Electroweak Precision Tests at GigaZ

S. Heinemeyer, Brookhaven Natl. Lab. G. Weiglein, CERN & Durham IPPP

Snowmass, 07/01

- 1. Introduction
- 2. Precision Tests of the SM
- 3. Precision Tests of the MSSM
- 4. Conclusions

1. Introduction

Definition: LC at low energies: high luminosity 109 7 bosons/vear Definition: $\sim 10^6 \; W$ pairs/year

 \rightarrow use the Z bosons to measure the left-right asymmetry: A_{LR} (++, +-, -+, --)

use A_{LR} to determine the

effective leptonic mixing angle: $\delta \sin^2 \theta_{\rm eff} \approx 1 \times 10^{-5}$

 \rightarrow use the W bosons (at threshold) to measure the

W boson mass: $\delta M_W \approx 6 \text{ MeV}$

Expected accuracies:

	LEP2/Tev.	LHC	LC	GigaZ
M_W	30 MeV	15 MeV	15 MeV	6 MeV
$\sin^2 heta_{ m eff}$	0.00017	0.00017	0.00017	0.00001
m_t	3 GeV	2 GeV	0.2 GeV	0.2 GeV
m_h	?	0.2 GeV	0.05 GeV	0.05 GeV

 M_W determination at e^+e^- colliders

threshold measurement of

$$e^+e^- \to WW \to 4f(+\gamma)$$

Status of theoretical prediction for total cross section in the SM:

<u>above threshold:</u> ±0.5% with DPA [A. Denner, S. Dittmaier, M. Roth, D. Wackeroth '00]

 $\frac{\text{at threshold:}}{\pm 2\%}$ with leading log calculation

 $\rightarrow \mathsf{F}$

However: Only shape of XS in threshold region needed for M_W measurement

Larger error on absolute value tolerable

DPA not applicable in threshold region \Rightarrow full $\mathcal{O}(\alpha)$ calculation necessary

full $\mathcal{O}(\alpha)$ calculation in whole parameter space: first results for simplest case: work in progress [A. Vicini '01]

Sudakov logs: $\sim 0.5\%$ at $\sqrt{s} = 500$ GeV \Rightarrow probably no problem in threshold region

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

Precision Observables (POs):

Comparison of electro-weak precision observables with theory:

Effects of "new physics"?

Theory: Precision observables M_W , $\sin^2 \theta_{eff}$:

1.) Theoretical prediction for M_W in terms of $M_Z, \alpha, G_\mu, \Delta r$:

SM prediction for Δr , one-loop: [A. Sirlin '80] [W. Marciano, A. Sirlin '80]

$$\Delta r_{1-\text{loop}} = \Delta \alpha - \frac{c_w^2}{s_w^2} \Delta \rho + \Delta r_{\text{rem}}(m_h)$$
$$\sim \log \frac{M_Z}{m_f} \sim m_t^2$$
$$\sim 6\% \sim 3.3\% \sim 1\%$$

2.) Leptonic effective weak mixing angle:

$$\sin^2 \theta_{\text{eff}} = \frac{1}{4 |Q_f|} \left(1 - \frac{\operatorname{Re} g_V^f}{\operatorname{Re} g_A^f} \right)$$

Higher order contributions are contained in $\Delta g_V^f, \quad \Delta g_A^f$

Further available corrections in the SM:

- QCD corrections up to $\mathcal{O}(\alpha \alpha_s^2)$
 - [A. Djouadi, C. Verzegnassi '87]
 - [F. Halzen, B. Kniehl '91]
 - [K. Chetyrkin, J. Kühn, M. Steinhauser '95]
 - [L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov '95]
- electroweak two-loop corrections
 - expansion in leading powers of m_t, M_H
 [J. van der Bij, M. Veltman, '84]
 [J. van der Bij, F. Hoogeveen '87]
 [R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci,
 A. Vicere '92]
 [J. Fleischer, O.V. Tarasov, F. Jegerlehner '93]
 [G. Degrassi, P. Gambino, A. Vicini '98]
 - [G. Degrassi, P. Gambino, A. Sirlin '98]

- complete fermionic two-loop result for M_W [A. Freitas, S.H., W. Hollik, W. Walter, G.W. '00]

