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“Yet I exist in the hope that these memoirs, in some manner, I know not
how, may find their way ro the minds of humanity in Some Dimension,
an may stir up a rave of rebels who shall refuse to be confined 1o limited
Dimensionaliry.”

— Edwin Albott

To understand the freeze-thaw properties of hardened concrete, the air void system
microstructure must be characterized. Studies of the stereological and statistical proper-
ties of entrained air voids in concrete have often involved a number of steps: sample
preparation and air void identification, linear and planar analysis of a polished surface,
uncertainty analysis of the recorded data, parametric and nonparametric estimates of
the air void diameter distribution, and analysis of the air void system spatial statistics.
Each of these steps has been discussed in detail in a number of engineering fields. For
the civil engineering researcher, a comprehensive study of these properties requires con-
sulting many varied texts, each addressing these steps individually. This chapter attempts
to consolidate these topics, critically review them, and combine them into a single desk
reference. The researcher can then redlize the interdependencies of these topics, learn to
accurately characterize the air void system microstructure, and develop an understanding
of the basis for standardized test methods such as ASTM C 457,

Introduction

The effectiveness of air entrainment in providing frost resistance to con-
crete is well known to the industry. Though there are differing hypotheses
on the mechanism of frost damage, all the mechanisms suggest that frost
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durability is a function of the material properties of the concrete, the freez-
ing environment to which it is subjected, and the air void system in the con-
crete. Despite this knowledge, the frost resistance of concrete is commonly
evaluated using air void paramecters alone. The common air void parameters
used are air content by volume, the specific surface area, and the Powers
spacing factor. These values are calculated for hardened concrete using the
standard test method ASTM C 457"

When actual freeze/thaw testing is not feasible, it is common to predict
the frost resistance of concrete on the basis of air void geometry alone. To
make such a prediction, a small fraction of the air voids present in the hard-
ened concrete are observed through a microscope, and statistical inferences
are drawn about the population of the air voids as a whole.?

Given that a cubic meter of concrete may contain on the order of 10 air
voids, and that a conscientious microscopic evaluation might sample 10°
voids, it is clear that the issues of statistical inference and uncertainty are
central to geometric analysis. Accurately assessing the air void system is
further complicated by the fact that information is needed about the three-
dimensional air void characteristics, but observations are made on the two-
dimensional intersection of the void with the plane. In a typical analysis
performed in accordance with ASTM C 457, no attempt is made to measure
the diameter of an actual air void, nor is any attempt made to measure the
diameter of the intersection between the void and the two-dimensional
plane. Even this most basic of geometric characteristics of a single void is
inferred from a large number of observations, none which are intentionally
of the actual air void diameter.

The descriptive geometry of the three-dimensional air void system is
complicated still further by the need to know something about the spatial
distribution of the voids. Once again, in a standard ASTM C 457 analysis,
no data are collected about the actual location or spatial distribution of the
voids. All of this is later inferred on the basis of a priori assumptions or
structural models, irrespective of the actual concrete microstructure. The
industry’s ability to correlate actual frost resistance with air void system
geometry attests to the fact that the mathematical approaches developed
over the years have been ablc to deal with these complications to varying
degrees.

There is considerable room for improvement of the current state of prac-
lice, however. First, there is not a broad understanding of the fundamental
uncertainty that accompanies air void interpretation. The apparent complex-
ity of the equations used in standard practice too oftcn causes the practi-
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tioner to assume more accuracy and precision than can be justified. Second,
the availability of computers means that we need not confine ourselves to
oversimplified geometric models for reasons of computational expediency.
More useful techniques are available than those currently used in practice,
Perhaps this chapter will serve to clarify the mathematical background of
the problem, emphasize the uncertainty inherent in various approaches, and
suggest improved techniques.

Background

Since the 1940s, it has been known that the addition of a small volume ol
entrained air voids into concrete has a dramatic effect upon performance
under freezing and thawing conditions. Since then, numerous reports have
been published that discuss ways to characterize the air void system in con-
crete. One of the first attempts, and perhaps the most famous in the con-
crete research community, was the spacing equation proposed by Powers in
1949.7 The equation that bears his name exists today as part of ASTM C
457, which is the standard test method for characterizing air voids in hard-
ened concrete.

The Rosiwal technique* that is the basis for ASTM C 457 dates back to
1898. Brown and Pierson® were among the first researchers to apply this
technique to the study of air voids. Today, the test is used to estimate the
volume fraction of entrained air, the surface area of air voids per volume of
air voids (specific surface arca), and the Powers spacing factor. However,
this s as far as the standardized test goes with respect to characterizing the
air void system in concrete.

The methods for characterizing the uncertainty in measured volumetric
guantities obtained from the ASTM C 457 method have been published in
various sources. The techniques are rather straightforward, but have not
been delineated for all three methods of ASTM C 457. Although there is an
ASTM standard practice for calculating uncertainty (ASTM D 4356), this
practicc has not yet been incorporated into ASTM C 457, This is unfortu-
nate, since the calculations for the point count, linear traverse, and modified
point count methods have been published and are available. The individual
results have been combined here for completeness.

More sophisticated techniques for characterizing spheres embedded with-
in a matrix have been developed by concrete materials rescarchers and met-
allurgists, among others. Wicksell® was one of the first researchers to address
the problem of reconstructing properties of the particle size distribution
based upon data collected on a thin section. Others, such as Reid,” advanced
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these ideas to plane section analysis. Subsequent publications completed the
remaining mathematical components required to allow one to easily trans-
form among data collected in one-, two-, and three-dimensions.

The issue of “air void spacing” equations has been addressed a number
of times since the 1949 equation by Powers.? Notably, Philleo,® Fagerlund,’
Pleau and Pigeon,'" and Attioghe'' have each contributed equations. Each
equation addresses the topic differently. Also, the lack of consistent termi-
nology has obfuscated discussions of the equations. The equations are dis-
cussed here with summary descriptions of each spacing equation. Results
from previous numerical' and analytical'® tests of the equations are also
discussed.

Purpose

This chapter consolidates most of the information regarding the characteri-
zation of air voids in concrete. It is both interesting and unfortunate that the
information contained in this chapter has not been summarized previously.
The book by Underwood! is comprehensive, but it does not contain uncer-
tainty equations sufficient for ASTM C 457, the inversion formulae in ana-
lytical form, sophisticated spacing equations, or the concept of protected
paste volume. The hope is that this chapter will both serve as a clearing-
house for this information and also express all of this information within a
single context. True understanding begins when one is able to look beyond
a piece of information and see how this piece interrelates with the whole.

Once compiled, the information contained in this chapter should be of
great value to anyone modeling the air void microstructure within concrete,
To successfully model the air void system, one must be able to accurately
characterize both the size distribution and the proximity of the voids to
either one another or to points within the paste. This chapter discusses this
in detail for both plane section and thin section analyscs.

Finally, although this chapter serves as a useful starting point for future
concrete research, it has also been developed with the intent of highlighting
what information is still needed. To this end, each scction within this chap-
ter includes a discussion of existing research needs.

Quantitative Stereology

Quantitative stereology is the body of methods for quantifying properties of
a three-dimensional composite using only the data present on either a plane
surface or thin scction that intersects that composite. Typically, the objects
of interest are discrete cntities within a host matrix. Historically, many of
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the advances in quantitative tools have been developed for solving problems
in biology and metallurgy. The field traces most of the theoretical ground
work back to Wicksell,® who was seeking to quantify the geometrical char-
acter of cells on a microscopic thin section of tissue. More recently, metal-
lurgists have been making advances in quantifying irregularly shaped
objects, as one might find in certain alloys.

The most uscful single reference on this subject is the book Quantitative
Stereology by Underwood."* The book covers much of the theoretical work
on quantifying volumetric data. It is an excellent source for proofs of why
linear and planar probes are unbiased estimators of volumetric quantities
such as volume fraction.

Plane Section

In order to perform a quantitative analysis, a system is often penetrated by a
plane section. The intersection of the plane with the spherical air voids cre-
ates circles. Since concrete is an opaque material, it may be difficult to
visualize the connection between the circles and the spherical voids. Figure
1 shows a three-dimensional void systcm intersecting a plane. The intersec-
tion of the voids with the plane is depicted by a black circle; most of the
spheres are below the plane and so do not intersect it. As one can readily
see, the size of the intersected circle may not be representative of the inter-
sected sphere radius. However, when considered on the whole, the distribu-
tion of circle diameters can yield useful information about the distribution
of sphere radii.

The air void microstructure depicted in Fig. 1 shows a system of non-
overlapping spheres. It will be assumed throughout this chapter that the air
void system is composed of distinct spherical voids. This a priori assertion
will receive further discussion in subsequent sections.

Probes

When performing a stereological analysis, the experimenter chooses the
type of probe to use. Possible probes include points, lines, surfaces, or vol-
umes. Concrete petrographers are typically most familiar with point probes
{point count) and linear probes (linear traverse). ASTM C 457, bascd upon
the work of Brown and Pierson,® includes both methods, and a third method
(modified point count) that is a combination of the two. The use of a planar
probe to analyze air voids in concrele has been discussed by Verbeck.'
However, the standardized method has adopted the point and linear probe
analyses due to their simplicity.
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Figure |. Three-dimensional view of a random plane intersecting a system of mono-
sized spheres. The intersection of the plane with a sphere is denoted by a black circle.

The choice of a probe depends upon the quantity desired. Point probes
are sufficient for determining the volume fractions. To characterize geomet-
rical quantities, probes of higher dimensionality are required. Linear probes
are sufficient for characterizing the size and spacing of the air voids. Esti-
mates of the number of voids in a given volume of concrete can be calculat-
ed from planar probe data, but only approximated from linear probe data.

Since the point and linear probes are used in ASTM C 457, they are dis-
cussed in detail here. A schematic of a point probe is shown in Fig. 2(a),
and a linear probe analysis is shown in Fig. 2(b). The figure represents the
intersection of a plane with a matrix containing spheres of a constant
radius. Since the location of each sphere is random (but not overlapping
another sphere), the circles of intersection between the spheres and the
plane do not all have the same radius. The image in Fig. 2(a) contains small
filled circles that delineate the locations of the point probe analysis. Simi-
larly, the image in Fig. 2(b) contains horizontal lines that delineate the path
of a linear probe over the surface. One could also imagine performing a
planar probe analysis by simply recording the radius of each circle inter-
secting the plane.
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Figure 2. Schematic of a plane surface through a matrix containing mono-sized spheres.
The points in (a) delineate a point probe analysis; the horizontal lines in (b) delineate a
linear probe analysis.

Yolumetric Statistical Properties

The methods of stereology are often used to characterize particles. The par-
ticles could either be separate entitics or be part of a composite. The com-
posite could be composed of either discrete particles in a matrix or space-
filling particles like alloys in a metal. For the case of air voids in concrete,
the following discussion will concentrate on discrete particles embedded in
a matrix.

The methods discussed here are not used to characterize an individual
particle. Since a composite may consist of millions of particles, this
approach would be meaningless. Rather, a more useful goal is to character-
ize the collection of particles that are of interest by estimaling useful statis-
tical properties such as the volume fraction and the surface area.

VYolume Fraction

One of the most informative statistical properties is the volume fraction of a
particular phase of interest. According to Underwood,'* the idea was out-
lined by Delesse,'® and a number of mathematical derivations exist by
Hilliard,"” Chayes," and Saltykov.' The following mathematical descrip-
tion follows those of Weibel* and McLean.?' For some phase o within a
composite of total volume V., the volume of the u-phase is V_. The ratio of
the volumes is the volume fraction ¢, of phase a:;
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V.
¢, = v
T

(1)

Let the composite be a cube with edge length L. The cube is oriented along
a Cartesian coordinate system, and a cut is made perpendicular to the z-
axis. On the surface of the cut are intersections with the inclusions of phase
a. Let the indicator function a, represent the location of the o-phase on the
plane:

a, =

|« phase at (x,y,2)
{0 otherwise

@)

The surface area A of the a-phase on the plane located at z is the integral
of a, over the area A, of the plane section:

A, =LT a{x,ylz)dxdy X

3
Replace the cut by a slice with differential thickness dz. The total volume
of the a-phase is the integral of A :

Vv, =an(z) dz @

Let the total planar surface area be A, = L2. The ratio of volumes can be
expressed as a function of A (z):

v, ‘ A (2)dz

Vv, LA, (5)
The integral is an average:

Vo A

_‘Z ] ‘TT (6)

Therefore, an estimate of the area fraction of the phase a is an unbiased
estimator of the volume fraction of the phase a, in as much as A (z) is an
unbiased estimator of A_.
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This approach can be extended to both linear and point probes. Consider
the plane section A, discussed above. Pass a line, perpendicular to the y-
axis, across the surface. Let the indicator function /, represent the location
of the ct-phase along the line:

o

I o phase at (x,y,2)
{0 otherwise 7

The total length Z of the «-phase along the line is the integral of 7 ;

L(vo)=(l(xIv.2)d
o (,2) f(,(x ¥.27) dx ®

Replace the line with a ribbon with differential width dy. The total area
of the a-phase on the surface is the integral of L :

A= [L(n.0) dy

9
The ratio of areas can be expressed as a function of L_(y,z):
A [Lnady

As in the case of the area average, this integral can also be expressed as
an average:

A,(2) _ L(2)
Ay L (11)

Therefore, the lineal fraction of phase ¢ along a lineal probe is equal to
the area fraction of that phase, which is in turn equal to the volume fraction.
The mathematical framework for point probes proceeds in the same manner
by constructing lines from points.

This entire development was performed without addressing randomness
in either the a-phase or the locations of the probes. This issue arises when
asserting that A (z) = A,. This statement assumes that the area fraction
exposed at some value of z is representative of any other A_(z). This kind of
assumption is also made for the linear and point probes. The final result is
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that the linear fraction of phase o of a linear probe is an unbiased estima-
tion of the volume fraction of phase . Likewise, the number fraction of
points landing on phase o is an unbiascd estimation of the volume fraction
of phase a.

