Experimental Aspects of Determining ΔG from Direct

Photon + Jet Events in Polarized pp Collisions Using the

STAR Detector at RHIC.

Chris Allgower¹

For the STAR Collaboration

¹ Indiana University Cyclotron Facility, 2401 Milo B. Sampson ln.,

Bloomington, IN 47401

Talk for DNP2000 Meeting, Williamsburg, VA, Oct. 2000

Polarized Direct Photon + Jet Production:

STAR will measure $\vec{p}\vec{p} \to \gamma + \text{jet} + X$ at $\sqrt{s} = 200$ GeV and 500 GeV with longitudinally polarized beams to determine the fraction of the proton's spin carried by gluons.

- \bullet STAR detects γ + jet IN COINCIDENCE.
 - Photon $P_T > 10 \text{ GeV/c.}$

(Quark-gluon Compton scattering is the dominant contribution to direct photon production.)

The spin of the proton is given by

$$\frac{1}{2} = \frac{1}{2}\Sigma + \boxed{\Delta G} + L_Z^q + L_Z^G.$$

The gluon fraction of the proton spin is given by

$$\Delta G(Q^2) = \int_0^1 \Delta G(x, Q^2) dx,$$

where $\Delta G(x,Q^2)=G_{\to g}^{\to p}(x,Q^2)-G_{\leftarrow g}^{\to p}(x,Q^2)$ is the polarized gluon structure function.

The x dependence of $\Delta G(x,Q^2)$ is not strongly constrained by data or theory, and must therefore be measured. (Plots are from fits to data for $\Delta G(x,Q^2=4{\rm GeV}^2)$ in T. Gehrmann and W. J. Stirling, *Phys. Rev.* D**53**, 6100 (1996).)

The peaks in the above curves shift to lower x at higher Q^2 where STAR will measure. This puts a premium on measuring at low x for determining the integral.

STAR will measure $A_{LL}(x, Q^2)$, which to <u>leading order</u> is

$$A_{LL}(x,Q^2) = rac{\Delta G(x,Q^2)}{G(x,Q^2)} A_1^p(x,Q^2) \hat{a}_{LL}(cos\theta^*).$$

 $G(x, Q^2)$ = unpolarized gluon structure function. (Known from global fit to published data.)

 $\underline{A_1^p(x,Q^2)}$ = asymmetry measured in polarized DIS. (Known from published PDIS data.)

 $\hat{a}_{LL}(cos\theta^*) = \text{qg Compton spin correlation coefficient.}$ (Known from PQCD.)

Measurement of $A_{LL}(x,Q^2)$ therefore determines $\Delta G(x,Q^2)$ directly.

Experimentally speaking,

$$A_{LL}(x) = \left(\frac{1}{P_{b1}P_{b2}}\right) \cdot \epsilon(x),$$

where P_{b1} , P_{b2} are the longitudinal polarizations of the colliding proton beams, and $\epsilon(x)$ is a function of luminosity-normalized counts for the different combinations of beam states:

$$\epsilon(x) = \frac{n_{++} + n_{--} - n_{+-} - n_{-+}}{n_{++} + n_{--} + n_{+-} + n_{-+}},$$

with

$$n_{ij}(x) = rac{N_{ij}(x)}{\mathcal{L}_{ij}},$$

where $N_{ij}(x)$ is the number of γ + jet events in beam polarization state ij in some bin of x, and \mathcal{L}_{ij} is the number of counts in some luminosity monitor for state ij.

Coincidence of γ + jet \Rightarrow full parton kinematic reconstruction:

Inclusive photons from a narrow x range can come from wide ranges of parton x:

 γ + jet in coincidence \Rightarrow reconstruction of x_g and x_q event by event: Assuming collinearity of the colliding partons,

$$x_1 \approx \frac{2P_T}{\sqrt{s}} \left(\frac{e^{\eta_\gamma} + e^{\eta} \text{ jet}}{2} \right) \qquad x_2 \approx \frac{2P_T}{\sqrt{s}} \left(\frac{e^{-\eta_\gamma} + e^{-\eta} \text{ jet}}{2} \right),$$
$$\eta_\gamma = -\ln \left[\tan \left(\frac{\theta_\gamma}{2} \right) \right], \qquad \eta_{\text{jet}} = -\ln \left[\tan \left(\frac{\theta \text{ jet}}{2} \right) \right],$$
$$\sqrt{s} = 2 \cdot E_{\text{beam}}, \quad P_T = E_\gamma \sin \theta_\gamma, \quad \text{pick } x_g = \min(x_1, x_2) :$$

RHIC Polarimetry:

5% relative errors in $P_{b1}, P_{b2} \Rightarrow 10\%$ rel. error in A_{LL} .

Pileup Rejection:

Full RHIC luminosity = $2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1} \Rightarrow > 1 \text{Mhz}$ interaction rate.

 $40\mu s$ TPC drift time $\Rightarrow 1000$'s of low- P_T background tracks in TPC.

Filter Software:

- retains 94% of jet tracks w/ $P_T > 1.0 \text{ GeV/c}$.
- Rejects nearly all background tracks.

Direct γ Identification:

Calorimeters must identify single direct γ 's, reject γ pairs from π° 's, η 's.

Condition	Description	sig.:bkgnd
$10 < P_T < 20 \text{ GeV/c}$	Photon P_T requirement	1:13
Isolation Cut	No nearby tracks or cal. energy	1:3
Shower Shape	Shower Max (<10 mm pos. resol.)	1:0.8

Background subtraction raises stat. error in A_{LL} by factor of 1.5-2.0.

Meeting major challenges for determining integral $\Delta G(Q^2)$:

Calorimeter Energy Calibration:

Effect: Shape of $\Delta G(x, Q^2)$ is distorted, especially at large x.

 $\pm 2\%$ absolute error in $E_{\gamma} \Rightarrow 2\%$ relative error in x

 $\Rightarrow \pm 5\%$ error in integral ΔG .

Extrapolation:

- Contribution to integral is small above x > 0.3.
 - \bullet Extrapolation to low x is crucial.

With the endcap calorimeter, STAR will cover 0.01 < x < 0.3.

The final error in

$$\Delta G(Q^2) = \int_0^1 \Delta G(x, Q^2) dx$$

will be about $\boxed{\pm 0.5.}$

Simulations based on assumptions of 320 pb⁻¹ at $\sqrt{s} = 200$ GeV and 800 pb⁻¹ at $\sqrt{s} = 500$ GeV (10 weeks of running at each energy), $P_{b1} = P_{b2} = 70\%$, give the following results:

(Simulated events were generated at IUCF using a prediction for $\Delta G(x)$ in T. Gehrmann and W. J. Stirling, *Phys. Rev.* D**53**, 6100 (1996). Plots are by L. Bland for the Conceptual Design Report of the STAR Endcap Electromagnetic Calorimeter.)

Simulation results indicate that the final value of the integral

$$\Delta G = \int_0^1 \Delta G(x) dx$$

will be determined to about ± 0.5 .