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Magnets according to CM theorists

Different levels of detail, (i.e. correctness):

Quantum mechanics: Start with the actual atoms and try to
calculate microscopic quantities, e.g. anisotropy and coupling.
Drawbacks: Hard to do and doesn’t tell you about evolution on
mesoscopic length scales

Landau-Lifshitz-Gilbert (LLG) equations: Provides a detailed
description of the classical dynamics. It models both precession
and damping of spins given a local Hamiltonian for the magnet.
Drawbacks: Takes a long time to run making it difficult to
make real-world predictions.
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Even more "theoretical"

Monte Carlo and Langevin dynamics on Heisenberg models.
No precession is included but the vector nature remains.
Drawbacks: Still takes a while to run and has thrown away the
precession

Monte Carlo and Langevin dynamics on Ising and φ4 models.
The vector nature is now gone. Advantages: Runs fast

Cellular Automata models. Advantages: Runs real fast and
makes nice screensavers
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Justification for throwing away terms

“Universality”
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Universality does work very well for some situations. For example:

Equilibrium systems close to critical points.

Long polymer chains.

Some systems dynamical at the onset of chaos.

Some nonequilibrium systems having depinning transitions,
(e.g. charge density waves).
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Universality does work very well for some situations. For example:

Equilibrium systems close to critical points.

Long polymer chains.

Some systems dynamical at the onset of chaos.

Some nonequilibrium systems having depinning transitions,
(e.g. charge density waves).

Does it apply to hysteretic behavior in magnets?
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Further reasons/excuses

Sure it’s wrong but it will gives us insight into the real problem

It’s too complicated to do it right.
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Further reasons/excuses

Sure it’s wrong but it will gives us insight into the real problem

It’s too complicated to do it right.

For the next 5 minutes, I’ll take a departure from reality and consider

hysteresis in Ising spin glasses.
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Multicycle spin dynamics

Consider the 3d Edwards and spin glass Hamiltonian

H = −
∑

〈i,j〉
Ji,jSiSj − h

∑

i

Si.

The couplings Ji,j are uniform random numbers between ±1.

The spins Si = ± 1.

Free boundary conditions.
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Multicycle spin dynamics

Consider the 3d Edwards and spin glass Hamiltonian

H = −
∑

〈i,j〉
Ji,jSiSj − h

∑

i

Si.

The couplings Ji,j are uniform random numbers between ±1.

The spins Si = ± 1.

Free boundary conditions.

Use single spin-flip dynamics. At any step, we search for the next
value of h where a spin flip occurs. Once that happens we let any
subsequent avalanches occur before changing h again.
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Multicycle spin dynamics

Now we periodically cycle the field between hmin and hmax.
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Multicycle spin dynamics

Now we periodically cycle the field between hmin and hmax.
In steady state, the hysteresis loop takes more than one cycle to
close on itself.
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Power spectrum

The magnetization as a function of time in steady state shows
subharmonics. The power spectrum of M(t) has peaks at fractions
of the driving frequency. (Driving frequency = 1 below).
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Nanomagnetic pillar arrays

Ni nanomagnets on silicon1 Magnetic Force Microscopy
[1] Courtesy of Holger Schimdt. Fabricated by T.Savas MIT
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Nanomagnetic pillar arrays

Ni nanomagnets on silicon1 Magnetic Force Microscopy
[1] Courtesy of Holger Schimdt. Fabricated by T.Savas MIT

They can be fabricated to have a wide variety of shapes and sizes

Can such a system show multicycles?
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Modeling nanomagnetic pillars

These are single domain
nanomagnets where the crys-
talline orientation is random
in each pillar.
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Modeling nanomagnetic pillars

The LLG equation describes micromagnetic dynamics. It contains a
reactive term and a dissipative term:

ds

dt
= −γ1s×B− γ2s× (s×B),

s is a microscopic spin,

B is the local effective field,

γ1 is a precession coefficient, and

γ2 is a damping coefficient.

The effective field is B = −∂H/∂s + ζ, where H is the
Hamiltonian and ζ represents the effect of thermal noise.
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Hamiltonian

The Hamiltonian is the addition of four pieces due to:

The external field: −
∑

i

hsz,i

Crystalline anisotropy:

∑

i

[−K1

2
(α4

x,i + α4
y,i + α4

z,i) +K2α
2
x,iα

2
y,iα

2
z,i]

α’s are direction cosines relative to the crystalline axes.

Dipolar self energy, that is shape anisotropy: −
∑

i

dzs
2
z,i

Dipolar interactions between pillars:
∑

j 6=i
si · A(rij) · sj
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Results

We found that to get multi-cycles it was best to use a triangular
lattice. Here is a movie of a system showing two cycles.