Surface Area

Another useful characteristic of particles within a matrix is the particle sur-
face area. Within a volume V. there are particles with total surface area §,
and total volume V. The average surface area per particle is S_/V_. A linear
probe analysis of total length L, is composed of N chords over the -
phase. The total length of chords over the a-phase is L. and the average
chord length is L, = L,/N,. The total surface area of particles can be calcu-
lated using the equation of Saltykov™:

S, 4N,
i L (12)
This quantity is sometimes referred to as the specific surface. However,

in the concrete research literature the quantity of interest has been S, / V_,
and has been derived by Tomkeieff* and Chalkley et al.**:

S, 4N, 4
Vo Lo (13)

The quantity { is the average chord length, as defined by ASTM C 457. This
quantity is also referred to as the specific surface, and will be the default
definition for subsequent discussions of air void specific surface.

ASTM C 457 Uncertainty Analysis

Interest in the expressed uncertainty in the results of a linear traverse analy-
sis of air voids dates back to the paper of Verbeck." Not long after, Brown
and Pierson,® Willis,” and Mather? used uncertainty arguments for improv-
ing the test method. An interlaboratory comparison by Sommer? was one
of the first attempts to relate theoretical and practical uncertainties.

While the uncertainty in point and linear analyses of volumetric data
have been known for some time,' contribututions have becn made to the
specific tasks associated with ASTM C 457. Expressions for the uncertainty
for the modified point count method have been given by Langan and Ward?
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and Pleau and Pigeon.” Expressions for the linear traverse method have
been given by Snyder et al.’® These results are presented here as a summary.

Details of the uncertainty calculations arc given in Appendix A. In sum-
mary, let the calculated quantity ¥ be a function of N different measured
quantities x,. The dispersion in each x, value represents the standard uncer-
tainty u(x,) in the estimate of x,. The combined standard uncertainty u (y) in
y is a function of the individual uncertainties w(x,):

N-t N J y P

uf.(y)=i (ﬂ)"uz(wzg ¥y g, x,)

ox - & dx dx
n m=1n=m+1 m n (14)

To say something quantitative about the calculated value y, one must
define a coverage factor & that is used to produce an expanded uncertainty
U, = ku (y) that defines an interval ¥ =y + U, having an approximate level
of confidence p. For a Gaussian error model, a coverage factor k equal to 2
will have nearly a 95 % level of confidence. This is the familiar “two-
sigma” interval.

For brevity, the notation u *(y) will be shortened to s,* and will serve as
an estimated standard deviation. It will be assumed that when the subscript
to s* is a calculated quantity, the uncertainty in question is a combined stan-
dard uncertainty. The coefficient of variation will be represented by the
variable C.

It should be noted that these calculations characterize an idealization.
The equations reflect the minimum uncertainty that a perfect operator,
using equipment with infinite resolution, can state from the result of one
planar analysis of a perfeclly prepared specimen. Errors due to improper
identification of voids, improper sample preparation, and insufficient mag-
nification add to these minimum uncertaintics. While each of these factors
is an important component to the overall uncertainty, it is critical to at least
be able to quantify the uncertainty in the ideal case. Once these have been
outlined, one can then begin to quantify the impact of the other sources of
erTor.

Random Processes

The measurement methods of ASTM C 457 include both point count and
linear traverse. Although the results from both techniques are random, the
statistics differ. The difference is small, but important.

The outcome from a point count experiment is characterized by the bino-
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mial distribution. Assume that an operator sceks to characterize the air con-
tent within a piece of concrete. The operator will perform a point count
consisting of S, total stops. The probability that an individual point lands
over air is g. The probability of not landing over air is 1—g. The outcome
from an experiment is §, points over air. The estimated variance in the
number of points over air is calculated from the binomial distribution:

ss. =S, q(1-q)

=5i(1_i]
‘ (15}

L
s, S, a6

The modified point count and the linear traverse require a similar quanti-
ty. During the test, the number of chords intersected N, is recorded. The
mtersection of randomly placed air voids is a Poisson process.*! Therefore,

the variance in the number of chords recorded is equal to the number of
chords:

2
s =N
Na “ {un
The coefficient of variation is similar to the point count value above:
1
Cy =—
Q NH

(18)

The difference between the result for Cs, and for C, is due to the differ-
ence between continuum and discrete sampling; this distinction seems to be
missing in the mathematical development of Langan and Ward.”® Note that

as S, approaches infinity, the value of Cy approaches 1/S,, which is analo-
gous to the result for V.
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Point Count

The point count technique is probably the oldest, and best characterized,
tool for petrographic characterization. Because it is a point probe, it is limit-
ed as to the volumetric information it can yield. Specifically, the point count
method estimates the volume fraction of a particular phase of interest.
While performing an ASTM C 457 point count analysis, the operator
records information regarding both the air and the paste:
S, number of stops over air

S . number of stops over paste

§,;: total number of stops

i

The desired quantities are the volume fraction of air A and paste p:

s s
AzSa _2r
s T

' ' (19)

Since the total number of stops §, is fixed, the uncertainty in each vol-
ume fraction is proportional to the uncertainty in the number of slops over
the phase of interest:

Gefd Gk
a ! P H (20)
Linear Traverse

The ASTM C 457 linear traverse technique is a linear probe analysis of
concrete containing air entrainment. The operator records the “chords”
where the line intersects the phase of interest. As currently written, the
operator is required only to record the length of linear probe over the spher-
ical air voids and the cumulative length of the chords. However, the analy-
sis that follows assumes that the operator also records the lengths of the
individual chords. This should not be an arduous task since modern labora-
tory equipment designed for this test is computerized. The uncertainty
analysis that follows has been addressed previously,28

Upon completion of the linear traverse, the reported quantities are as fol-
lows:

N : number of air chords

(74

T: length of entire traverse

e
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T length of traverse over air

l: average chord length

For the purpose of this analysis, the uncertainty in the total traverse
length 7, is assumed to be zero. The uncertainty in the reported quanltities
will depend upon the uncertainty in the measured quantities:

“ (21

Air Content

The analysis of the uncertainty in the air volume fraction begins by express-
ing the air content A in terms of measured quantities:

A

(22)

The coefficient of variation in A is a function of these variables:

() ) (20

»_ | 2
CA = Fn[] + Cl ] (23)

This result has been reported elsewhere 33!

Specific Surface
The specific surface is calculated from the average chord length /:

o=

o~

(24)

Assuming a Gaussian crror model for /, the variance in o is infinite3?
because of the nonzero probability of a negative . Nonetheless, one pro-
ceeds under the assumption that the normal distribution that characterizes 7

is localized: C; << 1 This is reasonable since N, is typically on the order of
1000.
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On the basis of this assumption, the coefficient of variation in « can be
calculated from the measured quantity I

) (59 -

a (25)

Spacing Factor

The analysis for the Powers spacing factor is divided into separate parts for
the two equations that apply. When the ratio p/A is less than 4.342, for rea-
sons to be discussed in a subsequent section, the spacing factor L has the
following relationship:

L-2L
4 N, (26)
The coefficient of variation in 7. is
2 — — 2
(sz)z ANN [reny , (0LY .
= =|—+* —| 5, + 5y
L pT, ap dN,,
C:=C+ L
: N
a (27)

When the ratio p/A is greater than 4.342, as it should be for most con-
cretes containing entrained air,* the spacing factor has the following form:

23 al. 2"
L—a[1.4\l 4) 1]

- 1/3
gl 2L
4 NI

a

(28)

The coefficient of variation can be expressed as
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s\ L[aLN L (eI, (eI,
=| ==||5=5] 5 || s+ s,
L L dl ap dN

a

2 p
CI,Z = MC,Z +ﬁ2(C2 +ul_)
N PN
a a (29)
Here, the result has been made more compact through an intermediate
quantity p:
_ Ly ey Ly
B == 1+
AW DAVYASYY (30)

These results represent the general approach of Snyder et al.,* Langan
and Ward,” and Warris.”® The final result of Langan and Ward is identical,
but the answer was simplified by eliminating terms that have a negligible
contribution?;

2= ﬁz[Cﬁ + Cj] 1)

Maodified Point Count

The modified point count method is a mixture of the point count and the
linear traverse methods. The operator performs a point count on each line,
then reanalyzes the line to record the number of air voids intersected. The
uncertainty in this method has been addressed by Pleau and Pigeon.”® The
measured quantities are as follows;

N,: number of air chords

S total number of stops
S, number of stops over air
I:  distance between stops

Air Content

The air content is simply the ratio of stops over air to the total number of
stops, as in the point count method:

‘ (32)
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As discussed before, the coefficient of variation in the air content A follows
from the binomial distribution:

1
Cﬁ = i _ -
S, S (33)
Specific Surface

The specific surface cquation depends upon both point probe and lineal
probe data:

o (34)

bThe coefficient of variation in « is calculated in the same manner as before:
2 2 2 2
(Sa) _[_N, day o (da) o
\a/ \as.1) \as,) " lon ) ™

+
My ! a (35)

Spacing Factor

When the ratio p/A is less than 4.342, thc Powers spacing factor L has the
following relationship:

-7
o A
¢ (36)

The coefficient of variation will depend only upon the uncertainty in the
paste content and the number of chords:

(S?L) =C + L
L N, (37)

Materials Science of Concrete V] 145



When the ratio p/A is greater than 4.342, the spacing factor L has the fol-
fowing relationship:

j; 1/3
L=— 14(L+3%) -1

4]

(38)

The equation for the coefficicnt of variation resembles that for the linear
traverse method:

2 —_ 2 - 2 —, 2
(s,) Jd L 2 0L 2 AT
=] =1- Sw, * s, F S
L anN,) o “\ap

a

2 2 2 2 2
CG=C, +pC+(1-8) C; 39
The value of  is the same as for the linear traverse case:

LIS (14 (pS\ () pS,
ﬁ_ZNa\él/(Sa)(“- sa)

-2/3

(40)

This result for the Powers spacing factor coefficient of variation differs
slightly from that of Pleau and Pigeon.?”

Paste Content

In the preceding discussion, the relative uncertainty in the paste content C,
of the concrete has been left undefined. Currently, ASTM C 457 does not
specify how the paste content shall be determined for either the linear tra-
verse or the modified point count methods. Therefore, experimenters have
been left to their own discretion. Two methods present themselves: record
stops over paste during the modified point count method, or record individ-
ual paste chords during a linear traverse. By evaluating the paste volume
fraction like the air volume fraction, the preceding sections that address
uncertainty in air content A can be used to likewise determine uncertainty
in the paste content p,

Example

The following cxample of an uncertainty calculation for ASTM C 457 is
based upon data given in Ref. 30 that included results for individual paste
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chords. The average and standard deviation of the pastc chords arc repre-
sented by 7 and o, respectively. The uncertainties reported below represent
an estimate of two standard deviations. This corresponds to an approximate
coverage factor of 95%.

The data in Ref. 30 are for a linear traverse that included measurements
of individual paste chords. The data that appear below for the point count
and modificd point count are based upon these data. Also, the data are con-
sistent among the methods.

Point Count

The following data are fictitious, but are based upon the data given in Ref.
30:

5,=1000  §,=57 8, =311

a

The coefficient of variation for the air content A and paste content p can be
calculated directly:

The reported volume fractions are also calculated directly:

A= Sa[liz C,]=(57=14)%

(A_Ca|

])=?’][112Cp]=(31.1:2.9)%

1

Linear Traverse

The following linear traverse data can be found in Ref. 30: ¥, = 1420, N =
3447, 1 = 0.1126 mm, & = 0.2569 mm, o, = 0.2536 mm, and &, = 0.8048
mm. The total length of the traverse is L, is 2656 mm.

The coefficient of variation for the volume fractions are as follows:

Cl - Ni[1 +C7]=000428 (2= Ni[l +C2]=0.00314
)

a
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The reported volume fractions, to two standard deviations, are as follows:

A=

[1 2C,]=(6.02£0.79) %

7t

p=—Lt—[1x2C,]|-(334237)%

The coefficient of variation for the specific surface is as follows:

1
C: = o C? =0.00357

4

The specific surface, reported to two standard deviations, is calculated [rom

o= %[1 £2C,]|=(355+4.2) mm*

The calculation for the Powers spacing factor L is a little more involved.
First, the spacing factor is calculated:

L 31 1.4} 1 Nﬁm 1| =0.1366
= -+ -_ = ).
4 N, i
This 1s used to calculate §:
L(L4yrpy( p)
===} [E)(1+L£ = 0.4574
A=\ AUy

The quantity f is then used to calculate the coefficient of variation in L :

L

2
o - % o ﬁz(cj +-;—) - 0.00186

a a

The final result, expressed with a relative uncertainty of 2C, is

L={0.137+0.012) mm
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Thesce results are 1dentical with those shown in Ref. 30).

Maodified Point Count

The corresponding data for the modified point count method are as follows:
N,=1420,S,=57,§ =1000, S,=311, and I = 2.656 mm

The calculation of the volume fractions is identical to that of the point
count method: A = (5.7 + 1.4)% and p = (31.1 £ 2.9 %.

