Halftoning and quasi-Monte Carlo

Ken Hanson

CCS-2, Continuum Dynamics Los Alamos National Laboratory

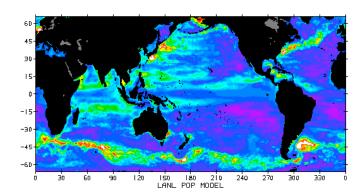
This presentation available at http://www.lanl.gov/home/kmh/

Overview

- Digital halftoning purpose and constraints
 - ▶ direct binary search (DBS) algorithm for halftoning
 - ► minimize cost function based on human visual system
- Quasi-Monte Carlo (QMC) purpose, examples
- Minimum Visual Discrepancy (MVD) algorithm for points, analogous to DBS
 - examples; integration tests
- Voronoi diagrams calculation via Monte Carlo
 - ▶ Voronoi weighted integration lowers rms error in MC integr.
- Extensions
 - ▶ interacting particle model good for higher dimensions

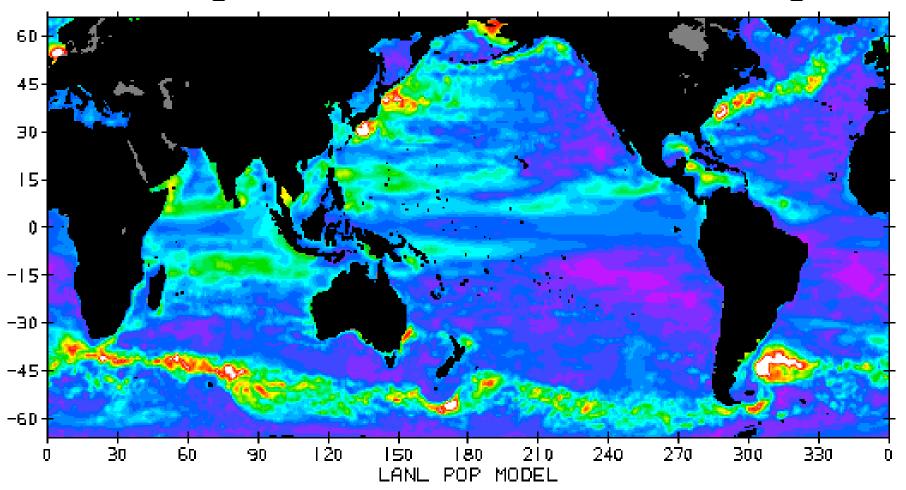
Validation of physics simulation codes

- Computer simulation codes
 - many input parameters, many output variables
 - very expensive to run; up to weeks on super computers
- It is important to validate codes therefore need
 - ▶ to compare codes to experimental data; make inferences
 - advanced methods to estimate sensitivity of simulation outputs on inputs
 - Latin square (hypercube), stratified sampling, quasi-Monte Carlo
- Examples of complex simulations
 - ocean and atmosphere modeling
 - ► aircraft design, etc.
 - casting of metals



Example of ocean model simulation

1/6 degree resolution – rms dev. in ocean height



calculation time ≈ one month!

Digital halftoning techniques

Purpose

- ► render a gray-scale image by placing black dots on white background
- ► make halftone rendering **look like** original gray-scale image

Constraints

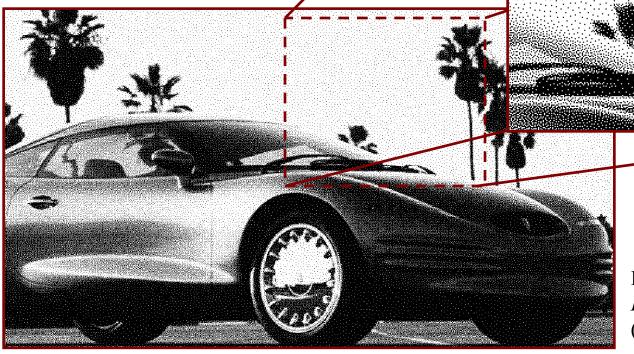
- ▶ resolution size and spacing of dots, number of dots
- speed of rendering
- Various algorithmic approaches
 - ▶ error diffusion, look-up tables, blue-noise, ...
 - ► focus here on Direct Binary Search

DBS example

 Direct Binary Search produces excellent-quality halftone images

 Sky - quasi-random field of dots, uniform density

Computationally intensive



Li and Allebach, *IEEE Trans*. *Image Proc*. **9**, 1593-1603 (2000)

