the protocol type is one of
the main features used in the clustering process.

While the results in Table 2 are quite promising, they are
obtained for an attack of a particular intensity. It is also inter-
esting to evaluate the system performance as this load varies.
Since most of the data is http traffic, we focus on it. Each
data point in the figures below is an average of five different
simulations, each using a different random seed. Fig. 3 shows
the percentage of http packets dropped versus the total num-
ber of bad packets (intensity of the attack) for the one queue
system, eight queue system with the base algorithm, and ten

| Cluster | ftp | smtp | http | other/bad

1 0 0| 12,665 985
2 612 | 536 | 3,003 0
3 510 | 528 | 3,532 0
4 138 | 509 | 9,905 0
5 195 | 911 | 10,869 0
6 0 0| 4,892 19,016
7 290 | 711 | 7,088 0
8 346 | 1,137 | 11,675 0
9 16 65 | 14,244 0
10 | 512 1,089 | 9,383 0

Table 2: Total packets for 10 clusters/queues with round
robin scheduling.
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Figure 3: Average percentage of http packets dropped as
a function of load.

queue system with the congestion monitoring algorithm. For
low level attacks, say below 12,000 total UDP packets, the
performance of the three systems is very similar. There is suf-
ficient bandwidth available, and very few packets are dropped.
As the the attack intensity increases, the base algorithm is
substantially better the the one queue system, while the con-
gestion monitoring algorithm is even more effective. Fig. 4
shows the corresponding percentage of bad packets lost also
versus the load; this leads to similar conclusions.

Fig. 5 shows the TCP delay of the http traffic collected at
the http server as a function of the load for the single queue
system, the base algorithm used with 8 queues, and the con-
gestion monitoring algorithm used with 10 queues. This delay
is an average over the simulation time, and it is somewhat
similar for the single queue system and the 8 queue base algo-
rithm. The performance increase is much better when using
the congestion monitoring algorithm along with 10 queues.
The results are even more significant during the congestion
period. The TCP delay for the single queue system is on the
order of 2 to 5 seconds, compared to about a hundred mil-
liseconds for the 10 queues system.
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Figure 4: Average percentage of bad packets dropped as
a function of load.

If one can afford a system with 18 queues (of length one-
eighteen of the single queue), then it may be possible to lower
the packet dropping rate even more. For the fairly simple
attacks used in this work, the improvement is not very sub-
stantial. Given that the computational complexity increases
with the number of code vectors, it is not clear that it is worth-
while to use this many queues. However, the situation may
be different for links containing more complicated flows.

V. CONCLUSIONS AND EXTENSIONS

Initial simulation results suggest that packet filtering based
on unsupervised learning can be effective in combating some
denial-of-service attacks. Much investigation is required to
determine optimal values for the number of code vectors, the
congestion threshold, the epoch length, and the packet header
fields to use. It should be noted that only the comparison of
the packet headers to the code vectors must be done at line
speed; the cluster computation can be done in the background.
Still, methods to reduce the computational complexity will be
studied. The immediate extension of the above work is to
examine more sophisticated traffic and attack scenarios, and
then to develop attacks that will attempt to defeat the packet
filtering algorithm. Additional work will consider the use of
semi-supervised learning [5] [6] in conjunction with weighted
queueing, based on a priori estimates of typical traffic.

Another direction for future work is to propagate packet
classification information to immediate upstream routers so
that rate limiting can be more effectively applied. The in-
tention is that by pushing back the processing closer to the
sources, less of the useful network traffic is discarded [2]. To
accomplish push-back, information will need to be propagated
both up and down the source tree from the congested router.
Papadopoulos et al. [16] propose a distributed “watchdog ar-
chitecture” to allow this communication, in conjunction with
a relatively simple spectral analysis to detect an attack. In
addition to improved detection/classification techniques, we
claim that the incomplete network state information suggests
use of “soft information” sent to the upstream routers.
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Figure 5: Average TCP delay in seconds as a function of
load.
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