The coefficient of variation of the specific surface is

1 1
—+—=0.0173

S N,

The specific surface to two standard deviations is

_2 ]‘; [122€,]-(375+9.9) mm"

X

[

As for the linear traverse method, the uncertainty in the Powers spacing
factor begins with a calculation of L:

:; 173
1.4(1+SP) -1

Next, the quantity B is calculated:

ELSYGI
4 N

aq

L=

=0.129 mm

=2/3

LS, (L4511, 3)  _ousro
AW S,

P=7 J\S,

The coefficient of variation in L can now be calculated:
1 2
2 22 2
C= +BC (1-B)°C; =0.00634
This result assumes the following:

1 1
Cy, = IR G, = s
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The final result, expressed with a relative uncertainty of 2C5, is

L=(0.1290.021) mm

Future Research

Although a thorough body of work exists on the topic of uncertainty for
ASTM C 457, a number of important questions remain to be answered:

1. Monte Carlo methods could be used to demonstrate the validity of
the uncertainty equations presented here. The analytical rclation-
ship between the air void radius distribution and the linear traverse
chord distribution that will appear in subsequent scctions can be
used to choose chord lengths at random. These simulated data
could then be used to estimate the various calculated quantities in
ASTM C 457 and compared to the true value.

2. All of the equations presented in this section represent the smallest
possible uncertainty. The equations do not account for measure-
ment uncertainty due to finite optical resolution. The method in
ASTM C 457 prescribes a minimum magnification of 50. A study
is needed to determine the effects of equipment resolution,

3. A number of methods for determining the uncertainty in the paste
content were proposed here. However, for someone performing a
linear traverse, performing an additional test, such as a point count,
to determine the paste content and its related uncertainty adds con-
siderably to the overall effort. An alternative may be to determine
information about the paste content from the air void data.

4. The assumption that the coefficient of variation in the specific sur-
face is small should be tested using actual chord data. Also, for har-
monic averages such as the specific surface, the confidence limits
ar¢ not symmetric, which might have a bearing on compliance.

Inversion Formulae

There may arise situations in which the experimentalist requires informa-
tion about the sphere radius distribution given information from either pla-
nar or linear probes. This is useful for the subsequent characterization of air
voids in concretc containing air entrainment. This information is useful for
computer simulations of an air void system® and studies of the effects of
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the void distribution on the measured air content.* It is also vital Lo the
characterization of air void spacing to be discussed in a subsequent section.

The need for accurately characterizing the air void size distribution can
also arise in situations where one wishes to compare two air void distribu-
tions. The different air void distributions could arise from differences in
admixture type, admixture dosage, pumping and/or atmospheric pressure,
vibration, and so on. It may be useful to know how a change in the mixture
propertions or the construction process affects voids of a certain size.

Although the material in this section has been thoroughly investigated
for use with spherical voids, there does not appear to be a single reference
for this material. The book by Underwood! addresses numerical proce-
dures, but the mathematics are implied and not discussed in detail.

This section relies heavily on the use of probability density functions
(PDF) and cumulative distribution functions (CDF). Since notations vary
among authors, Appendix B contains an explanation of the ideas used here,
along with the corresponding notation.

Definitions

There does not appear to be a single nomenclature used for the develop-
ment of the subsequent equations. For clarity, the following notation will be
used:

X sphcre diameter
fix):  sphere diameter probability density function
F(x): sphere diameter cumulative probability function

y: circle diameter : circle diameter probability density function
g(y): circle diameter cumulative probability function
z chord length

h(z): chord length probability density function
H(z): chord length cumulative probability function

A number of the references given in this section use sphere and circle
radii and half chord lengths in their theoretical developments. The choice of
radius distributions seems natural given that the equations for expectations
of surface areas and volumes are more easily recognizable. However, this
naturally leads to the use of the half chord length, which seems awkward.
Here the use of the diameter distributions and the chord length distributions
are used because concrete petrographers have experience with chord length
distributions and because the relationship among sphere diameters, circle
diameters, and chord lengths is somewhat intuitive.
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Spheres — Circles

For the case of spheres distributed throughout a volume, a random plane
will intersect the spheres, creating circles on the plane. Given a known
sphere diameter distribution f(x), the circle diameter distribution £(y)
observed on the plane was originally derived by Wicksell,* and subsc-
quently derived more rigorously by Nicholson,* Tallis,*? and Watson,®

J(x)

N - dx
g()’) (X)-’:’ (xz—-yz)lh

(41)

and also appears elsewhere.™” Note that only the spheres with diameters
greater than y contribute to the integral. This equation is based on the
model-based approach of assuming the centers of the spheres constituted a
Poisson process, which is correct only for a highly dilute system. Jensen™
used a design-based approach, which simply assumes the intersecting plane
is randomly oriented, to derive the same equation.

Subsequent analyses of the Wicksell problem have shown that the Wick-
sell equation is valid under a wide variety of conditions. Mecke and Stoyan®'
used a marked Poisson process model to demonstrate that the Wicksell
equation is valid under dense conditions. The only requirement is that the
centers of the spheres are stationary under translations (randomly distrib-
uted with no preferred orientation). The derivation of Cruze-Orive® relaxed
the condition of randomness on the sphere centers and showed that Wick-
sell’s equation is valid for any arbitrary deterministic positions and particle
sizes. Therefore, no matter how the non-overlapping spheres are placed,
Wicksell’s equation still holds. However, inhomogeneities in the system
will require additional sampling to ensure precise estimates of the particle
size distribution.

The more practical problem is to determine the sphere diameter distribu-
tion from the circle diameter distribution observed on the random plane.
Using an intermediate function f, defined by fix) = xf,(x?), the Wicksell
cquation can be rewritten as

y o hw)
2 <X> J;z (w2 _ yz)uz

g(y) = dw

(42)

This is the form of the Abel integral equation.**+
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The inversion has been demonstrated by Watson.* Multiplying Eq. 41 by
(" —w" ' and integrating y from w to infinity gives

N 2(X) = ey
L= Fw) = 7T L ()’2 —Wz)m v (43)

which can be found in Wicksell® and Kendall and Moran.*® In the limit
where w approaches zcro gives

2(X)
l=—< >J:) g—(L)dy
T Y (44)

Therefore, the inversion equation [or the sphere diameter CDF can be
expressed as

” (y)
[y
1 - Fix) = - =)

Y (45)

This equation is reported in Tallis* and Watson.*
The inversion equation for the sphere diameter PDF can be determined
either from direct differentiation®:

_ 22Xy d ~ gy ,
flx)= = de (y2 XZ)IIZ dy
{46)

or from the solution to Abel’s integral equation:
=2x{X) 20 50 avu2 d [g(y)
f=2EE () ;[ﬁ, dy
T YLy (47)

For completeness, Reid’ reported yet another expression:

| G v d
flx)= ~7 2 SN1/2 _w[g(y)]dy
wel (¥ -2?)" (48)

Materials Science of Concrete Vi 153



It is important to note that the circle diameter distribution on the plane
cannot be monosized. The differential in the integrand would be zero
except at the value of the single circle diameter. At this point the integrand
is undefined. This is a mathematical reflection of the fact that it would be
impossible for a random plane to intersect a collection of spheres and for
all the circles on that plane have the same diameter.

Spheres = Chords

One of the earliest developments of an analytical relationship between air
void diameters and chords measured along lines on a random plane is due to
Reid.” Using similar arguments to the development of the equation relating
circle diameters to sphere diameters, the chord length distribution can be
calculated from the sphcre distribution using the following cquation’"33;

.
[ f(x)dx
. (49)

There arc two important features of Eq. 49: the slope and the curvature
of h(z) near the origin. The slope can be determined through differentiation:

— (z) —[l- F0)]- =~ f(2)

(XZ} (50)

Near the origin (z — 0), the slope of the chord length distribution approach-
es a constant value of 2/(X?). Since the chord PDF must be linear near the
origin, the lognormal chord distribution used by Roberts and Scheiner’ is
unphysical because it has zero slope at the origin.

Differentiating Eq. 49 again gives the curvature:

d2 hoy o @ 2z d
(X?)  (X*)dz

(Xz)

f(2)
(51)

As a practical consideration, the stability ol air voids assures that fix — 0)
= 0. Given this fact, the chord distribution has no curvature at the origin. As
the value of x increases, the curvature remains negative until after the deriv-
ative of f(z) becomes negative at the modal sphere diameter. Therefore, the
curvature of the chord length distribution must remain negative until z is
greater than the model sphere diameter,

The derivation of the inversion equation can be seen by first rearranging
Eq. 49:
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h(z) 2

=——|1-F(z2)
z (XL)[ 2] (52)

The inverse of Eq. 49 can be determined from differentiating Eq. 52 with
respect to z and using a change of variables (o x:

(Xz)i[h(x)]

T =

(53)

As for the circles on the plane, it is impossible to have a monosized chord
distribution along a random linear probe through a collection of spheres,

Circles — Chords

As a matter of completeness, the relationship between the circle diameter
and the chord length distributions are given, even though this information is
not currently used by ASTM C 457. The chord length distribution expressed
as a function of the circle diameter distribution was reported by Reid™:

W2 (8
(2) (Y)j; (yz_zz)uz 34

Since this equation is identical to the expression for fix) as a function of
£(y), the inversion formula can be derived in exactly the same manner:

(54)

2N d = h(z)
g(y) = ~ dyf.v(2 j)uza‘z

Ty (55)

Recanstruction

Reconstruction of the air void radius distribution can be accomplished using
either parametric or nonparametric techniques.

Parametric

Using the parametric approach, the researcher starts with an air void radius
distribution such as monosized, lognormal, Rayleigh, and so on. The probe
data are then used to determine the parameters of the distribution chosen.

A parametric reconstruction reduces the problem to that of only trying Lo
determine the moments of the distribution. Starting with some PDF for f{x),
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one can solve for the analytical form for the probe data distribution and the
associated moments. These moments will be a function of the PDF parame-
ters, leading to a linear system of equations. The following section is devot-
ed to this endeavor.

Nonparametric

The nonparametric approach makes no assumptions about the analytical
form for f{ix). The probe data are integrated numerically to give a discrete
version of f(x). This approach gives the “true” f{x), but the data also contain
noise that must be controlled. This subject is complicated and warrants its
own chapter. The reader will find useful discussions in Underwood' and in
the proceedings publications of Elias* and DeHoff and Rhines.®?

Future Research

Given the small body of rescarch performed on the analysis of air void dis-
tributions in concrete, the field remains quite fertile.

1. A parametric approach to estimating the chord distribution seems
like a profitable approach to air void characterization. However,
until in situ measurements of air void radii can be performed, the
experimentalist will have to choose a distribution for the air void
radii. One could study the effects of guessing wrong by starting
with a distribution for the air veid radii, choosing a different distri-
bution to approximate it, and then comparing the approximated dis-
tribution to the original distribution.

2. A simple parametric test of the lognormal distribution can be made
by measuring the first three moments of a chord distribution and
determine whether or not a lognormal sphere distribution exists
that has a corresponding chord distribution with nearly the same
three moments.

Estimating Sphere Diameter Moments

In some cases, knowledge of the specific sphere diameter distribution may
be extraneous. Rather, many calculations require only knowledge of certain
expectations, such as the average sphere radius or average sphere volume,
from the sphere diameter distribution. The calculation of these expecta-
tions, referred to here as moments, is discussed in detail in Appendix B.
Useful information can be gained from only making a study of the
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moments of the sphere distribution. For example, the air void specific sur-
face depends upon the ratio (X*)/(X*). This technique has been employed in
ASTM C 457. However, difficulties do exist. For planar probes, the
moments (X"} can be calculated from the averages Y. But for linear probes,
the moments can only be approximated from the averages Z”. Regardless,
analysis of the moments of probe data facilitates parametric studies since
one needs to solve only a linear system of equations.

Planar Probe

The straightforward means to determine the moments of the circle diameter
distribution is by direct evaluation of the inversion equation®*:

f n+1f ( f( ))“2 d)C d_}

(56)
The concise expression for the moments is given by Watson®:
i)l o
w112 (x")
Fy=——r x)
I‘{(n + 3)}
2 (57)

A more useful form for the equation is found in Wicksell*® and in Kendall
and Moran*:

(X™)  1-3-5-n
(X) 2:4-6-(n+1)

ad n o is odd
2
<Yn> =)
(X" 2-4-6---n .

n s even
These equations are valid for # = —1. The equation for the harmonic

mean (n = —1) gives a direct relationship belween a single circle diameter
moment and a sphere diameter moment:

(r)=

2 (X) (59)
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From this, the moments with positive exponents of the sphere diameter
distribution can be calculated directly from the measured circle diameter
moments. The first three moments of the sphere diameter distribution are as
follows:

a1
N
2y _ o (V)
(X >—2 Y*l>
53T (1)
<X - 4 <Y-I>

(60)

Specific Surface Area

The specific surlace area is the ratio of the expected sphere arca to the
expected sphere volume:

g FAXD 16 (¥)
6 (61)

Number Density

The number density of air voids (number of voids per unit volume) # is the
ratio of the air volume [raction to the expected air void volume;

__ A _8A(Y)
Z<X3) x* (V%)

(62)

This equation is referred to by Watson® as Fullman’s formula.® The vari-
ance in the estimate of n is proportional to the variance in the quantity (¥,
which is infinite.** Therefore, estimates of n from planar data may be
plagued by difficulties in controlling uncertainties.

Linear Probe

In 4 manner similar to the planar probe, the linear probe moments can be
calculated from the inversion integral:
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(z') -

2 el £
<X2>j;z j;f(x)dx ©3)

The solution has been reported by Wicksell,* Tallis,** and Watson:

_2— (Xn+2>

(2= n+2 (X%)

(64)
This equation is valid for all n = —2. Therefore, a set of equations for m dif-
ferent chord moments wiil have m + 1 dilferent sphere moments, and the

system of equations is underdetermined. At best, only ratios of sphere
moments can be determined from chord moments.

Specific Surface Area

Fortunately, the specific surface area o is a ratio of sphere diameter mo-
ments. Therefore, it can be estimated directly from chord moments:

_a(xh) _ 4
Txy (2
6 (65)

This is the equation for specific surface area that is used in the ASTM C
457 standard test method.