Direct Binary Search (DBS) algorithm

- Digital halftone image is composed of black or white pixels
- Cost function is based on perception of two images $\varphi = |\mathbf{h} * (\mathbf{d} \mathbf{g})|^2$
 - where **d** is the dot image, **g** is the gray-scale image to be rendered, * represents convolution, and **h** is the image of the blur function of the human eye, for example, $h(r) = (w^2 + r^2)^{-3/2}$
- To minimize φ
 - ightharpoonup start with a collection of dots with average local density $\sim \mathbf{g}$
 - ▶ iterate sequentially through all image pixels
 - for each pixel, swap value with neighborhood pixels, or toggle its value to reduce φ

Monte Carlo integration techniques

Purpose

► estimate integral of a function over a specified region *R* in *m* dimensions, based on evaluations at *n* sample points

$$\int_{R} f(\mathbf{x}) d\mathbf{x} = \frac{V_R}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)$$

Constraints

- ▶ integrand not available in analytic form, but calculable
- ▶ function evaluations may be expensive, so minimize them

Algorithmic approaches

- ▶ focus on accuracy in terms of # of function evaluations *n*
- ▶ quadrature (Simpson) good for few dimensions; rms err $\sim n^{-1}$
- ► Monte Carlo useful for many dimensions; rms err $\sim n^{-1/2}$
- ▶ quasi-Monte Carlo reduce # of evaluations; rms err $\sim n^{-1}$

Quasi-Monte Carlo

Purpose

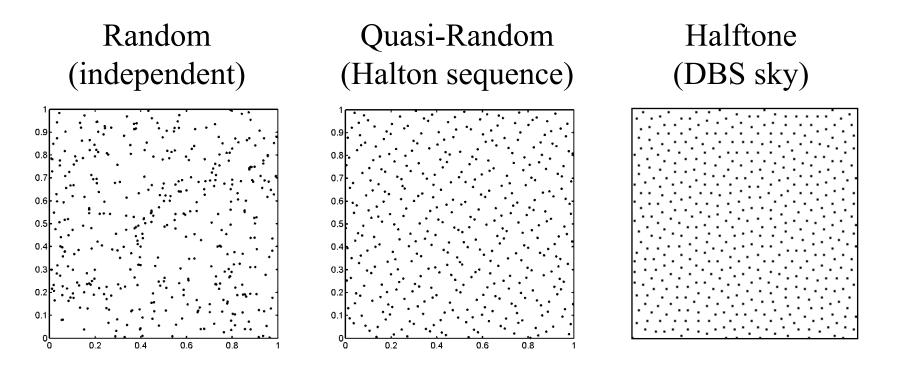
- estimate integral of a function over a specified domain in m dimensions
- ► obtain better rate of convergence of integral estimation than seen in classic Monte Carlo

Constraints

- ▶ integrand function not available analytically, but calculable
- function known (or assumed) to be well behaved
- Standard QMC approaches use low-discrepancy sequences in product space (Halton, Sobel, Faure,...)
- Purpose here is to propose a new way of generating sets of sample points

Point set examples

- Examples of different kinds of point sets
 - ▶ 400 points in each
- If quasi-MC sequences have better integration properties than random, is halftone pattern even better?

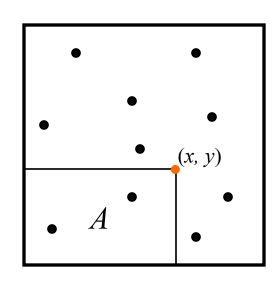


Discrepancy

• Much of QMC work is based on the discrepancy, defined for samples covering the unit square in 2D as

$$D_2 = \int_U [n(x,y) - A(x,y)]^2 dxdy$$

- ▶ where integration is over unit square,
- ► n(x, y) is the number of points in the rectangle with opposing corners (0, 0) to (x, y), and
- A(x, y) is the area of the rectangle



- Can be related to upper bounds on integration error for some classes of functions
- Clearly a measure of uniformity of dot distribution; however, only for particular structure function