• leading electroweak three-loop terms $\mathcal{O}\left(G_F^3 m_t^6\right)$, $\mathcal{O}\left(G_F^2 \alpha_s m_t^4\right)$ [J. van der Bij, K. Chetyrkin, M. Faisst, G. Jikia, T. Seidensticker '00] Available corrections in the MSSM:

full one-loop corrections to ∆r
 [P. Chankowski, A. Dabelstein, W. Hollik, W. Mösle,
 S. Pokorski, J. Rosiek '94]
 [D. Garcia, J. Solà '94]

Z-boson observables, one-loop
[D. Garcia, R. Jiménez, J. Solà '95]
[D. Garcia, J. Solà '95]
[A. Dabelstein, W. Hollik, W. Mösle '95]
[P. Chankowski, S. Pokorski '96]

leading O(αα_s) corrections
 [A. Djouadi, P. Gambino, S. H., W. Hollik, C. Jünger, G.W. '97]
 [S. H, W. Hollik, G.W. '98]

• leading $\mathcal{O}\left(G_F^2 m_t^4\right)$ corrections $(M_{\text{SUSY}} \to \infty)$ [S. H, G.W. '01] Interpretation in the SM:

Indirect determination of m_t from precision data:

 $m_t = 172^{+14}_{-11} \text{ GeV}$

direct measurement:

 $m_t = 174.3 \pm 5.1 \,\, {
m GeV}$

One-loop corrections to precision observables:

 $\sim m_t^2$ $\sim \log m_h$

⇒ Very high accuracy of measurements and theoretical predictions needed

Theoretical uncertainties:

- unknown higher-order corrections
- exp. error of input parameters: m_t , $\Delta \alpha_{had}$, ...

Todays theoretical uncertainty:

 $\delta M_W^{\rm theo} \approx 6 {\rm MeV}$ $\delta \sin^2 \theta_{\rm eff}^{\rm theo} \approx 0.00007$

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

Global fit to all data in the SM:

[LEPEWWG '01]

What if SUSY will be discovered?

Assume: SUSY particles accessible at next generation of colliders

Exact SUSY: $m_f = m_{\tilde{f}}, \ldots$

⇒ SUSY must be broken: $M_{SUSY} \lesssim 1 \text{ TeV}$

SUSY breaking mechanism not well understood; different models for SUSY breaking:

```
"Hidden sector":\longrightarrowVisible sector:SUSY breakingMSSM
```

"Gravity-mediated": mSUGRA "Gauge-mediated": GMSB "Anomaly-mediated": AMSB

Unconstrained MSSM:

no particular SUSY breaking mechanism assumed, parameterization of possible SUSY-breaking terms

⇒ 105 new parameters: masses, mixing angles, phases

Current situation:

- Good phenomenological description for universal breaking terms
- no preference for certain SUSY-breaking scenario

Possible future situation:

Measurements of SUSY observables and improved precision for M_W , $\sin^2 \theta_{\rm eff}$, . . .:

- \Rightarrow Determination of SUSY parameters
- \Rightarrow Patterns of SUSY breaking (new high scales)

Role of PO's:

Indirect information from precision observables constraints on unaccessible scales

- \rightarrow complementary to direct production processes
- ⇒ Sensitive test of the theory at the quantum level

Stringent direct test of SUSY:

Light Higgs boson h required

Tree level: $m_h < M_Z$

Yukawa couplings: $\frac{e m_t}{2M_W s_w}$, $\frac{e m_t^2}{M_W s_w}$, ...

Dominant corrections to m_h from $t - \tilde{t}$ -sector : Leading one-loop term:

$$\Delta m_h^2 \sim \frac{m_t^4}{M_W^2} \log \left(\frac{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2}{m_t^4} \right)$$

Two-loop result (*FeynHiggs*): [*S.H.*, *W. Hollik*, *G.W. '99*]

 $\Rightarrow m_h \lesssim$ 135 GeV

High-precision measurement of m_h :

LHC :	$\delta m_h pprox$ 0.2 GeV
LC :	$\delta m_h pprox$ 0.05 GeV
Muon Collider :	$\delta m_h pprox 0.1~{ m MeV}$

 $\Rightarrow m_h$ will be precision observable!

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

SM:

free parameter: m_h

- \rightarrow direct contribution via loop effects
- ⇒ Prediction for precision observables M_W , $\sin^2 \theta_{\rm eff}$

MSSM:

free parameters: M_{SUSY}, X_t, \ldots

- \rightarrow direct contribution via loop effects
- ightarrow indirect effect via contribution to m_h
- ⇒ Prediction for precision observables M_W , $\sin^2 \theta_{\rm eff}$

Prediction for precision observable m_h

2. Precision tests of the SM:

Present situation:

SM prediction for M_W vs. experimental result: [A. Freitas, S.H., W. Hollik, W. Walter, G.W. '00]

 \Rightarrow no overlap at the 1 σ level \Rightarrow light Higgs preferred

Theoretical uncertainty dominated by uncertainty in input parameters: m_t , M_H , ...