Number Density

Although the number density cannot be determined precisely from the
chord moments, there are techniques for making estimates of the quantity.
The most popular has been given by Lord and Willis,”™ Watson,* and
Philleo.® The approach begins with Eg. 49:

fa(z) 2
—=——[1-F(2)
(X >[ ] (66)

As 7 — 0, the left side of the equation approximates the derivative of the
chord distribution at the origin:

dn 2
dzz—*ﬁ (X2>

(67)
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For practical reasons, the value of z does not have to equal zero. Since
the air voids are thermodynamically unstable below some minimum sphere
diameter x,,, the above equation is valid for all z less than x,,. Philleo® noted
that by tabulating chord lengths smaller than x,, into the first two or three
chord length intervals, each of the intervals should have an equal value of
h(z)/z.

Calculating the slope from the smallest chord length intervals is compli-
cated by two factors: the smallest chord length interval typically has rela-
tively few chords, and the measurement device has a limited resolution. The
small number of chords in the interval can lead to excessive statistical
uncertainty. The matter of equipment resolution has been addressed by
Nicholson,*” who concluded that an unbiased estimate of the sphere number
density could not be achieved with a nonzero resolution limit apparatus.

Thin Section Analysis

A recent article by Aarre®’ suggests that there is interest in quantifying an
air void distribution using transmitted light through a thin scetion of con-
crete. The process consists of placing a thin section over a light source and
performing a linear traverse over the specimen, recording the locations
where light passes through the specimen. This approach could simplify the
task of automating a linear traverse. The drawback of the technique is that
the analysis of the results is more complicated than the results from a plane
polished section.

The thickness of the specimen determines the diameter of the smallest
air void that is detectable. Since the modal diameter of entrained air voids
may be as small as 30 pm, useful specimens must be thinner than this. As
an analogy, consider trying to estimate the diameter distribution of voids in
Swiss cheese from thick slices from the block of cheese.

A straightforward solution to the “Swiss cheese” problem has been pre-
sented by Coleman.” While others have developed nonparametric tech-
niques for unfolding the distribution, the work of Coleman gives an analyti-
cal relationship between the observed circle diameter distribution and the
sphere diameter distribution, given the specimen thickness. Further, his
derivation included parameters to account for the effects of resolution that
include the smallest measurable circle diameter and the accuracy with
which one can determine the location of the circle’s edge. However, these
resolution considerations will not be discussed here.
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The development of the thin section equation is quite similar to that of
the corresponding inversion equation for a plane polished section. For a
thin section of thickness T, only the sphercs with diameters greater than ©
can penetrate the thin section. Also, for each diameter, there is a volume
over which the sphere center can be located and still penetrate both sides of
the thin section; larger spheres have a greater volume over which their cen-
ters can be located as compared Lo smaller spheres. This “weights” the orig-
mal sphere diameter distribution f{x), and gives an adjusted distribution
m(x) that characterizes the distribution of the penctrating spheres™:

WI(.?C) — c>‘:('x_r)f(){)
S =) flx)dx

(68)

The denominator normalizes the distribution and can he expressed using a
shorthand notation:

(X, = [ (x=7) S0 ds )

The radius of the circle ¥ projected through the thin section depends
upon the distance W the sphere center is located from the center of the thin
section:

From this, one can calculate the probability of an exposed circle with diam-
eter 1

()= P <o) o

Because the centers of the spheres are located at uniformly random dis-
tances from the center of the thin section, the distribution of W is uniform
over the interval [x — 1]. Using this, the previous probability can be expressed
directly;

()Cz—yz)w_-,; Osys(xz_rz)m

Py > ylx) =
(¥ > yix) - o
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The conditional dependence upon x can be eliminated by integration:

P(Y>y) =f:° P(Y > ylx) m{x) dx )

The resulting circle diameter distribution g (y) projected through the thin
section is the differential of this probability function’?:

~d
2. =—"PY>y)
dy

i I5€))

- m (.vz+'r2)”2 W e

(74)

In the limit that © approaches zero asymptotically, this equation becomes
identical to Eq. 41 for the planc polished section. Similarly, the nth moment
for the observed circle diameter distribution can be calculated by integrat-
ing the above inversion equation:

. =_!_ T el L ,
(Y™, (X)rj; Y ﬁyzm)wz (xz —yz)uz dx dy 75,

Again, as T — 0, this equation becomes identical (o the corresponding
plane section equation,

Monosized Sphere Diameters

Consider a monosized sphere diameter distribution: JEx) = 0(x — x,). (A dis-
cussion of the Dirac delta function is given in Appendix C.) Assuming that
the sphere diameter x is greater than the thin section thickness T, the
observed circle diameter distribution can be calculated from Eq. 74:

T )= X ! 172
gy (xo—r)(xé—yz)

O=sy=< (x;‘ —12)1/2
(76)

The moments of this distribution can be calculated from the following inte-
gral:

o 1 \'W y
(Y, = (xo —r)fﬂ (xg ~ yz)uz -
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This result is useful for exploring the results of the paper by Aarre®' and
the subsequent discussion by Snyder.” The purpose of the paper by Aarre
was to calculate “correction” factors when measuring air content from a
thin section. The calculations assumed a monosized air void diameter dis-
tribution. The original paper by Aarre contained errors that were corrected
in the discussion by Snyder.

Although the equations by Snyder were correct, they contained a subtle
oversight. Let the air void diameter distribution be expressed as a Delta
function, as was done in the paragraphs above. Using planar probes on a
plane polished section, the air content is a function of the number of voids
per unit area » and the second moment of the circle diameters measured on
the plane (t = 0):

A=nm (Y (78)
However, an analysis of a thin section with thickness T = 0 will contain
fewer observed voids n_and a different second moment (¥?)

Ar = ny (Yu>r (79)

The number density of circles # observed on the plane is proportional to the
first moment (X} of the sphere diameters x:

j; x f(x)dx = x, (30)

The number density n_ of circles observable through a thin section is
proportional Lo the corresponding first moment of observable spheres (X), =
(x, — T), as was defined previously. The ratio of the number density of
spheres observed through thin section to the number density circles on a
plane section can be expressed as a function of the thin section thickness <

Xy —T

e _
n X,

(-
o (81)

The ratio of the observed air content to the true air content can now be
expressed as a function of thin section thickness t:
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3(1 1(1:3
=ll-=]—|+=|—
2 x, ) 2\x,

This is identical to the correction factor reported by Snyder.”® However, in
the derivation of Snyder, the factor of (1 — v/ x,) was implicit in the averag-
ing used. This factor is abscnt from the correction factor for specific surface
because the (¥?), /(¥*),_ ratio cancels this. Therefore, the result of Snyder for
the specific surface is also correct,

(82)

Lineal-Path Function

Lu and Torquato™** have derived the lineal-path function that gives the
probability that a line segment of length T is entirely within a single phase
of the microstructure. Equivalently, this is the area fraction of light passing
through a section of concrete with thickness <. Interestingly, the lineal-path
function I(t) can be calculated from the chord length distribution function
h(z) and the volume fraction of air A%:

A oo
Lt)=— [ (z-1)h2) de
(Z) . (83)

The lineal-path function for a lognormal distribution of air void radii with a
modal diameter of 30 um and with o, = 0.7362 is shown in Fig. 3.

For monosized spheres of diameter x,, the chord distribution is fi(z) = 2z /
x,°. Substituting this into the previous equation yields the same correction
factor as given above for monosized spheres. Conversely, the chord length
distribution function can be derived from air volume fraction A and the lin-
eal-path function L(z) by differentiating this equation twice:

2)d

h(z) ==L
(z) A .

This could be applied to a serial sectioning approach to automated air void
analysis using transmitted light. If the only illumination was from below
the specimen, the total transmission is equivalent to L(z). Therefore, a sin-
gle light intensity measurcment could be made at each specimen thickness
and the chord length distribution could calculated from the equation above.
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Future Research

Relatively little research has been carried oul on thin section analysis of air
voids. Given that one could determine the chord distribution A(z) using a sin-
gle light intensity measurement after consecutive stages of a serial section,
there are possibilities for automation. However, a number of theoretical
studics could be performed to validate the approach and to test the applica-
bility of the method in general:

1. Assuming a lognormal distribution of air void radii, determine the
correction factor for air content, specific surface, and spacing factor
from the parameters of the distribution and the thickness of the thin
section.

2. Use the formulae in Coleman® to determine the effect of resolution
limits on the results of an analysis. These formulae could alsc be
used to analyze resolution limits on plane section analysis,

Air Void Spacing

One of the first attempts to characterize the “spacing” of air voids was by
Powers.? This definition of spacing became a part of the standard test
method for determining the air void parameters in hardened concrete
(ASTM C 457)," and is quantified as the spacing factor L. Since then, spac-
ing equations have been proposed by Philleo,® Fagerlund,” Attiogbe,!! and
Pleau and Pigeon.'” Each of these equations attempts to characterize the
spacing of voids in air-entrained concrete, even though the Attioghe equa-
tion estimates the spacing among air voids, and the other equations estimate
the distance water must travel to reach the nearest air void.

At present, evaluation of an air void spacing equation consists of a com-
parison between the estimate of spacing and the results of laboratory
freeze-thaw experiments.®®” The a priori assumption is that each equation
is inherently correct in its estimate of spacing. Unfortunately, each of these
spacing equations proposed for predicting freeze-thaw performance has
inherent assumptions or simplifications built into its development. Until
recently, no quantitative measure has been made of the effects due to these
assumptions.

A numerical accuracy test of these equations was performed by Snyder.!”
The computer cxperiment measured various spacing quantities in a simulat-
ed paste-air system. Systems were composed of air voids with either mono-
sized or lognormally distributed radii. Since the size and the location of each
sphere were known exactly, the actual spacings could also be calculated
numerically. To achieve acceptable statistics, the results from many system
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Figure 3. Lineal-path function L{t), normalized by the air content A, for a lognormal
radius distribution with a modal diameter of 30 pym and with o, = 0.7362,

realizations were used to estimate averaged quantities. These results, along
with the associated spacing equation predictions, were reported for compari-
son. In addition, an equation by Lu and Torquato™ was included since it
promised excellent performance for estimating various spacing quantities.

Spacing Distributions
This section also makes use of the ideas of probability density functions
(PDF) and cumulative distribution functions (CDF), the details of which are
discussed in Appendix B.

There are two classifications of spacing equations that will be discussed
here. Some equations estimate the proximity of the paste to the voids, and
others estimate the proximity of the voids to one another. Although this
may seem a subtle distinction, it will be shown that the mathematical rela-
tionships that characterize these concepts have different behaviors.
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Any reasonable concept of spacing should address the fact that there
must exist a distribution of distances that characterize the spacing. Clearly,
some regions of the paste are closer to an air void than other regions, and
some voids have nearer neighbors than others. This characteristic can be
represented by a distribution of distances, as depicted in Fig. 4 for a dis-
tance parameter 5. This PDF represents the fraction of spacings found in the
interval [s,s + ds}for some differcntial element ds. The CDF increases
monotonically from zero to unity and represents the fraction of spacings
less than s,

To illustrate the usefulness of the CDF, Fig. 4 shows two horizontal
dashed lines intercept the ordinate axis at the 50th and 95th percentiles.
These lines intercept the CDF at s values of 1.95 and 3.1, respectively; 50%
of the spacings are less than 1.95, and 95% are less than 3.1, In theory, the
CDF only asymptotes to unity; thus, to capture all of the spacings, s must
increase to infinity. In practice, however, the quantity s can only increase to
the size of the system, Thercfore, the concept of a maximum spacing is an
ill-defined guantity. Tnstead, a particular percentile must be chosen. In the
report, the 50th and 95th percentiles of the spacing distributions were used
to characterize both the measured and the estimated values, since these per-
centiles are intuitive to one’s concept of spacing and protected paste.

Paste-Void Proximity

Paste-void proximily equations estimate the volume fraction of paste within
some distance from the surface of the nearest air void. There are two simple
ways to visualize this spacing, both shown schematically in Fig. 5:

1. Imagine surrounding each air void with a shell of thickness s.
These shells may overlap one another, but may not overlap or pene-
trate air voids. The volume fraction of the paste that is within any
shell is equivalent to the volume fraction of paste within a distance
s of an air void surface.

2. Given an air void system, pick points at random throughout the
paste that lic outside the air voids. For each point, find the distance
to the nearest air void surface. The number fraction of the points
that fall within a distance s of an air void surface is equal to the
volume fraction of paste within a distance s of an air void surface.
This second approach is the one used here to estimate the CDF of
the spacing distribution.

This definition of the paste-void proximity distribution is the same as that
used by proponents of the protected paste volume (PPV) concept.’ The
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malterial parameters of the concrete determine the limiting spacing, and onc
wants to determine the fraction of paste within this distance to the nearest
air void.

Void-Void Proximity

Void-void proximity spacing equations can be further classified into either
nearest neighbor or mean frec path calculations.

Nearest Neighbor

Nearest neighbor void-void proximity equations estimate the surface-sur-
face distance between nearest neighbor air voids. This idea is shown
schematically in Fig. 6(a). This distance is calculated by starting from a
given air void and finding the shortest distance from the surface of that void
to the surface of any other air void. This is repeated for a number of differ-
ent air voids. This collection of random distances, when sorted and plotted
versus its relative rank, form an estimated void-void proximity cumulative
distribution function.

As will be demonstrated subsequently, void-void proximity spacings
have a subtle complexity. For an air-void system composed of poly-dis-
persed sphere diameters, the average void-void spacing originating from
large spheres is smaller than the average void-void spacing originating from
small spheres. Therefore, the “mean void-void spacing” is an ill-defined
quantity when stated without additional qualifiers, since it varies over the
distribution of sphere diameters.

Mean Free Path

The mean free path is the average length of paste between adjacent air
voids along a randomly chosen line passing through the air void system,
and is shown schematically in Figure 6(b). If an ASTM C 457 linear tra-
verse was performed on a paste specimen containing entrained air voids,
the mean free path would be equal to the average paste chord length. It is
important to note that this distance is neither the longest nor the shortest
distance between air voids in an air void system.

