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The ‘conventional’ computational methods: expand wave function in basis set and/or discretize on large 
Eulerian grids.  These are excellent methods IF N < small number. The big drawback: rapid (approaching 
exponential) growth in computational effort with N. 
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General Goals in Quantum Dynamics 
1. Solve the time-dependent Schrodinger equation

2.   Analyze and interpret the solution

1( ,.. , 0)Nx x tΨ >Solve for the complex-valued wave function

1. Solve

2. Analyze and Interpret

Quantum trajectories lead to a computational framework for SOLVING the TDSE which is qualitatively 
different from the conventional approaches.  

Multi-dimensional and/or
Multi-particle system

Quantum trajectories provide a conceptual model which leads to ‘classical-like’ insights into ‘how’ 
quantum processes occur.   The resulting ‘pictures’ may lead to new algorithms for solving complicated 
physical problems. This has already started to occur!



Taxonomy of quantum trajectoriesTaxonomy of quantum trajectories

A.  A.  ANALYTIC… ANALYTIC… (Traditional view)(Traditional view) The The QTsQTs are run using an analytic or a preare run using an analytic or a pre--computed wave function, computed wave function, 
obtained by first solving the TDSE.   Primary use: analysis, insobtained by first solving the TDSE.   Primary use: analysis, insight, and interpretationight, and interpretation

B.  B.  SYNTHETIC… SYNTHETIC… The The QTsQTs and the wave function are generated simultaneously, ON THE FLY.and the wave function are generated simultaneously, ON THE FLY. The The 
QTsQTs are used to SOLVE the TDSE.   The Quantum Trajectory Method (19are used to SOLVE the TDSE.   The Quantum Trajectory Method (1999) was the first viable 99) was the first viable 
synthetic approach.  The various methods are now significantly bsynthetic approach.  The various methods are now significantly better.etter.

Types of Synthetic QTs…

A. Exact QTs generated by propagating an (large) ensemble of correlated ‘fluid elements’, 
using the exact equations of motion

B.  Approximate QTs propagated one-at-a-time (DPM), using approx. equations of motion 

Synthetic QTs may be…

A. Traditional Bohmian.. Lagrangian trajectories which move at the flow velocity 
of the probability fluid

B. Post-Bohmian.. Non-Lagrangian (ALE) trajectories.. Can be adaptive.. or non-
adaptive…  these trajectories form Designer Grids

And these can be run in…

A. Real-space, including Bohm and ALE type QTs running in real-valued phase space
B. Complex-space: trajectories running in complex-valued phase space 

Example: synthetic-approximate-Lagrangian-complex



The analytical approach to quantum trajectories

1. (The traditional viewpoint)  Given a pre-computed wave function, compute 
the velocity from the action function, then compute the trajectory.

2.  A new viewpoint: Given a sequence of (experimental or computed) slices    
of the density for a series of time steps, compute the quantum trajectories. 
This is the density sampling method, DSM. 
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Note: for a multi-particle system, these trajectories (and the wave function 
are running in abstract configuration space, not physical (x,y,z) space.   
Can we find quantum trajectories in the ‘reduced’ physical space?

Through the phase derivative, the wave function acts as a ‘pilot wave’, guiding the ‘particle’.
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N quantum trajectoriesM density slices

Note:  R determines the trajectories!

Note:  S determines the trajectories!



The two slit diffraction experiment

+ Density sampling method
- Exact Bohm trajectories

The Density Sampling Method

Tim Coffey
The wave function is NOT used as input. 
Phase information is NOT (directly)  
involved.
NO derivatives or integrals are evaluated.

There are no equations of motion!

Method is based upon random sampling 
of an input density.  

Is there any physics?

J. Phys. A 41, 335304 (2008)

From these ‘experimental’ Bohm trajectories, 
kinematic quantities can be determined
(velocity, acceleration)



Examples of the analytic approach to quantum trajectories

Bowman
kicked rotator, harmonic oscillator
classical limit of Bohmian mech.

Sanz and Miret-Artes
Collision of Gaussian wave packets (complex space)
Interference effects in collision of wave packets 

(Bohmian real space approach)

C. D. Yang
Stationary states / complex space:  
chaos, electron spin, square barrier tunneling 
Hydrogenic atoms 

Sanz and Miret-Artes
Atom-surface scattering
Formation of vortices

Chou and Wyatt
Stationary state scattering: Eckart barrier
Analysis of streamlines and vortices in
complex space

Sanz and Borondo
Bohmian view on decoherence

Sanz and Miret-Artes
Quantum carpets / Talbot effect

Sanz
Bohmian approach to quantum fractals

Chattaraj
Transition to chaos

Henon-Heiles + external field

Na and Wyatt
Analysis of scattering resonances



Routes to synthetic quantum trajectories..

TDSE traditional approach
space fixed (x,t) Eulerian coords. 
introduce large grids/basis sets

unfavorable scaling (exp.)

Quantum Hydrodynamic Equations (Bohmian mechanics)
Equations of motion for QTs in Lagrangian frame 
Quantum effects brought in by quantum potential Q 
Trajectories  x(t), p(t)

Quantum Trajectories
1.  Real space route: Amplitude/phase continuity, QHJE

Madelung, Bohm,…
2.  Complex space route: exp. form complex QHJE

Tannor, Wyatt,..
3.  Phase space/Wigner function/moments

Takabayasi, Burghardt, Hughes…

Post-Bohmian (Non-Lagrangian) frame
Designer grids, paths x(t)
Solve moving path transform of 

quantum hydrodynamic equations
Wyatt, Hughes, Kendrick,..