 $\delta m_t = 5.1 \text{ GeV} \Rightarrow \delta M_W \approx 31 \text{ MeV}$

Future theoretical uncertainties:

Parametric uncertainties from experimental errors of input parameters:

$$\begin{split} \delta m_t &= \pm 130 \text{ MeV} \implies \delta M_W \approx \pm 1 \text{ MeV} \\ &\delta \sin^2 \theta_{\text{eff}} \approx \pm 0.4 \times 10^{-5} \\ \delta m_h &= \pm 50 \text{ MeV} \\ \delta \alpha_s &= \pm 1 \times 10^{-3} \\ \delta M_Z &= \pm 2.1 \text{ MeV} \implies \delta M_W \approx \pm 2.5 \text{ MeV} \\ &\delta \sin^2 \theta_{\text{eff}} \approx \pm 1.4 \times 10^{-5} \\ \delta (\Delta \alpha) &= \pm 5 \times 10^{-5} \implies \delta M_W \approx \pm 1 \text{ MeV} \\ &\delta \sin^2 \theta_{\text{eff}} \approx \pm 1.8 \times 10^{-5} \end{split}$$

⇒ Error of M_Z non-negligible! (measurement of $M_W/M_Z \Rightarrow \delta M_W \approx \pm 1$ MeV)

Estimate for future theoretical uncertainties:

- unknown higher-order corrections
- $-\delta(\Delta \alpha)$ uncertainty

 $\delta M_W^{\rm theo} \approx \pm 3 \,\,{
m MeV}, \quad \delta \sin^2 heta_{
m eff}^{
m theo} \approx \pm 3 imes 10^{-5}$

$\frac{M_W(m_h)}{M_W(m_h)}$ in the SM: prospective future accuracies:

LHC precision ($\delta M_W \approx 15 \text{ MeV}, \delta m_t \approx 1.5 \text{ GeV}$):

GigaZ precision ($\delta M_W \approx 6 \text{ MeV}, \delta m_t \approx 0.15 \text{ GeV}$):

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

SM prediction for M_W and $\sin^2 \theta_{eff}$ vs. current and prospective accuracies at LEP2/SLD/Tevatron , LHC/LC , GigaZ: [J. Erler, S.H., W. Hollik, G.W. and P. Zerwas '00]

⇒ test of the SM with very high precision high sensitivity to new physics scales Indirect determination of m_t , M_H at GigaZ:

[J. Erler, S.H., W. Hollik, G.W. and P. Zerwas '00]

Expected precisions of indirect M_H -determinations: [J. Erler, S.H., W. Hollik, G.W. and P. Zerwas '00]

	M_W	$\sin^2 \theta_{\rm eff}$	all
now	200 %	62 %	60 %
Tevatron Run IIA	77 %	46 %	41 %
Tevatron Run IIB	39 %	28 %	26 %
LHC	28 %	24 %	21 %
LC	18 %	20 %	15 %
GigaZ	12 %	7 %	7 %

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

New "Blue band" plot:

Fit for the SM Higgs boson mass $Today \rightarrow GigaZ$ (neglected theoretical uncertainty) [*R. Hawkings and K. Mönig '00*]

3. Precision tests of the MSSM

Prediction for M_W in the SM and the MSSM : [S.H., G.W. '01]

SM uncertainty: unknown Higgs mass MSSM uncertainty: unknown masses of SUSY particles

Prediction for M_W , $\sin^2 \theta_{eff}$ in the SM and MSSM

vs. prospective accuracies at LEP2/SLD/Tevatron , LHC/LC, GigaZ: [S.H., G.W. '01]

⇒ large improvement of experimental accuracy: LEP2/SLD/Tevatron → LHC/LC → GigaZ

The Higgs mass as a precision observable (Scenario I:)

 \rightarrow Combination of direct and indirect information on \tilde{t} sector parameters:

Direct information: $e^+e^- \rightarrow \tilde{t}_1\tilde{t}_1$ at high luminosity LC