Aggregate Effect

The effect aggregates have on the spacing distribution has been neglectcd
for each of the spacing equations. The assumption is that the inter-aggre-
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Figure 4. An idealized representation of a spacing cumulative distribution function
(CDF) and the associated probability density function (PDF) for some distance s. The
dashed lines demonstrate how to determine the 50th and 95th percentiles from CDF
dara.

gate paste regions are large enough to contain a statistically significant
number of air voids. Based upon this assumption, the statistics calculated
for the air voids in these inter-aggregate regions are unbiased estimates of
the values calculated from the paste-air systems with the same number den-
sity of air voids. Measurements by Diamond et al.' indicate that the aver-
age inter-aggregate spacing on a plane section is on the order of 100 pm.
Since this spacing in three dimensions may be less, the presence of aggre-
gates may have a significant impact on spacing since there may only be a
few air voids within many of the inter-aggregate regions, However, recent
results by Bentz and Snyder®® suggest that the effect upon relevant statisti-
cal properties due to aggregates is negligible if the aggregates are larger
than the air voids of interest. Although further study is needed, this paper
neglects the effect of aggregates, as do most air void spacing equations.

Materials Science of Concrete Vi 169



Figure 5.Two-dimensional schematic of the paste-void proximity. The quantity can
determined from the volume of concentric shells {2) or from the nearest surface dis-
tance distribution (b).

Spacing Equations
Nomenclature for air void quantities differs among various authors. To
express quantitics with a common notation here, the following definitions
are given:

7. number of air voids per unit volume

A:  air void volume fraction

p.  paste volume fraction

o  specific surface area of voids

r:  sphere radius

J(r): sphere radius probability density function

(R*): expectation of R* for the radius distribution

s: spacing distribution parameter

For the paste-air systems (no aggregate) considered here, these quantities
can be defined analytically as follows:

A=4—;—n(R3)

p=1-A

(R’)
(®)
(1~?")=fU r* f(rydr

a=3

(85)
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Figure 6. Two-dimensional schematic of the void-void proximity (a) and mean free path

(b).

Powers Spacing Factor

The most widely used paste-void spacing equation is the Powers spacing
factor. Contrary to a popular misconception, it does not attempt to estimate
the distance between air voids. Rather, it is an attempt to calculate the frac-
tion of paste within some distance of an air void (paste-void proximity).
The Powers equation approximates the constant distance from the surface
of each air void surface, which would encompass some large fraction of the
paste. However, the value of this fraction is not quantified.

The second misconception is that the Powers spacing factor represents
the maximum distance water must travel to reach the nearest air void in a
concrete specimen.”’* From the previous discussion of the distribution of
paste-void and void-void spacings, it should be clear that there is no single
theoretical maximum value for the paste-void spacings. One can only quan-
tity percentiles of the distribution to characterize the fraction of paste with-
in some distance to the nearest air void surface. In practice, the maximum
paste-void spacing is the size of the sample.

The Powers spacing factor was developed using two idealized systems.
For small values of the p/A ratio, there is very little paste for each air void.
Powers used the “frosting” approach of spreading all of the paste in a uni-
formly thick layer over each air void. The thickness of this “frosting™ is
approximately equal to the ratio of the volume of paste to the total surface
area of air voids:
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L= P —= P plA <4342
dan <R“) o A (86)

For large values of the p/A ratio, Powers used the cubic lattice model.
The spheres are placed at the vertices of a simple cubic array. The air voids
are monosized, each with a specific surface area equal to the bulk value.
The cubic lattice spacing is chosen such that the air content equals the bulk
value. The resulting Powers spacing factor is the distance from the center of
a unit cell to the nearest air void surface:

_ 3 1/3
L=—[1.4(1+£) —1l pIA=4342
o A (87)

The p/A value of 4.342 is the point at which these two equations are equal.

The intent was that a large fraction of the paste should be within L of an
air void surface. An acceptable value of L for good freeze-thaw perfor-
mance is determined from the material properties of the concrete.

Phillec Spacing Equation

Philleo® extended the approach of Powers by attempting to quantify the vol-
ume fraction of paste within some distance of an air void system (paste-
void proximity). Philleo started with an idealized air void system composed
of n randomly distributed points per unit volume. The probability that the
nearest randomly distributed point is a distance x from a random location
was first given by Hertz®:

(—4n f x3\

H(x)=1-exp

This is equivalent to the curnulative paste-void proximity distribution func-
tion for zero radius voids. Philleo then modified this distribution to account
for finite-sized spheres by renormalizing the cumulative distribution to
account for the air content. The rescaling is shown schematically in Fig. 7.
For a void content of 0.20, the ordinate axis is rescaled from 0 to 1, and the
abscissa axis is simply offset by s = x — x,.

The result, although still only an approximation, characterizes the paste-
void spacings for finite-sized air voids. For an air-paste system, the Philleo

172 Materials Science of Concrete VI



spacing factor for the volume fraction of paste within a distance s of an air
void surface is

F(S) =1- CX]J["'4.19X3 _ ?.Soxl(ln p-])'” _ 484,[(1[1 pil)2/3:| (89)

Here, the substitution x = sn'” has been made in order to simplify the
appearance of the result.

Fagerlund Spacing Equation

The approach used by Fagerlund® is similar to that of Philleo. The air void
system is approximated by non-overlapping voids. Each void is surrounded
by a shell with thickness s. For small air contents and small values of s, the
shells are essentially non-overlapping. As the shell thickness s increases,
the number of shells that intersect increases. The value of s for which half
of the void shells intersect another shell is denoted s. Fagerlund defines the
mean void spacingd as twice this value:

To estimate s, Fagerlund uses the volume v, of the shell system:
5 4
vs=f f(n J.J'Fn(r+s)3dr
’ 3 oD

The value s is approximated from that value of s required to make v, equal
to unity:

4 n

(r+§)3 dr=1

fi fn = o

This equation is simplified by expanding the cubic term and substituting
for d and the specific surface area o

dxn
3

(R") 1+ Vg + () <RZ> 2+ (&) 12 a’l=1
V2/m L) Ry 8 3 (R 3

For an air void radius distribution f{r), one simply needs to solve this cubic
equation for d.
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Attiogbe Spacing Equation

Attiogbe has proposed a spacing equation which estimates the “mean spac-
ing of air voids” in concrete." From the figures in the paper by Attiogbe, it
appears as though the spacing equation attempts to estimate one-half of the
average minimum surface-surface spacing among neighboring air voids.
However, an accurate numerical test of the equation is complicated by
ambiguity in the exact definition of what the Attioghe spacing equation
attempts to quantify. Figure 1 of Ref. 11 depicts the spacings considered. In
that figure, the author has chosen the nearest three voids as neighbors.
Attiogbe should have included the other six voids that are “visible” to the
central void since, by Attiogbe’s definition, “d is defined by considering
only the distances, between adjacent air voids, which are entirely occupied
by paste.”!!

A definitive numerical test of the Attiogbe spacing equation is compli-
cated further by a choice between two spacing equations. The first equation
published was, “valid for all values of p/A™'":

2
t=2-F
aA (94)

To avoid confusion with the other spacing equations presented here, the
variable ¢ has been substituted for s used in the original equation. Upon not-
ing that this equation has peculiar properties for some values of p/A,%
Attiogbe has proposed a more complete equation®’:

aA (95)

The variable G replaces the variable F to avoid confusion with the Philleo
spacing factor. Attogbe states that, “|G] . . . is the fraction of the total paste
volume within the distances of [¢] from the edges of the air voids. . . . In
this regard, [G] is equivalent to the probability factor defined in Philleo’s
‘protected paste volume concept.””'! The function is only a function of the
paste-to-air ratio'":

8

G o=
I plA<T
(96)
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Figure 7. Schematic of Philleo method for rescaling the Hertz probability distribution
function for a 20% volume fraction of voids.

However, the quantity G depends upon the air void radius distribution.
Fortunately, Attiogbe® has recently given an explicit equation for G for an
air void diameter probability density function fix} based upon the gamma
function®”:

a-1 -xib

fy=22
»r (a) 97

The parameters a and b can be related to the mean diameter X and the vari-
ance of the distribution o*:

—, )
X

-2 T

o X (98)

For any parameters (a,b), the equation for G has been given®:
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(18/7)[1+(a +3)4aq]
pPrA +1

G=

99)

This result can be applied to the lognormal air void radius distributions.
Additionally, since G is an estimate of the fraction of paste within ¢ of an
air void, it will be compared to measured values,

Mean Free Path

The behavior of the Attiogbe function ¢ for voids of zero radius suggested a
relationship to the mean free path A between air voids. As stated previously,
the mean free path is numerically equivalent to the average paste chord
lengths 1n a paste-air system. The probability density function of paste
chords can be found in Lu and Torquato,* and is expressed as a function of
moments of the air void radius distribution:

R’ —na{R?
o= e 2202

(100)

This is the exponential distribution. For a paste-air system, the mean
paste chord length A can be written directly:

R
2
m‘c(R ) (101)
The same equation can be found in stereology books such as that of Under-
wood." If the center of the air voids remain fixed, as the radii of the air
voids decreases to zero, the mean free path diverges toward infinity, like the
Attiogbe equation for ¢,
This similarity is more than coincidental. 1n fact, the Attioghe equation
for ¢ is directly proportional to A. Expressing the Attiogbe equation for £ as
t=2p £
aA (102)

the quantity aA can be simplified using Eqs. 85:

176 Materials Science of Concrete Vi



(103)

Therefore, at low air contents the value of 7 is approximately equal to
one-half the mean free path between air voids in a paste-air system. It is
interesting to note that the Powers equation for p/A < 4.342 is equal to A/4.
Therefore, at high air contents, there should be relatively little qualitative
difference between the Attiogbe and the Powers equations. However, at low
air contents, the two equations have different asymptotic behavior.

Pleau and Pigeocn Spacing Equation

Pleau and Pigeon’ have recently proposed a spacing equation for the paste-
void spacing distribution. Their approach considers both the air void radius
distribution and the distribution of distances between a random point in the
paste and the nearest air void center. Let 2(x) represent the probability den-
sity function of the distance between a random point in the system and the
center of the nearest air void. The joint probability (3 that this random point
is a distance s from the surface of an air void with radius r is

[5(3‘,)‘) = h(r + S) f(f') (104)

As an approximation for s(x), Pleau and Pigeon employ the PDF of the
Hertz distribution® used by Philleo®:

WMx)=4mn exp( _4: "2

\ / (105)

However, the centers of air voids are not entirely random since air voids do
not overlap one another, The consequence of this choice for A(x) is dis-
cussed subsequently.

The joint probability density function p(s,r) depends upon A(s + r). If a
point chosen at random throughout the entire system lies at a distance x
from the center of a sphere, the quantity s is defined as x — r. Therefore, if
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the random point lies within the sphere, the quantity s will be negative, but
the argument x of 2(x) will be either zero or some positive number.

The parameter r may be eliminated from the joint probability B(s,7) by
integrating over the possible radii:

k(s) =j;oc h(r+s) f(ry O@r +s)dr (106)

The Heaviside function® insures that the argument of the function &
remains positive. This equation is the fundamental equation of Pleau and
Pigeon. The cumulative distribution function is

! ) '
K'(s) th k(s')ds (107
and corresponds to the volume fraction of the entire system within s of an
air void center. The volume fraction of the entire system that would lie
within an air void is K'(0), and corresponds to an estimate of the air void
volume fraction. The volume fraction of paste within s of an air void sur-
face would then he

1
K(s)=— 1 k(s" ds'
QJ: (108)

where () normalizes the result by the volume fraction of paste.
The normalization factor Q should equal 1 — A, or the paste volume frac-
tion. Based upon the equations of Pleau and Pigeon, this is equivalent to

g=1-K'0) (109)

which is used in their derivation. However, as demonstrated previously,
for monosized spheres the quantity K'(0) corresponds to the air volume
fraction for a system of overlapping spheres. This is a consequence of using
the Hertz distribution for A(x).

In the subsequent numerical experiment, two results will be reported for
the Pleau and Pigeon equation corresponding to the normalization factors |
-K'(®and 1 -A.

Lu and Torquato Equations

The paste-void and the void-void spacing distributions have application
both inside the field of cementitious materials™-" and outside the field.’s’8
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Using various approximation techniques, the problems of the paste-void
and the void-void spacing distributions have been solved for systems com-
posed of monosized spheres.” ® These approximations have been com-
pared to results of Monte Carlo method simulations®*** and they are in
agreement. One method of approximation relies upon n-point correlation
functions, and Torquato, Lu, and Rubenstein®® have obtained exact expan-
sions for monosized spheres. Lu and Torquato® developed a means to map
these correlation functions to systems of polydispersed sphere radii, there-
by making it possible to extend the approximations for monosized spheres.
These approximations for poly-dispersed sphere radii are given in Lu and
Torquato,* and are used here as estimates for both the paste-void and the
void-void spacing distribution.

The results of Lu and Torquato* for both the paste-void and the void-
void proximity calculations require the following defined quantities:

‘Ek= 2k7}<Rk>
_4(RY)
C—J(R? 128
= + 22<R2>
1-A (1-§&,)
4 N 85, <R)+EL§§(R3>
ST3(-a) (1-AY 3 (1-4) (110)

The value of B depends upon the exact way the system is constructed. For
the calculations performed here, B = . Also, there was an error in the pub-
lished value for g in Ref. 54, which has been corrected here.

Since Lu and Torquato were studying systems composed of a matrix
containing solid spheres, they use the terms “void” and “particle” to repre-
sent the matrix and the spheres, respectively. Therefore, the Lu and Torgua-
to “void exclusion probability” is used here to estimate the paste-void prox-
imity distribution, and their “particle exclusion probability™ is used here to
estimate the void-void proximity distribution.