Minimum Visual Discrepancy (MVD) algorithm

Inspired by Direct Binary Search halftoning algorithm

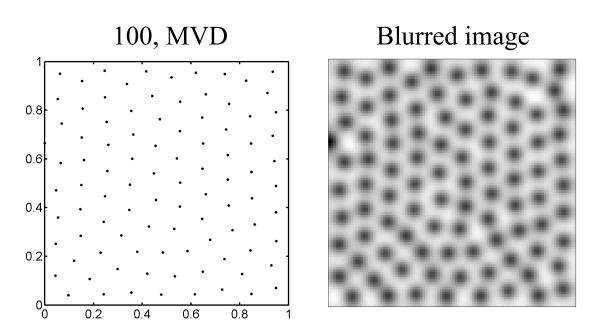
- Start with an initial set of points
- Goal is to create uniformly distributed set of points
- Cost function is variance in blurred point image

$$\psi = \text{var}(\mathbf{h} * \mathbf{d})$$

- ► where **d** is the point (dot) image, **h** is the blur function of the human eye, and * represents convolution
- To minimize ψ
 - ▶ start with some point set (random, stratified, Halton,...)
 - ▶ iterate through points in random order;
 - ▶ move each point in 8 directions, and accept move that has lowest ψ

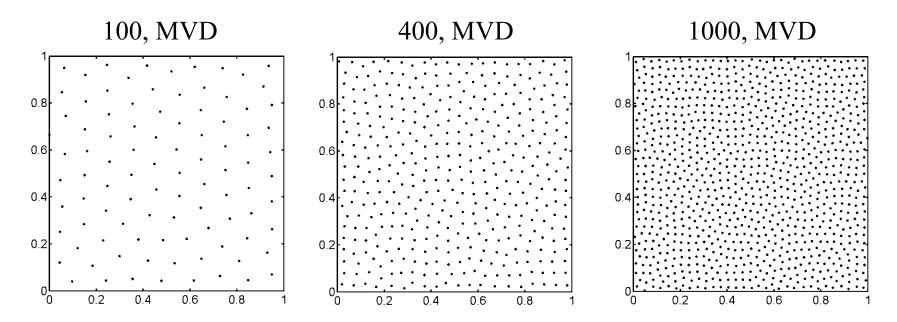
Minimum Visual Discrepancy (MVD) algorithm

- MVD result; initialized with 100 points from Halton seq.
- MVD algorithm minimizes variance in blurred image
 - ► effect is to force points to be as far apart from each other as possible, constrained to unit square; thus, evenly distributed
 - ▶ expect global minimizer is a regular pattern; hexagonal in 2D



MVD point sets

- In each optimization, final pattern depends on initial point set
 - ▶ algorithm seeks local minimum, not global (similar to DBS)
- Patterns somewhat resemble regular hexagonal array
 - similar to lattice structure in crystals or glass
 - ▶ however, they lack long-range (coarse scale) order
 - ▶ best to start with point set with good long-range uniformity



Analogy to interacting particles

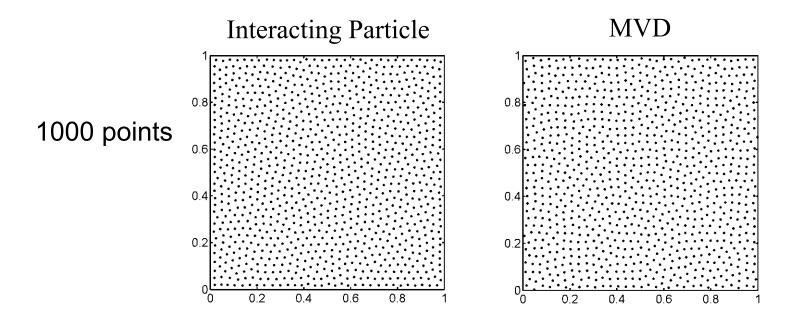
- Consider points as set of interacting particles
- Cost function is the total potential

$$\psi = \sum_{i,j \ge i+1} V(\mathbf{x}_i, \mathbf{x}_j) + \sum_i U(\mathbf{x}_i)$$

- where x_i is location of *i*th particle V is particle-particle interaction potential and U is particle-boundary potential
- ► particles are repelled by each other and boundary
- Minimize ψ by moving particles around
- This model is formally equivalent to Minimum Visual Discrepancy (V and U are directly related to blur fnc. \mathbf{h})
- Suitable for generating point sets in high dimensions