(80% pol. e^- beam, 60% pol. e^+ beam, $\sqrt{s} = 500$ GeV, $\mathcal{L} = 500$ fb⁻¹) [*R. Keränen, H. Nowak, A. Sopczak '00*]

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

Indirect information:

Constraints on $m_{\tilde{t}_2}$, $\theta_{\tilde{t}}$ from precision observables $m_h, M_W, \sin^2 \theta_{\rm eff}$ at LHC , LC , GigaZ : [S.H., G.W. '00]

Allowed region in $m_{\tilde{t}_2}$ -cos $\theta_{\tilde{t}}$ plane: ($M_A = 257 \pm 10 \text{ GeV}, \tan \beta > 10$):

Complementary of direct \leftrightarrow indirect information \Rightarrow Indirect determ. of $m_{\tilde{t}_2}$ with high precision

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

Scenario II:

[J. Erler, S.H., W. Hollik, G.W. and P. Zerwas '00]

no experimental information on $m_{\tilde{t}_2}$, M_A

 $\sin^2 \theta_{\rm eff} = 0.23140 \pm 0.00001$

 $m_{\tilde{t}_1} = 500 \pm 2$ GeV, $\sin \theta_{\tilde{t}} = -0.69 \pm 2\%$, $\tan \beta = 3 \pm 0.5$

Constraints for M_A only from $\sin^2 \theta_{eff}$:

⇒ Logarithmic M_A dependence ⇒ no constraints on M_A from LHC/LC measurement

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

Now: use all PO's

 $\rightarrow M_W, \sin^2 \theta_{\text{eff}}, m_h$:

 $M_W = 80.4 \pm 0.006 \text{ GeV}, \sin^2 \theta_{\text{eff}} = 0.23140 \pm 0.00001$ $m_h = 115 \pm 0.05 \text{ GeV}, \ \delta m_h^{\text{theo}} = \pm 0.5 \text{ GeV}$

 $2.5 < \tan \beta < 3.5$ or $\tan \beta \ge 10$ (from measurements in gaugino sector)

 $m_{\tilde{t}_1} = 500 \pm 2 \text{ GeV}, \sin \theta_{\tilde{t}} = -0.69 \pm 2\%, A_b = A_t \pm 10\%,$ $\mu = -200 \pm 1 \text{ GeV}, M_2 = 400 \pm 2 \text{ GeV}, m_{\tilde{g}} = 500 \pm 10 \text{ GeV}$

Allowed region in M_A - $m_{\tilde{t}_2}$ plane:

 \Rightarrow Constraints on $m_{ ilde{t}_2}$, upper bound on M_A

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

Scenario III:

[J. Erler, S.H., W. Hollik, G.W. and P. Zerwas '00]

no experimental information on tan β , M_A $m_{\tilde{t}_2} = 520 \pm 1 \text{ GeV}$ or $m_{\tilde{t}_2} = 640 \pm 10 \text{ GeV}$ $M_W = 80.4 \pm 0.006 \text{ GeV}$, $\sin^2 \theta_{\text{eff}} = 0.23138 \pm 0.00001$ $m_h = 110 \pm 0.05 \text{ GeV}$, $\delta m_h^{\text{theo}} = \pm 0.5 \text{ GeV}$ $m_{\tilde{t}_1} = 340 \pm 1 \text{ GeV}$, $\sin \theta_{\tilde{t}} = -0.69 \pm 2\%$, $A_b = -640 \pm 60 \text{ GeV}$, $\mu = 316 \pm 1 \text{ GeV}$, $M_2 = 152 \pm 2 \text{ GeV}$, $m_{\tilde{g}} = 496 \pm 10 \text{ GeV}$

Allowed region in M_A -tan β plane:

 \Rightarrow Constraints on tan β , upper bound on M_A

S. Heinemeyer & G. Weiglein, Snowmass, 07/01

4. Conclusions

• GigaZ: $\rightarrow \delta \sin^2 \theta_{\text{eff}} = 0.00001$ $\delta M_W = 6 \text{ MeV},$

Combined with high precision of LC for m_h , m_t , $m_{\tilde{t}}$, . . .

 \Rightarrow Highly sensitive test of SM and MSSM

• SM:

Indirect determination of M_H :

$\delta M_H/M_H \approx 7\%$

• MSSM:

 m_h is precision observable

- Combination of direct and indirect constraints in the \tilde{t} sector: determination of $m_{\tilde{t}_2}$
- Constraints on $\tan \beta$
- upper bound on M_A possible
- High sensitivity to scales beyond SM and MSSM