FPaste-Void Proximity Distribution

The approach of Lu and Torquato® was to derive the probability that a
point chosen at random throughout the entire systern would have no part of
an air void within a distance s from it. The region of thickness about the
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point constitutes a test sphere of radius s. This test sphere of radius s consti-
tutes the Lu and Torquato “void.” This void exclusion probability is given
in Ref. 54:

4 3
1—?n<(s+r) @(s+r)> s<0
e,(s) =

(1-A) exp[—ar n(cs +ds’ + gs3)] s>0
(111)

Having s < 0 corresponds to a sphere with radius -(s) being entirely inside
an air void. The averaged quantity in Eq. 111 has the same definition as
before:

<(s +r) O(r+ s)) =J'O (s+7r) Os+r) f(r)dr 12

This result can be recast into the air void problem. Since e,(s) represents
the probability of a random point not being within a distance s of an air
void surface, the probability of finding the nearest void surface within a dis-
tance s of a randomly chosen point is the complement of the void exclusion
probability:

E'(s)=1~-¢,(s) (113)

The probability of finding the nearest air void surface a distance s from a
random point in the paste portion requires only the air content A:

E(s>0)-A
1-A
=]- exp[—n n(cs +ds” + g5’ )]

E.(s)=

(114)

The quantity £,(s) is the fraction of the paste volume within a distance s of
an air void surface, which is equivalent to the definition of the paste-void
proximity cumulative distribution function.

Yoid-Void Proximity Distribution

The approach used by Lu and Torquato® for the void-void proximity is
similar to that for the paste-void proximity. For a point located at the center
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of an air void with radius R, the probability that the nearest air void surface
is farther away than w is given in Ref. [54]:

1 w=R
e, (w.R) =
exp{—n n[c(w— R)+a{(w2 - R2)+g(w] - R’)]} w> R (115)

Lu and Torquato refer to this as the particle exclusion probability.
The probability that the nearest air void surface is within a distance w
from the center of an air void with radius R is

E.(w,R)=1-¢,(w>RR)
=1- exp{—:r n[c (w-—R)+d (w2 - R2)+g (w3 - R3)]} (116)

Let s represent the shortest surface-surface distance between two air
voids. The probability E.(s,R) that the nearest air void surface is within s of
the surface of the void with radius R requires only a substitution of variables:

- E.(s,R)=E,(s+ R, R) (117)
The function E,(s,R) is equivalent to the void-void spacing cumulative dis-
tribution function.

The most important feature of Eq. 117 is that E,(s,R) depends upon the
size of the sphere one starts from. For monodispersed sphere diameters, R
is a constant. However, for a system composed of polydispersed sphere
diameters, E,(s,R) is a continuous function of R. Since a continuous distrib-
ution of sphere diameters would have an infinite number of possible diame-
ters, there would exist an infinite number of possible E,(s,R) distributions.
This complicates an evaluation of void-void spacing distributions for sys-
tems composed of polydispersed sphere radii.

One possible remedy is to calculate an ensemble average. Ensemble
averages can be calculated based on either number density or volume densi-

ty. This bulk value can then be compared to measured values. Here, the
number density ensemble average was chosen:

(E ()} = J; E,(s,7) f(r) dr 118)

For a system of poly-dispersed sphere diameters one can also calculate the
mean nearest surface-surface distance I,(R) as a function of sphere radius R
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L(RY= [, e,(w,R) dw 19)

This gives the average surface-surface distance to the nearest air void
surface when starting from spheres of radius R. The quantity /,(R) decreas-
es as R increases. Therefore, ou average, the larger the sphere one starts
from, the shorter the distance one travels to reach the surface of the nearest
air void.

Numerical Test

As a measure of spacing equation accuracy on a geometrical level, a numer-
ical experiment was conducted using air void radii from a zeroth-order loga-
rithmic distribution®”:

1 (ln(r/ro)]2

exp|——
OU

1= V2m Uy 1y exp(og /E)

(120)

Since this distribution is quite useful for parametric studies of air voids, its
details are discussed in Appendix D. Some of the results from Ref, 12 are
shown here in the following tables. The systems were composed of lognor-
mally distributed air void radii with a modal radius r, of 15 um, and a value
of 0.736 for the dispersion parameter g, (standard deviation of the loga-
rithms).

The measured values are the average and estimated standard deviation
from 100 system realizations. Each realization consisted of a fresh collec-
tion of air void radii from the lognormal distribution, and new random loca-
tions for each void. For each new system, the voids were placed sequential-
ly, largest to smallest, such that no two voids overlapped one another,

Paste-Void Proximity

The results reproduced in Table I suggest that the Powers spacing factor
approximates some large percentile of the paste-void spacing distribution,
as it was intended. For the logarithmic radius distribution used here, the
Powers spacing factor is approximately 150% of the 95th percentile of the
paste-void proximity distribution.

The Philleo equation consistently predicts the 95th percentile of the
paste-void proximity distribution to within 10% error. This is somewhat

182 Materials Science of Concrete VI



remarkable given that it does not include information regarding the specific
air void radius distribution.

The Fagerlund quantity d is meant to be an approximation, like the Pow-
ers factor L. There is no a priori reason why d should predict the 95th per-
centile of the paste-void distribution. However, although the Fagerlund
quantity d is not an accurate predictor of the 95th percentile, its ratio to the
95th percentile was also nearly constant for all the air contents tested.

The Pleau and Pigeon equation was also a reasonably accurate predictor
of the 95th percentile of the paste-void proximity distribution. The value
that was normalized by the air content for K, was accurate to within 10%.
The fact that the Pleau and Pigeon equation is accurate at the 95th per-
centile is due to the morphology of the system that contains 95% of the
paste. This system would appear similar to a system of overlapping spheres,
and would explain why their equation can work so well given that they
assumed a system of overlapping spheres for the air void system.'?

The Lu and Torquato estimate of the 95th percentile agreed with the
measured value to within one standard deviation. It would appear as though
the Lu and Torquato equation is sufficiently accurate for predicting the
paste-void proximity distribution over the range of air contents expected in
practice.

Void-Void Proximity

The results of the void-void proximity distribution estimates are shown in
Table II. The Attiogbe equation for 7 is proportional to A as expected. The
Attiogbe quantity ¢, is greater than the measured 50th percentile vw50 by at
least a factor of five. Also, the value of #; varied by a factor of three over
the range of air contents, while the value of vw50 varied by a factor of 6.
This would suggest that 1, is not proportional to vv50.

The Lu and Torquato estimate of the void-void distribution was based on
Eq. 118. As for the paste-void proximity, the Lu and Torquato estimate of
the 50th percentile of the void-void proximity distribution was within one
standard deviation of the measured values, and appears to be sufficiently
accurate over the range of air void volume fractions expected in concrete.

The performance of the function G in estimating the fraction of paste
within ¢ of an air void is shown in Table III. The value of G was calculated
tor the lognormal distribution by equating the parameters of the distribution
in Eq. 97 to the statistical properties in Eq. 98. Because of the accuracy of
the Lu and Torquato equations, the value given by E,, is used as a reference.
The value of G varies by nearly an order of magnitude for the values of p/A
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investigated. However, both E\(r) and E(z,) were equal to 1.000 over the
same range.

The Lu and Torquato equation for E, is an accurate estimate of the mea-
sured quantity vv30. The equation estimated vw50 to within one standard
deviation over the range of air contents reported. The mean nearest surface-
surface distance [(R) for the two extreme air contents are shown in Fig. 8.
The details of the numerical calculation from the simulated systems are
given in Ref. 12. Once again, the Lu and Torquato equation is very accurate.

Lu and Torquato Equation

The performance of the Lu and Torquato equation is, by far, the most accu-
rate estimate for every statistic considered. Not only does it predict these
statistics well, it also predicts the average void-void spacing as a function
of the radius for polydispersed sphere radii. It appears as though the Lu and
Torquato equation is accurate to the level of precision required for investi-
gations of air void spacing. These results also suggest that, at the air vol-
ume fractions investigated here, an air void distribution approximated by a
collection of parked spheres has very similar spatial statistics to an equilib-
rium distribution of spheres, which has relevance to numerical tests of air
void equations. It is also interesting to note that the Lu and Torquato equa-
tions do not require information about the entire air void radius distribution.
Rather, only the values (R), (K2), and (R%) are needed.

Paste-Void Probability Density Function

A graphical performance comparison of the Philleo, the Pleau and Pigeon,
and the Lu and Torquato estimates of the paste-void proximity probability
density function is shown in Fig. 9. The sphere radii are lognormally dis-
tributed with a number density of 240 mm=. The Philieo estimate termi-
nates at s = 0 because it is already normalized for the fraction of paste with-
in s of an air void surface. The Lu and Torquato estimate is virtually exact
at the resolution of this experiment. The Philleo estimate is fairly accurate
for s greater than zero; while that of Pleau and Pigeon is noticeably in error,
These qualitative differences are borne out in the previously reported results.

Analytical Test

Given the accuracy of the Lu and Torquato equations, subsequent tests of
air void spacing equations can be performed without numerical simulation.
Instead, the results can be compared directly to the Lu and Torquato equa-
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Table |. Estimates of the 95th percentile of the paste-void distribution for log-
normally distributed sphere radii with number density n and air content A

n L F d K, K, E, pSs
{mm) A (rmm) {mm) (mm) (mm) {mmy) (mm} {(mm)
20 (1016 0.450 0.272 0.381 0302 0304 0.290 0.290=0.003
40 .033 0.337 0.204  0.285 0.231 0.236 0.220 0.219+0.004
80 (1066 0.247 0.150 0206 0.173 0.185 0.162 0.162+0.003

160 (.131 0.175 0.108  0.143 0.125 0.143 0.114  0.114£0.002
240 0.197 136 0.087 0110 0099 0,123 0.089  0.090x0.002

Table from Ref. 12. The cstintates are from the equations of Powers (L); Philleo (F); Fagerlund (d);
Pleau and Pigeon (K} and (K,.); and Lu and Torquato (£,). The measured values are labeled pv93 and
have the one standard deviation uncertainties shown.

tion. Using this approach, a more thorough test of the spacing equations
that uses a wider range of possible air void radius distributions can be
investigated. The results presented here are from Ref, 13,

Air Void Radius Distributions

As was done for the numerical test, the analytical test used the zeroth-order
logarithmic distribution because it was a reasonable representation of air
void radii in concrete containing air entrainment. (Appendix D contains a
detailed discussion of this distribution.) Figure 10 shows the distributions
used in the analytical test. The distributions are plotted as a function of
diameters to be more easily associated with chord lengths obtained from
linear traverse.

An addittonal air void diameter distribution, not shown in Fig. 10, used
in the study is a monosized distribution composed of 200 pm diameter
spheres. The distribution corresponds to lognormal distribution parameters
of r,=0.100 mm, o, = 0.

Results

The performance of the air void spacing equations was quantified by the
accuracy with which they predicted the 95th percentile of the paste-void
spacing distribution. The estimate of the distance at the 95th percentile s,
using the Lu and Torquato equation was used as a reference value, and is
expressed mathematically as the inverse of the function E (s):

SGS = E;l(095) (121)
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Table II. Estimates of the 50th percentile of the void-void distribution for log-
normally distributed sphere radii with number density n, air content A, and
mean free path i

n * t I E, vi30

(mm) A {mm) {mm) (inm) (inm) (mm)

20 0.016 7.969 3.919 0.642 0.134 0.134+0.003
40 0.033 31918 1.895 0.621 0.092 0.0931£0.002
80 0.066 1.892 0.884 0.580 (0.060 0.060+0.002
160 0.131 0.880 0.382 0.382 0.035 0.035x0.001
240 0.197 0.542 0.218 0.218 0.024 0.024+0.001

Table from Ref. 12. The estimates are from the equations of Attiogbe (¢ and 7.) and Lu and Torquato
(E,). The measured values are labeled w30 and have the cne standard deviation uncertainties shown.

Table Ill. Estimates of the fraction of paste within either t or t; of an air void
sutface for a lognormal air void distribution with number density n and air con-
tent A

n pIA t o

{(mm™) A {mm) {mm) G En E (1)
20 0.016 59.84 3919 0.642 0.164 1.000 1.000
40 0.033 29.42 1.895 0.621 0.328 1.000 1.000
80 0.066 14.21 0.884 0.580 0.656 1.000 1.000
160 0.131 6.605 0.382 0.382 1.000 1.000 1.000
240 0.197 4.070 0.218 0218 1.000 1.000 1.000

Table from Ref. 2. The estimates are calculated from the Lu and Torquato equation for £,.

The accuracy of the other spacing equations was quantified by the ratio
of the spacing equation estimate to the Lu and Torquato value of s,. For the
Powers, Philleo, and Pleau and Pigeon equations, these ratios are, respec-
tively:

L L. (0.
L o P09, K095

Sos S5 Sos (122)

The results were reported as a function of the paste air content. The corre-

sponding air contents for concrete would be approximately one-third of this
value,

The values of Q7 for the Powers spacing equation are shown in Table 1V.
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Figure 8. Mean void-void spacing J, for lognormally distributed sphere radii with num-
ber density n: (a) 20 mm and (b) 240 mm. Measured values are shown as solid cir-
cles; the solid line is the estimate by Lu and Torquato. (From Ref. [2.)

The results indicate that Q5 for the Powers equation is a function of only the
air conlent A and g,. The minimum value for @Q; is nearly unity for mono-
sized spheres, and it increases to a value near two for the distributions used
here. Note also that the non sequitur values for the 0.21 paste air content are
due to the use of Eq. 86 as the ratio p/A becomes greater than 4.342.