Here part of the movie is in slow motion. showing details of
avalanches.

We tried a range of pillar radii, heights and separations. The
probability of observing a multicycle is as high as ∼ .6 This
provides a viable system for observing multicycle behavior.

It would also be interesting to pursue the possiblity of designing

these arrays to perform computation, by making celluar automota.
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Non-complementary major loops

The Hamlitonian is invariant under

si → −si, h→ −h

Therefore one expects that the major hysteresis loop shows the
same symmetry.
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The major hysteresis loop for this model is not complementary!
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Non-complementary major loops

If instead of using precessional dynamics (LLG eqns), we used the
Ising dynamics earlier described, it would be complementary.
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Non-complementary major loops

If instead of using precessional dynamics (LLG eqns), we used the
Ising dynamics earlier described, it would be complementary.

MISTAKE:

Leaving out the precessional nature
of the dynamics.
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Non-complementary major loops

If si → −si, h→ −h then the effective field B→ −B. Now

consider the LLG eqn:
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Non-complementary major loops

If si → −si, h→ −h then the effective field B→ −B. Now

consider the LLG eqn:

ds

dt
= −γ1s×B− γ2s× (s×B),

How does it change under inversion?
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Non-complementary major loops

If si → −si, h→ −h then the effective field B→ −B. Now

consider the LLG eqn:

ds

dt
= −γ1s×B− γ2s× (s×B),

Therefore the dynamics do not preserve spin inversion symmetry.

More fundamentally, this can also be seen from the fact that
although the Hamiltonian has spin inversion symmetry, the spin
commutation relations (e.g. [Sx, Sy] = i~Sz), change sign under
spin inversion.
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X-ray speckle in Co/Pt films

We’ll simulate the LLG equations with the following ingredients in
the Hamiltonian:

Assume the films are disordered but strongly anisotropic. The
easy axis is randomly oriented but strongly biased
perpendicular to the film.

Assume a long range dipolar interaction between points.

Assume a short range ferromagnetic coupling J + δi, where δi
is a random variable whose strength and statistics can be
adjusted.

The usual interaction with an external field hsz.
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Definition of RPM and CPM

The un-normalized covariance between two spin configurations is
defined as:

cov(i, j) = 〈si(r) · sj(r)〉r − 〈si(r)〉r · 〈si(r)〉r

The normalized covariance is ρ = cov(i, j)/
√
cov(i, i)cov(j, j)

Consider spin configurations at field h on leg i of a hysteresis loop.

The RPM normalized covariance is ρ(h, i;h, j), where i and j are
both legs going in the same direction.

The CPM normalized covariance is ρ(h, i;−h, j) where i and j are
legs going in opposite directions.
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M vs h

For a 128× 128 system:
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Real space RPM/CPM
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k-space RPM/CPM

With the analogous definition for ρ but substituting s for |ŝz(k)|2
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How robust is this?

If the temperature is too high, this effect goes away. The RPM/CPM

curves are non-zero but coalesce.
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Lowest temperature

T0 64× 64 system.
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Effect of bound disorder

The previous graphs had no disorder in the couplings, just in the
orientations of the easy axes. If we make the disorder large, the
RPM/CPM difference remains:
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Effect of orientational disorder

Earlier pictures had no disorder in the couplings, just in the
orientations of the easy axes. If we go back to no bound disorder but
crank up the orientational disorder by a factor of 10, a CPM/RPM
difference remains but it looks very different than the experiments:
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Extremely low temperature

An rpm/cpm difference similar to experiments
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Extremely low temperature

The same parameters but .001 of the temperature
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Example configuration
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Alternative theories

The alternative is a class of explanations that involve purely
relaxational dynamics (non-precessional) dynamics:

There are random fields in the film (E. Jagla). These break
spin-inversion symmetry, and therefore one expects a CPM/RPM
difference.

But what is the source of the random fields?

Large couplings between the spins that aren’t saturated even by the
highest external fields. This would seem hard to fit because the
experimental curves appear quite saturated.

However it can be done. Just a random field with 4% the spin-spin
coupling can produce results similar to the experiments.
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Conclusion

Are we confident that precessional dynamics are the source of the
CPM/RPM difference seen in the x-ray speckle experiments?
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Conclusion

Are we confident that precessional dynamics are the source of the
CPM/RPM difference seen in the x-ray speckle experiments?

Of course not!
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Possible Explanations

Random fields/(Strong couplings + unsaturated spins)
49.99999%

Precessional Dynamics
49.99999%

The experiment might be wrong

< .00002%
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