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Overview
• Digital halftoning – purpose and constraints

► direct binary search (DBS) algorithm for halftoning
► minimize cost function based on human visual system

• Quasi-Monte Carlo (QMC) – purpose, examples
• Minimum Visual Discrepancy (MVD) algorithm for 

points, analogous to DBS
► examples; integration tests

• Voronoi diagrams – calculation via Monte Carlo
► Voronoi weighted integration – lowers rms error in MC integr.

• Extensions 
► interacting particle model – good for higher dimensions 
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Validation of physics simulation codes
• Computer simulation codes

► many input parameters, many output variables
► very expensive to run; up to weeks on super computers

• It is important to validate codes - therefore need  
► to compare codes to experimental data; make inferences
► advanced methods to estimate sensitivity of simulation 

outputs on inputs
• Latin square (hypercube), stratified sampling, quasi-Monte Carlo

• Examples of complex simulations
► ocean and atmosphere modeling
► aircraft design, etc.
► casting of metals
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Example of ocean model simulation
1/6 degree resolution – rms dev. in ocean height

calculation time ≈ one month!
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Digital halftoning techniques
• Purpose

► render a gray-scale image by placing black dots on white 
background

► make halftone rendering look like original gray-scale image 

• Constraints
► resolution – size and spacing 

of dots, number of dots
► speed of rendering

• Various algorithmic approaches
► error diffusion, look-up tables, blue-noise, …
► focus here on Direct Binary Search 
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DBS example
• Direct Binary Search produces 

excellent-quality halftone images
• Sky - quasi-random field 

of dots, uniform density
• Computationally intensive

Li and Allebach, IEEE Trans. 
Image Proc. 9, 1593-1603  
(2000)
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Direct Binary Search (DBS) algorithm
• Digital halftone image is composed of black or white 

pixels
• Cost function is based on perception of two images

► where d is the dot image, g is the gray-scale image to be 
rendered, * represents convolution, and h is the image of the 
blur function of the human eye, for example,

• To minimize φ
► start with a collection of dots with average local density ~ g
► iterate sequentially through all image pixels
► for each pixel, swap value with neighborhood pixels, or 

toggle its value to reduce φ

2( )ϕ = ∗ −h d g

3/ 2( ) ( )−2 2h r  = w  + r
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Monte Carlo integration techniques
• Purpose 

► estimate integral of a function over a specified region R in m
dimensions, based on evaluations at n sample points

• Constraints
► integrand not available in analytic form, but calculable
► function evaluations may be expensive, so minimize them 

• Algorithmic approaches
► focus on accuracy in terms of # of function evaluations n
► quadrature (Simpson) – good for few dimensions; rms err ~ n-1

► Monte Carlo – useful for many dimensions; rms err ~ n-1/2

► quasi-Monte Carlo – reduce # of evaluations; rms err ~ n-1
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Quasi-Monte Carlo
• Purpose

► estimate integral of a function over a specified domain
in m dimensions

► obtain better rate of convergence of integral estimation than 
seen in classic Monte Carlo 

• Constraints
► integrand function not available analytically, but calculable
► function known (or assumed) to be well behaved 

• Standard QMC approaches use low-discrepancy 
sequences in product space (Halton, Sobel, Faure,...)

• Purpose here is to propose a new way of generating 
sets of sample points



September 18, 2003 LANL Uncertainty Quantification Working Group 10

Point set examples
• Examples of different kinds of point sets 

► 400 points in each

• If quasi-MC sequences have better integration properties 
than random, is halftone pattern even better?

Random
(independent)

Quasi-Random 
(Halton sequence)

Halftone
(DBS sky)
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Discrepancy
• Much of QMC work is based on the discrepancy, 

defined for samples covering the unit square in 2D as

► where integration is over unit square, 
► n(x, y) is the number of points in 

the rectangle with opposing corners 
(0, 0) to (x, y), and 

► A(x, y) is the area of the rectangle

• Can be related to upper bounds on integration error for 
some classes of functions 

• Clearly a measure of uniformity of dot distribution;
however, only for particular structure function

[ ]2
2 = ( , ) ( , )  −∫

U
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Minimum Visual Discrepancy (MVD) algorithm
Inspired by Direct Binary Search halftoning algorithm

• Start with an initial set of points
• Goal is to create uniformly distributed set of points
• Cost function is variance in blurred point image

► where d is the point (dot) image, h is the blur function of the 
human eye, and * represents convolution

• To minimize ψ
► start with some point set (random, stratified, Halton,…)
► iterate through points in random order;
► move each point in 8 directions, and accept move that has 

lowest ψ

var( )ψ = ∗h d
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Minimum Visual Discrepancy (MVD) algorithm
• MVD result; initialized with 100 points from Halton seq.
• MVD algorithm minimizes variance in blurred image