Values of O for the Philleo and the Pleau and Pigeon spacing equations
are shown in Tables V and VI, respectively. These two equations have simi-
lar results. Over most of the parameter space investigated, the equations are
typically within 10 % of s,;. Near the limits of the parameter space, the
equations are still within approximately 20% of s,,. Also, as was true for
the Powers spacing equation, the value of Q for these two spacing equa-
tions was only a function of o, and A, and not a function of r,.

The fact that all three spacing equations are only functions of G, and A
means that each equation can be corrected, given this information. One
could perform a parametric study of linear traverse data, determine the cor-
responding parameters of the sphere radius distribution, and calculate o,
This, along with the air content A, could be used to establish an accurate
estimate for s,..

Upon reflection, it is not surprising that both the Philleo and the Plean
and Pigeon spacing equations can accurately predict the 95th percentile of
the paste-void spacing distribution. As seen in Fig. 2(a), as the thickness of
the shell surrounding the voids increases, the region within the shells
begins to resemble a system of overlapping circles, which is the basis of
their derivations. This is why the Philleo and the Pleau and Pigeon equa-
tions are more accurate at predicting larger percentiles of the paste-void
spacing distribution.'?
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Figure 9. Estimates of the paste-void probability density function by Philleo, Pleau and
Pigeon, and Lu and Torquato for lognormally distributed sphere radii with a number
density of 240 mm. Measured values are shown as filled circles. (From Ref. 12.)

Future Research

Given the recent interest in developing spacing equations, a number of
issues should be resolved:

1. The results presented here assume that there exists sufficient inter-
aggregate space to contain a statistical representation of the bulk air
void system, This assumption should be tested for various aggregate
volume fractions, For large aggregate fractions, one could expect
that an insufficient number of voids exist within the inter-aggregate
spaces, and that the critical void spacing should be smaller,

2. If the approximation of the air void radii by a lognormal distribu-
tion is valid, the parameters to the distribution could be used to
convert the Powers spacing factor to an estimate of the 95th per-
centile of the paste-void spacing distribution.
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Figure 10. Air void diameter distributions used in the analytical test.

Protected Paste Volume

The concept of a “protected paste volume” (PPV) originated tfrom Powers?
and was extended by Larson et al.,” Fagerlund,” Philleo,® and Natesaiyer et
al.”*® The concept assumes that each air void in concrete protects the
spherical volume of paste that surrounds it from frost damage. Powers**
called this zone the “sphere of influence” (Sol) of the air voids, The pro-
tected paste volume is then simply defined as the common volume of paste
protected from frost damage by all the air voids present in the concrete. The
ratio of the PPV to the total volume of air and paste is referred to as the
protected paste ratio (PPR).%

Though the definition is simple, a researcher attempting to calculate the
value for a given concrete is faced with an immediate decision: Is the zone
of influence dependent on the material properties of the concrete, the freez-
ing environment, and the size of the air void? Or is the zone of influence
dependent only on the size of the air voids? The calculations are very sim-
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ple if it is assumed that the thickness of the zone of influence is some con-
stant value.®® The calculations are more difficult if the zone of influence
depends on the material properties of the concrete and the freezing environ-
ment as well.** However, if the material properties of concrete and the
freezing environment are not considered, the calculations are simply an
exercise in geometry and probability, and are valid for any material filled
with spherical voids.

From the discussions in the previous sections, it might seem that the
paste-void proximity spacing distribution might provide a way out of the
difficulty. However, some reflection will show that the paste-void spacing
distribution provides only a way to estimate what fraction of the cement
paste is within some distance of an air void. They do not provide any guid-
ance on what the critical distance should be for frost-resistant concrete. Of
the proposed physical mechanisms of frost damage to concrete, currently
only the hydraulic pressure theory has been developed sufficiently to pro-
vide estimates of the critical distance based on the material properties of
the concrete and some measure of the freezing environment, and so it will
be used for demonstration purposes,

Background

The first applications of the protected paste volume concept applied to air
voids in concrete were performed by Warris*** and by Larson, Cady, and
Malloy.” They started with a parametric estimate of the chord distribution,
and combined that with the Philleo spacing equation® to estimate the frac-
tion of paste within some distance of an air void. The application was pure-
ly geometrical.

The concept was advanced by Natesaiyer et al.’** by using the Powers
hydraulic pressure theory.” The thickness of protected paste surrounding an
air void is a function of the void radius. The volume of paste within any
given shell would be the protected paste volume. However, this approach
sutfers from a number of drawbacks: Having a shell thickness that is a
function of air void radius makes deriving analytic expressions for the pro-
tected paste volume difficult. The approach also depends upon a particular
theory for freeze-thaw degradation.

The original protected paste volume concept of Larson, Cady, and Mal-
loy has a number of advantages. For an arbitrary distribution of air void
radii, numerically exact equations exist to calculate the fraction of paste
within a given distance from each air void. The approach is independent of
particular freeze-thaw degradation models. Either better materials science
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Table IV. Values of Qg for the Powers spacing equation*

Air content
() o, (mm) 006 009 012 015 018 021
0.100 (.0000 30 1.028 1,060 1.093 1.128 1.165 1.113
0.050 0.6294 15 1360 1370 1386 1406 1430  1.349
0.020 0.6781 30 1.428 1.434 1.446 1.464 1.485 1.397
.010 0.7362 45 1,522 1522 1.530 1.544  1.562 1465
.015 0.7362 30 1.522 1.522 1.530 1.544 1.562 1.465
6.010 (.9252 15 1.965 1.941 1.928 1.925 1.927 1.791
*From Ref. 13.
Table V. Values of Q; for the Philleo spacing equation*
v, o Air content
(mm) g, (mm™")y Q.06 0.09 0.12 0.15 0.18 0.21
0.100 0.0000 30 1.076 1.115 1.155 1.196 1.240 1.285
0.030 0.6294 15 0958 0970 0985 1.004 1.024  1.048
0.020 0.6781 30 0944 0952 0965 0980 0998 1.018
0.010 0.7362 45 0.926 0.931 0.940  0.952 0.967 0.984
0.015 0.7362 30 0926 0931 0940 09352 0967 0.984
0.010 0.9252 15 0874 0867 0865 0867 0872 0878
*From Ref. 13.
Table V1. Values of Q, for the Pleau and Pigeon spacing equation*®
. o Air content
(mm) a, (mmy 006 009 002 @15 018 021
0.100 0.0000 30 1.074 1.108 1.140 1.169 1.196 1.221
0.050 0.6294 15 1.080 1.098 1.111 1.123 1.134 1.146
0.020 0.6781 30 1.072  1.085 L0%  1.106 1115  1.125
0.010 0.7362 45 1.061 1.07¢ 1077 1.084  1.091 1.099
0.015 0.7362 30 1.661 1.070 1.077 1.084 1.091 1.099
0.010 0.9252 15 1022 1020 1017 1016 1016 1018
*From Ref. 13.
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or simply laboratory tests could be used to establish both the fraction of
paste that must be protected and the distance this fraction needs to be with-
in an air void surface.

Constant Shell Thickness

As a first approximation, one could begin by assuming that, for some physi-
cal model of freeze-thaw, the Sol radius is a constant for all air void radii.
Once this thickness is determined from the cement paste properties and the
freezing rate, the calculation would then be identical to determining the
paste-void spacing distribution as was done in the previous section.

While it would seem that a constant Sol radius is unlikely, this approach
has a number of advantages. This approach can be developed independently
of a freeze-thaw mechanism. In fact, the critical Powers spacing factor
derived by Powers was based upon the hydraulic pressure theory, which has
since been shown to have serious flaws. Yet it has been shown by Pigeon
and coworkers that there exist critical values of L depend on the material
properties of the concrete and the exposure conditions.

Variable Shell Thickness

A more rigorous approach is to calculate the protected paste thickness as a
function of the void radius. Figure 11 depicts the idea schematically. Bor-
rowing from the notation of Powers,* an air void with radius r, protects a
shell of paste out to a radius r,, from the center of the void. The shell thick-
ness s is the difference s=r,, —r,.

An estimate of the volume of paste protected was derived by Natesaiyer
et al.* They approximated the system of r,, radius spheres by overlapping
spheres. The protected paste ratio © follows from the Hertz% distribution:

(123)

The performance of the Philleo and the Pleau and Pigeon spacing equations
discussed in the previous section suggests that the approximation may be
sufficiently accurate as the value of Q approaches 1.

The air content of the paste A, was used to simplify the equation™:

Q=1 A <R;>
S P—<RT> (124)
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Certain limiting cases demonstrate similarities to spacing equations. In the
limit (R,*) — 0, the voids have zero radius and r,, = s:

-4mn
Oy -1 g 22101 .

This equation bears a resemblance to the Philleo approach. Conversely, in
the limit that s is a constant, the quantity (R ) can be expanded in terms of
(R, and s:

H

(Rb> 2 a 3\

{
“Ap|l+as+a =5t + TS
L <R”> 3 <Rf’> J (126)

This result is directly related to that of Fageriund.® The overall approach
has the drawback that for s — 0, the PPR € equals the volume of the corre-
sponding system with overlapping spheres; this was the same deficiency as
for the Pleau and Pigeon equation.

Q| =1-exp

fin =740y

Freeze-Thaw Model

The development thus far for the variable Sol thickness has been done
without regard to a specific model for freeze-thaw. Fundamentally, all one
needs in order to proceed further is an analytical relationship between r,
and r,. As an example, consider the Powers hydraulic pressure theory used
in Natesaiyer et al.>® The model requires a number of material and environ-
mental quantities:

k: cement paste permeability coefficient
cement paste tensile strength
pore fluid viscosity

capillary pore saturation

volume of water frozen per volume paste, per degree
0: cooling rate

The radius r,, can be expressed as a function of the air void radius r, and
material properties of the concrete®:

- 3kT
" u(1.09-5")uo

(127)
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The left side of the equation is purely geometric, and the right side is purely
material. For brevity, the materials term can be represented by &, and the
material dependence is implied. Also, the geometric portion of the equation
can be simplified slightly by expressing the result as a function of the shell
thickness s =r, —r, ™

3 2
K 35
—t =@
By

2 (128)

The shell thickness s for a material parameter & = 0.1 mm? is shown in
Fig. 12(a). Assuming a capillary porosity & = 0.08, the ratio of expelled vol-
ume of water to the volume of void is shown in Fig. 12(b). This ratio can-
not be greater than unity. Using this physical limit, the corrected shell
thickness in Fig. 12(a) is shown as a dashed line.

Ongce the functional relationship between the Sol radius r,, and the void
radius r, is established, the protected paste ratio Q can be calculated using
Eq. 124 above. Consider a concrete with a paste material parameter @ = 0.1
mm? and a porosity &€ = 0.08. Using the five air void radius distributions
shown in Fig. 10, the protected paste ratio Q, calculated as a function of air
content within the paste A, is shown in Fig. 13(a).

Similarly, the Powers spacing factor L can also be calculated for these
systems as a function of paste air content A,.. Figure 13(b) shows a plot of
Q versus L for the five radius distributions. For these particular values of @
and ¢, the relationship between Q and L seems to be relatively insensitive to
the air void radius distribution. All the distributions but one appear to have
a critical value of L near 0.300 um for these values of @ and e. This result
could help explain the success of the critical spacing factor approach to
characterizing concrete performance to freezing and thawing.®

Future Research

New and more sophisticated freeze-thaw models are being developed. If air
voids are the key to ideal performance under conditions of freezing and
thawing, sufficiently sophisticated theories are needed to determine the
quantity and “quality” of the air void distribution required for optimum per-
formance,

1. It is reasonable to assume that other models for freeze-thaw will
also show that the hydraulic pressures are relieved at the air voids.
‘Therefore, the corresponding equations that relate geometry to
material properties will resemble Eq. 128. It would be useful to

194 Materials Science of Concrete Vi



~ -
- -
- R

Figure Il. Sphere of influence for two air voids (r,,r,,) in proximity to one another.

The radii of the protected paste zones are r_, and r

mi

respectively.

generalize a pressure relief theory in order to obtain a generalized
form for Eq. 128. Success in this endeavor would demonstrate why
the Powers spacing factor has performed so well for so long.

2. The estimate of the protected paste ratio shown here is based upon
a simple, overlapping sphere model. It would be useful to extend
the Lu and Torquato equation to include varying shell thicknesses
in order to develop a more accurate microstructural model.

Summary

This chapter is an introduction to the complete characterization of the air
void system in hardened concrete. This characterization includes informa-
tion regarding volumetric data and an ASTM C 457 analysis, the air void
size distribution, and the paste-air system microstructure.

The present test methods in ASTM C 457 have been useful tools for the
concrete industry. However, as use of performance requirements increases,
the matter of performance acceptance will have to address uncertainty in
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test results. Further, rational performance acceptance criteria can be formu-
lated only with an understanding of the probable uncertainties in the test
method results. For this reason, a detailed discussion of uncertainty in the
ASTM C 457 method has been addressed.

Although tabulating individual chord lengths is not currently required by
the existing ASTM C 457 test method, it may become a future requirement.
This information could be used to extract information regarding the air void
diameter distribution. At the very least, this information would be a useful
research tool. Given the ubiquitous presence of computers and computer-
ized automation, the tabulation of the individual chord lengths by computer
would not add to the work load of the petrographer, but would contribute
substantially to the characterization of the air void distribution.

The last piece of the freeze-thaw puzzle is the paste-air microstructure.
There are two parts to freeze-thaw performance in concrete: the mechanism
of freezing and the pressures generated, and the mechanism of pressure
release by the air voids. The mechanism of freezing and pressure genera-
tion is a materials science problem. The effectiveness of the air voids, due
to their proximity to either the paste or to one another, is purely a stercolo-
gy problem. Accurate prediction of freeze-thaw performance requires an
understanding of both parts, which are brought together in the formulation
of the protected paste ratio.