Interacting particle approach

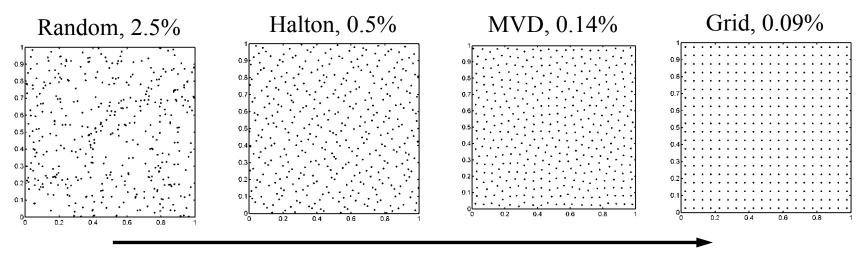
- Example of interacting-particle calculation
 - ► resulting point pattern is visually indistinguishable from MVD pattern



Comparison of various point sets

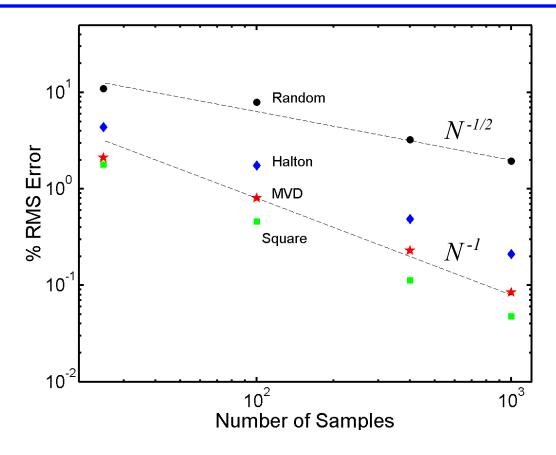
- Various kinds of point sets (400 points)
- Varying degrees of randomness and uniformity
- As the points become more uniformly distributed, the more accurate are the estimated integrals values

RMS relative accuracies of integral of func2= $\prod_{i} \exp(-2|x_i - x_i^0|)$; $0 < x_i^0 < 1$



More Uniform, Higher Accuracy

Integration test results



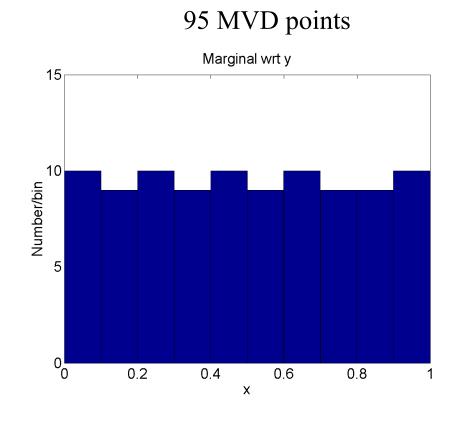
- RMS error for integral of func2= $\prod \exp(-2|x_i x_i^0|)$; $0 < x_i^0 < 1$
 - from worst to best: random, Halton, MVD, square grid
 - ▶ lines show $N^{-1/2}$ (expected for MC) and N^{-1} (expected for QMC)

Regular versus random sampling

- If sampling on square grid gives lowest integration errors, why use random samples at all?
- Arguments for/against regular sampling:
 - ▶ pro easy to do and good integr. accuracy (in low D)
 - ► con only specific number of samples can be had (n^d), and difficult to add extra points;
 - many points required in high D
- Arguments for/against random sampling
 - ▶ pro easy to add more points;
 - high D no problem
 - less likely to be fooled by periodic function;
 - ► con lower accuracy and slow $(n^{-1/2})$ convergence
- QMC and MVD try to combine best of both

Marginals for MVD

- Desirable to have marginals of high dimensional point sets to uniformly sample in each parameter
- Latin hypercube sampling designed to achieve this property (for specified number of points)
- Plot shows histogram of 95
 MVD samples along x-axis,
 i.e., marginalized over y
 direction
- MVD points have relatively uniform marginal distributions

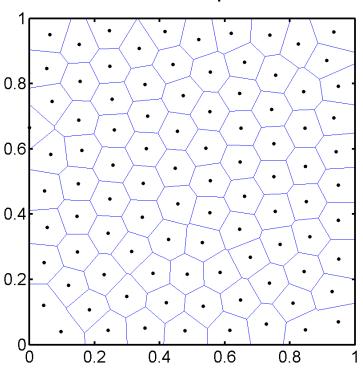


Voronoi analysis via Monte Carlo

Voronoi diagram

- partitions region of interest into polygons
- ▶ points within each polygon are closest to corresponding generating point, Z_i
- MC technique facilitates Voronoi analysis
 - randomly throw large number of points $\{X_i\}$ into region
 - ► compute distance of each X_i to all generating points $\{Z_i\}$
 - sort according to which Z_i they are closest to
 - ightharpoonup can compute area A_i , radial moments,...
- Easily extended to high dimensions