► effect is to force points to be as far apart from each other as 
possible, constrained to unit square; thus, evenly distributed

► expect global minimizer is a regular pattern; hexagonal in 2D 

100, MVD Blurred image
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MVD point sets
• In each optimization, final pattern depends on initial point set

► algorithm seeks local minimum, not global (similar to DBS)

• Patterns somewhat resemble regular hexagonal array
► similar to lattice structure in crystals or glass
► however, they lack long-range (coarse scale) order
► best to start with point set with good long-range uniformity

1000, MVD400, MVD100, MVD
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Analogy to interacting particles
• Consider points as set of interacting particles
• Cost function is the total potential

► where xi is location of ith particle
V is particle-particle interaction potential 
and U is particle-boundary potential 

► particles are repelled by each other and boundary

• Minimize ψ by moving particles around 
• This model is formally equivalent to Minimum Visual 

Discrepancy (V and U are directly related to blur fnc. h)
• Suitable for generating point sets in high dimensions

, 1
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Interacting particle approach
• Example of interacting-particle calculation

► resulting point pattern is visually indistinguishable from 
MVD pattern 

MVDInteracting Particle 

1000 points
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Comparison of various point sets
• Various kinds of point sets (400 points)
• Varying degrees of randomness and uniformity
• As the points become more uniformly distributed, the more 

accurate are the estimated integrals values 

MVD, 0.14%Halton, 0.5%Random, 2.5% Grid, 0.09%

More Uniform, Higher Accuracy

RMS relative accuracies of integral of ( )0 0func2 = exp 2 ; 0 1i i i
i

x x x− − < <∏
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Integration test results

• RMS error for integral of 
► from worst to best: random, Halton,  MVD, square grid
► lines show N -1/2 (expected for MC) and N -1 (expected for QMC) 

( )0 0func2 = exp 2 ; 0 1i i i
i

x x x− − < <∏

N -1/2

N -1
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Regular versus random sampling
• If sampling on square grid gives lowest integration 

errors, why use random samples at all?
• Arguments for/against regular sampling:

► pro - easy to do and good integr. accuracy (in low D)
► con – only specific number of samples can be had (nd), and 

difficult to add extra points; 
- many points required in high D

• Arguments for/against random sampling
► pro – easy to add more points;

- high D no problem
- less likely to be fooled by periodic function;

► con – lower accuracy and slow (n-1/2) convergence

• QMC and MVD try to combine best of both
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Marginals for MVD
• Desirable to have marginals of 

high dimensional point sets to 
uniformly sample in each 
parameter

• Latin hypercube sampling 
designed to achieve this 
property (for specified number 
of points)

• Plot shows histogram of 95 
MVD samples along x-axis, 
i.e., marginalized over y 
direction

• MVD points have relatively 
uniform marginal distributions 

95 MVD points
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Voronoi analysis via Monte Carlo
• Voronoi diagram

► partitions region of interest into 
polygons

► points within each polygon are closest 
to corresponding generating point, Zi

• MC technique facilitates Voronoi
analysis
► randomly throw large number of points 

{Xi} into region
► compute distance of each Xi to all 

generating points {Zi}
► sort according to which Zi they are 

closest to
► can compute area Ai, radial moments,… 

• Easily extended to high dimensions

100 MVD points



September 18, 2003 LANL Uncertainty Quantification Working Group 22

Voronoi analysis can improve classic MC
• Standard MC formula

• Instead, use weighted average

► where Vi is the volume of Voronoi
region for ith point; Riemann integr.

• Accuracy of integral estimate 
dramatically improved in 2D:
► factor of 6.3 for N = 100 (func2)
► factor of > 20 for N = 1000 (func2) 

• Suitable for adaptive sampling
• Less useful in high dimensions (?)

100 random samples
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Visualization of fluid flow
• Fluid flow often visualized as field of vectors
• Location of vector bases may be chosen as

► square grid (typical) - regular pattern produces visual artifacts
► random points - fewer artifacts, but nonuniform placement
► quasi-random - fewest artifacts and uniform placement

Random pointsSquare grid
Quasi-random (MVD) 

point set
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Extensions
• Generation of optimal point sets in high dimensions

► particle interaction model (equivalent to MVD)

• Sequential generation of point sets
► add one point at a time to previous fixed point set

• Apply to arbitrary domains
• Draw MVD samples from specified pdf
• Use in visualization of flow fields, streamlines
• Adapt these ideas to MCMC for improved efficiency (??)
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Conclusions
• Minimum Visual Discrepancy algorithm

► produces point sets resembling uniform halftone images
► yields better integral estimates than standard QMC sequences
► equivalently, can use particle interaction model in high dimen.

• Voronoi analysis – can improve accuracy of classic MC
• centroidal Voronoi tessellation (Gunzberger)
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