The compilation and distillation of available knowledge within a particu-
lar field of study serves two purposes. Expressing what is known delineates
the problems that are currently solvable, At the same time, it delineates
where additional work is needed to either verify existing assumptions or to
advance understanding. Some of the remaining problems in characterizing
air voids have been enumerated in the previous sections, so that this chapter
serves not only as a primer on air void characterization, but also as a start-
ing point for future research.

Appendix A: Uncertainty

The definitions for expressing uncertainty in measurements have been stan-
dardized by ISO.*" These definitions have been summarized in a shorter
document published by the National Institute of Standards and Technology.*?
There are a number of good books that address uncertainty analysis. Clas-
sic texts include Mandel™ and Wilson.* The books by Taylor® and Dieck
are ISO compliant.
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Figure 12.The shell thickness s {a) and the ratio of expelled ice volume to the volume
of the air veid (b). The sclid line is the original equation by Powers, the dashed line
accounts for the finite volume of the air void. (From Ref. 5. Used with permission.)

Let there be a physical process from which values of X are measured.

The individual values X, differ from the true x by the random error €

X =x+¢ (129)
Fundamentally, the error ¢, is unknowable. Repeated measurements will
yield a distribution of X, values. The dispersion in these values is represent-
ed by the standard uncertainty u(x). The particular functional form for u(x)
depends upon the distribution of the errors e, In principle, the experimenter
chooses an appropriate distribution function. Here, all errors will be charac-
terized by a normal distribution with mean zero and variance 0,% There-
fore, o, represents the standard uncertainty in determining .x.

For most uncertainty analyses, the final quantity of interest is calculated
from a number of measured quantities. The uncertainty in the final quantity
is the combined standard uncertainty u_. One of the most lucid derivations
for u_, based upon a Taylor expansion, is given in the ISO document.”’ What
follows is taken nearly verbatim from this document:

Let the response y depend upen N variables, each labeled x,. Assuming

that (Y) = f({X}.{X,),....,{X),}), the response y can be expanded about the
expected value (Y) for a single experiment:

y-(¥)= ia_f(xn -(x,))

I, (130)
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Figure 13. The protected paste ratio Q as a function of paste air content A, (a) and
Powers spacing factor L (b). The air void radius distributions are the same as those
shown in Fig. 10.

The square of this deviation can be expressed succinctly:

(y-(n)) = E(Q) (x, - (%))

i

(131)

One next takes the expectation of both sides. The result is simplified
because of the Gaussian error model. The expectation of the left side is
simply the variance in y:

oz—ﬁ 9f 202+2NE_1 y 9 —6fa
’ axn ! n=1 mzn+laxn (;‘xm

nm
rn=1

(132)

The quantity o,® replaces {(x, — (X,))). The quantity g,  is the covari-
ance between x, and x,, and is shorthand for ((x, — (X )(x,, — (X ))}. In sum-
mary, the combined standard uncertainty is the standard deviation in y.
Note that o, does not use the random variable notation to distinguish it
from a standard uncertainty. The corresponding estimated siandard devia-
tion in y is expressed as ..
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Coefficient of Variation
The ceefficient of variation 1 is the ratio of the standard deviation to the
expected value:

g
X
Mx = 7or

"

X) (133)

The corresponding quantity based upon measured values is denoted C,,
and is the ratio of the estimated standard deviation s, to the average value
X

s
C,=—
X (134)

Many of the equations considered in the subsequent sections are multiplica-
tive. For example, consider a calculated quantity z that is a simple function
of the random variables X and ¥: z = XY, The estimated combined standard
uncertainty in z, assuming no covariance in X and ¥, is calculated from Eq.

132:
2 2
st = _é‘z st+ _é’z 52
“lgx) Yo \ay) T
=Y2 Si"‘Xz S}Z{ (135)

Since 7 = XY, the above expression be expressed compactly using the coef-
ficient of variation C:

2 2 2
C,‘z =CX+CY (]36)

Appendix B: Probability and Statistics

The topics discussed in this chapter rely upon the concepts of random vari-
ables, probability theory, and statistics. It will be useful to discuss these
topics in detail to ensure uniformity throughout the sections. A number of
excellent books exist for additional information and discussion.®”%
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Random Variables

A useful way to introduce the idea of random variables is through an exam-
ple. Consider an experiment that has inherent randomness. The result of the
experiment is a single value, out of a number of possible values. The result
of a single experiment may be represented by the random variable X. The
possible values that X may take can be represented by the variable x. For an
experiment consisting of a coin toss, the possible outcomes are either heads
H or tails T. The variable x can represent the set of outcomes, x = {H,T}.
The random variable X may take on the value of either H or 7. From experi-
ence, one knows that the probability P of either event is one-half:

P(X=H) = P(X=T) = 1
2 (137)

Probability Density Function

In contrast to the coin toss experiment, consider an experiment where X can
be any real number on the interval [0.1]. In this case, there are an infinite
number of possible values X can take, and X is a continuous random vari-
able. Since the number of possible outcomes is infinite, the probability that
X = 0.5 is zero. For a continuous random variable, one can only define a
probability density function f{x} such that

P(asXsb)=Lbf(x)dx (138)

under the constraints

f_m f(x)dx =1 f(x)=0 (139)

This definition is consistent with the fact that the probability of a particu-
lar outcome such as X = a is zero:

P(asXsa)=j:{f(x)dx=O (140)
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Cumulative Distribution Function

When analyzing measured data, it is often more convenient to work with
the cumulative distribution function (CDF), also referred to as the probabil-
ity function. For a probability density function f{x), the cumulative distribu-
tion function F{x) is the probability that a particular outcome can be less
than x:

F(x) = P(x = X) (141)

For a continuous probability density fix), the quantity has the following
mathematical definition:

Fx) = f(x')ay’ 1)

Point Probability Function

When the possible outcomes are either finite or countably infinite (e.g., all
positive prime numbers), the discrete random variable X is characterized by
a point probability function p(x):

P(X=a)=p(a) (143)

Here, the point probability function will be treated as a special case of
the continuous probability density function, While investigating air void
radius distributions, it may be useful at times to consider the monosized
sphere radius distribution having radius r,:

P(R=r) = p(r;) =1 (144)

However, the subsequent sections will summarize equations for continu-
ous random variables. As a solution, one can represent the monosized prob-
ability density function f{x) by a Dirac delta function 6(x) (see Appendix
C). For a system of monosized sphere radii, the PDF f{r) can be expressed
as a delta function:

f(ry=68(r-r) (145)
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Mixtures of monosized sphere radii, each denoted by radius r, are com-
posed of weighted delta functions

flr)= }’i‘s(r—rf)
Z (146)

such that y; = 1. The coefficients y, represent the number fraction of radius r..

Statistics

Under many circumstances one can sufficiently characterize the air void
radius distribution in concrete from certain statistical properties, and the
functional form for the radius probability density function is not required.

Expected Values

Let the random variable X take values from the continuous probability den-
sity function f{x). The expectation of X has the following definition:

(X =[x flxydx

(147)
with the following constraint:
+20 dx o
f. W f)dx < (148)
Similarly for higher powers of X:
X"V = x" flx d
(X") f_xx flx) dx (149)

Let f{r) represent the air void radius probability density function. Quanti-
ties like the expected average surface area § and the expected volume V can
be expressed as expectations of the radius distribution:

S=4x (R2>
4, 5
| FA
3 <R> (150)
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Averages

The preceding section is distinguished from averages. Expectations are cal-
culated from equations. Averages are calculated from measured data. Con-
sider an experiment with random variables X, from N trials. The average
value X is

B .
X=E2x

= (151)
Similarly for higher powers of X
S 1 &
X'= =X’
N & (152)

An experiment is conducted with the assumption that X” is an unbiased
estimator of {X").

Variance

The variation in a population of random variables X, are typically expressed
as a standard deviation o,. However, it is the variance G, that more easily
expressed mathematically:

o ={(x-(x)")
=(X*) - (x)’ (153)

The kth moment is defined as {(x — (X})%).”” Therefore, the variance is the
second moment about the mean (X). However, it is common for publica-
tions to use the term “moment” to mean expectation. In that context, the
term is correct if one is calculating the moment about zero mean.

Appendix C: Delta Function Distribution

The Dirac delta function 8(x) is a nseful tool for representing discrete prob-
ability distributions as continuous distributions. A useful discussion of the
Dirac delta function can be found either in Lighthill®® or in any suitable
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mathematical physics text such as Arfken.®® For purposes of this chapter,
the Dirac delta function can be thought of as a Gaussian in the limit that the
variance approaches zero.

The Dirac delta function can be described rigorously using a few defini-
tions. The function itself has the following nondifferentiable characteristic:

X=X,

oo
S(x—x)=
(- %) {0 otherwise (154)

However, the area under the Dirac delta function is unity:

[ o) de=1 (155)

The function also has the following convolution property for an arbitrary
function f(x):

f(x,) asx,<h

(]
L 0(x=x) f(x) dx {0 otherwise (156)
A point probability distribution can be replaced by a Dirac delta func-
tion. Given a point probability function p(x) that describes the outcomes of
a random trial, let p(x,) represent the probability that the random variable X
equals x,. The corresponding continuous function representation would be
p(-"fo)6 (x— xg)-

Monosized Spheres

The same applies to monosized sphere radius distributions. A distribution
of monosized radius r, can be represented by f(r) = 8(r - ry). The rth
moment can be calculated directly:

(R”> =J:r" 8(r—r)dr
=7 (157)

This demonstrates the greatest usefulness of the Dirac delta function as a
representation of a monosized void system. Using the delta function, one
can then use the tools developed for continuous functions.
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Point Probability

The Dirac delta function is alse useful for describing a distribution com-
posed of a finite number of sphere radii. This would be useful for approxi-
mating data from a sieve analysis. Let fir) represent the combined sphere
radius distribution. Let v, represent the probability that there exists a sphere
with radius R, Let there be N such possible radii. The PDF f{r) can be
expressed as a linear sum of each radius:

"

fr) =% v,8(r-R)
i=l (158)

The values of v, are constrained to sum to one:

N
2?’i=1

1=l (159)

Circile Distribution

Consider a monosized sphere diameter distribution f{x), with every sphere
of diameter x,. The corresponding circle diameter distribution g(y) is calcu-
lated from Eq. 41:

yo X oz x)
g(y) (X)f) (x2 _yz)uz
N 1
= Y =X,

% (- y)" e

Chord Distribution
The corresponding chord distribution A(z} can be calculated from Eq. 49:

h(z) =%fa (x—x,) d
=2—§ 7% X,
Xy

(161)
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Figure 14. The circle diameter distribution g(y) and the chord distribution h(z) for a
monosized 0.100 mm sphere diameter distribution.

Example

The circle diameter distribution g(y) and the chord distribution h(z) for a
monosized 100 pm diameter sphere are shown in Fig. 14. The correspond-
ing sphere diameter distribution would appear as a vertical line at 0.100
mm. The shape of g(y) suggests that there is a propensity for intersecting
spheres near their equators. The function #(z) in the figure shows the contri-
bution to the chord distribution from a particular sphere size. The sum total
of a number of a finite number of different monosized spheres would be the
sum total of the corresponding /(z). It is this property that was exploited by
Lord and Wiliis.>

206 Materials Science of Concrete Vi



Appendix D: Lognormal Distribution

A thorough discussion of the logarithmic family of distributions can be
found in Ref. 87. The general nth order logarithmic distribution has the fol-
lowing form®”;

. l(lnx—-lnx”)2
Fexpl- |

GH
f;l(x) = 1 2 2
n+ Z 2
N21 o, x! exp[(n +1)y o/ J (162)
The expectations can also be expressed in a generalized form:
X') = xb expl(K + 24+ 2kn) 07 /2

The function f,(x) 1s the same for all values of 7. Only the meaning of x,
varies. There arc three values of n that are typically of interest to experi-
menters:

X 00 IMean
x_» median
X, mode
The parameters can be mapped onto one another. Compare the ratio of

the first moment to the second moment for an nth order and an mth order
distribution:

2r+3) 22 Anv8)al /2
JREE) )

"

2
— 3
(Zma3)a’i2 2 _(4m+8)alin
m € X, €

(164)

Solving this equation for ¢ demonstrates that the meaning of o is identi-
cal for all n and m:

Ouw=0,=0 (165)
Given this, the parameters x, and x, can be mapped to one another:

e _ e(m—n)az

T (166)
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Specific Surface

From the material presented so far, the specific surface can be calculated
directly. Let £ (x) represent a sphere diameter distribution. The specific sur-
face is the ratio of two moments:

(x’)

= 6—-
T
_6 exp[—(Zn +7) o)/ 2]
Xy (167)
Chord Distribution

The corresponding chord length distribution can be calculated from Eq. 49:

(z) = &—% f; £.(x) dx

z Inz-Ilnx, (n+1)

=<x2>‘”~’fc( 2o, vz %

(168)

The function erfc(x) is the complementary error function.®” For pararmet-
ric studies using lognormally distributed sphere diameters, the moments of
the chord distribution are quite useful:

205 i 2 %:2;)

- ;j’; exp[(k2 + 6k + 2nk) all 2]

(169)

Example

The circle diameter distribution g(y) and the chord length distribution h(z)
for a zeroth-order logarithmic sphere diameter distribution f{x) are shown in
Fig. 15. As the dimensionality of the probe decreases (spheres—circles—
chords), the corresponding distribution widens due to the cumulative con-
tribution of larger sphere diameters. This is true for the logarithmic distrib-
ution, but can be far different for other distributions. In fact, some distribu-
tions are invariant: fix) = g(y) = A(z).
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Figure I5.The circle diameter distribution g(y) and the chord length distribution h(z)
for a zeroth-order logarithmic sphere diameter distribution f{x) with modal diameter
0.030 mm and o, = 0.7362.
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