100 MVD points



Voronoi analysis can improve classic MC

Standard MC formula

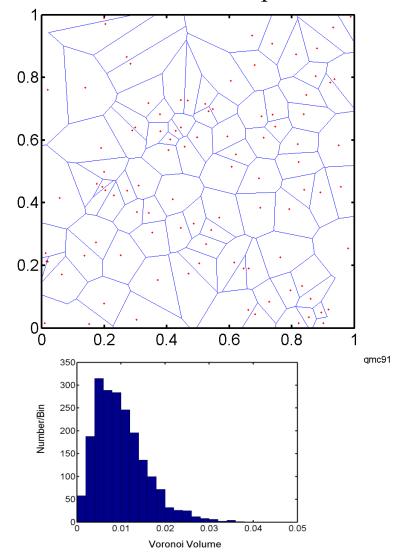
$$\int_{R} f(\mathbf{x}) d\mathbf{x} = \frac{V_{R}}{n} \sum_{i=1}^{n} f(\mathbf{x}_{i})$$

• Instead, use weighted average

$$\int_{R} f(\mathbf{x}) d\mathbf{x} = \sum_{i=1}^{n} f(\mathbf{x}_{i}) V_{i}$$

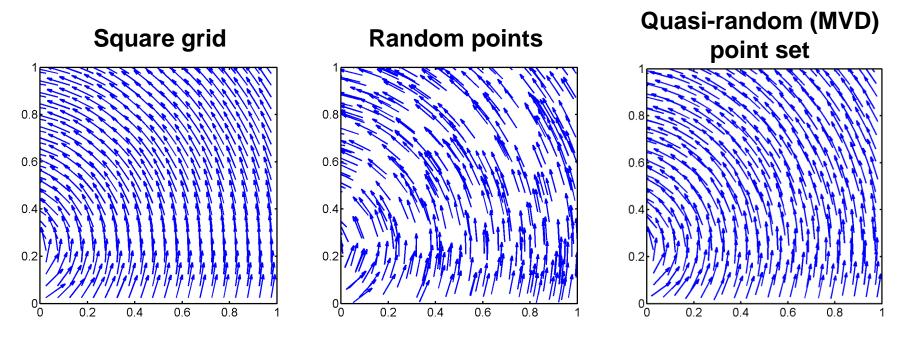
- where V_i is the volume of Voronoi region for *i*th point; Riemann integr.
- Accuracy of integral estimate dramatically improved in 2D:
 - factor of 6.3 for N = 100 (func2)
 - factor of > 20 for N = 1000 (func2)
- Suitable for adaptive sampling
- Less useful in high dimensions (?)

100 random samples



Visualization of fluid flow

- Fluid flow often visualized as field of vectors
- Location of vector bases may be chosen as
 - square grid (typical) regular pattern produces visual artifacts
 - ► random points fewer artifacts, but nonuniform placement
 - quasi-random fewest artifacts and uniform placement



Extensions

- Generation of optimal point sets in high dimensions
 - ▶ particle interaction model (equivalent to MVD)
- Sequential generation of point sets
 - ▶ add one point at a time to previous fixed point set
- Apply to arbitrary domains
- Draw MVD samples from specified pdf
- Use in visualization of flow fields, streamlines
- Adapt these ideas to MCMC for improved efficiency (??)

Conclusions

- Minimum Visual Discrepancy algorithm
 - produces point sets resembling uniform halftone images
 - ▶ yields better integral estimates than standard QMC sequences
 - equivalently, can use particle interaction model in high dimen.
- Voronoi analysis can improve accuracy of classic MC
 - centroidal Voronoi tessellation (Gunzberger)

Bibliography

- ► K. M. Hanson, "Quasi-Monte Carlo: halftoning in high dimensions?," *Proc. SPIE* **5016**, 161-172 (2003)
- ▶ P. Li and J. P. Allebach, "Look-up-table based halftoning algorithm," *IEEE Trans. Image Proc.* **9**, 1593-1603 (2000)
- ► H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, (SIAM, 1992)
- ▶ Q. Du, V. Faber, and M. Gunzburger, "Centroidal Voronoi tesselations: applications and algorithms," *SIAM Review* **41**, 637-676 (1999)

This presentation and paper available at http://www.lanl.gov/home/kmh/