1. Floydian trajectories and QSHJE
2. Quantum equivalence principle and QSHJE

Faraggi and Matone
3. Bipolar counter-propagating wave method

Poirier,..  (recently extended to non-stat. states)
4. Analytic complex trajectories

John ,Yang, Chu and Wyatt, Sanz and Miret-Artes

Non-Stationary states
Stationary states



Uni-polar amplitude-phase ansatz for wave function (Madelung 1926):
( , ) / ( , ) ( , ) /( , ) ( , ) i S x t C x t i S x tx t R x t e e +Ψ = =h h

Later, we will introduce a BIPOLAR form for the total wave function
(B. Poirier, E. Floyd, A. Faraggi and E. Matone)

R (amplitude) and S (action function) are real-valued… and single-valued.

Substitute into the TDSE.. Then separate into two equations (real and imag. parts).
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Advantages?  Disadvantages?
of this form for the wave function

1.

2.

Flow velocity

The real-space route to quantum trajectories: Bohmian and post-Bohmian
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The Bohm quantum potential is given by
The NODE PROBLEM…

It can be dealt with!

Eulerian frame
Trajectories coming soon!

(This potential first appeared in eq. 3 in Madelung’s 1926 paper.  

The quantum force was explicitly identified in Kennard’s 1928 paper.)



So far.. Coupled system of PDEs
in the Eulerian frame

Viewpoints for solving hydrodynamic equations…

Eulerian Frame
Coordinate system fixed in 
space: Monitor watches the 
fluid go by

Lagrangian Frame
Monitor moves along
with the fluid velocity

‘go with the flow’

Intermediate Frame…ALE*
Monitor moves along
at ‘arbitrary’ velocity

Use fixed in space time deriv. Use the ‘moving’ time deriv.
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* Developed at Los Alamos for             
CFD in early ’70s
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Continuity

Trajectory for each ‘pseudo-particle’ or grid point is specified by 

Action

Slip velocityNew non-Lagrangian dynamical 
terms when r v≠

r r&
w r v= −
r r r&

quantum Lagrangian

EOM for quantum trajectories

In the ALE frame, an algorithm is used to specify the trajectory. 
It might be specified ‘in advance’, or adaptively ‘on the fly’.

Also note: spatial 1-st and 2-nd derivatives are needed; this is the ‘DERIVATIVE PROBLEM’

Equations of motion in the moving (ALE) frame

CR e=



Applications of real-space / Bohmian / ALE methodologies

Reaction dynamics and non-adiabiatic transitions
Garaschuk and Rassolov

approximate quantum force 2004
O+H2 reaction 2006 
Na+FH reaction 2008

Barrier Transmission / 2D

ALE / adaptive method

Kendrick ALE 2003

Mixed quantum-classical dynamics
Burghardt, Parlant, Hughes  2005-

Dynamics of rare gas clusters
Bittner, Maddox, Derrickson, 2003, 2007

Scattering resonances
Kendrick, Bittner, Derrickson 2005

Quantum trajectory approach to decoherence
Na and Wyatt

Hybrid QT / fixed grid method
moving boundary truncation method
O+H2, O+HD reactions
Pettey and Wyatt, 2008

N-dim model for reactive scattering
Kendrick 2004

Reactive scattering: multi-mode

up to 200 oscillators coupled to reaction coordinate

Babyuk, Wyatt 2006

Adaptive grids and ALE
Hughes, Wyatt 2002-2003



Complex-valued classical trajectories have been used for decades in semiclassical
approaches to barrier tunneling.   For example:

. Stine and Marcus (1972)Miller and George (1972-1973)

. Heller, Huber, and Littlejohn GGWPD (1987)

. Boiron and Lombardi (1998)

. de Aguiar and co-workers 

Studies based upon the analytical approach to complex valued quantum trajectories….

The wave function is known in advance of the trajectory propagation. These exact quantum trajectories 
are the generated from this wave function.    Why do this?   Analysis, insight, interpretation

. Moncy John, 2002:  harmonic oscillator, potential step

. C.-D. Yang, 2005-present: H atom eigen-trajectories, harmonic oscillator
rectangular barrier tunneling, double slit diffraction, electron spin

. Chou and Wyatt, 2006-present: potential steps (soft and hard), barriers
(Eckart and Gaussian), reflection-less potential, 

. Wyatt and Rowland, 2008: time-dependent scattering from Gaussian
and Eckart barriers

. Sanz and Miret-Artes, 2008: collision of two Gaussian wave packets

ComplexComplex--valued trajectories: valued trajectories: 
classical, analytic quantum, and synthetic quantumclassical, analytic quantum, and synthetic quantum



Quantum trajectories in complex spaceQuantum trajectories in complex space

Use Use QTsQTs to solve the to solve the complexcomplex--valued quantum Hamiltonvalued quantum Hamilton--Jacobi equationJacobi equation for the complex action for the complex action 
function, function, S(z,tS(z,t). These ). These QTsQTs propagate in complex phase space, with complex coordinates and propagate in complex phase space, with complex coordinates and momentamomenta..

The The quantum potentialquantum potential in this equation is NOT the same as the in this equation is NOT the same as the BohmBohm quantum potential.  quantum potential.  
Comparison of these potentials for barrier scattering: Rowland aComparison of these potentials for barrier scattering: Rowland and Wyatt, CPL, published onnd Wyatt, CPL, published on--line.line.

Synthetic approach using approximate quantum trajectories

Develop equations of motion for Develop equations of motion for approximate individual quantum trajectoriesapproximate individual quantum trajectories using theusing the
derivative propagation method (DPM).  Method originally developederivative propagation method (DPM).  Method originally developed for reald for real--valued valued BohmBohm type type QTsQTs::

C. Trahan, K. Hughes, R. Wyatt, J. Chem. Phys. 118, 9911 (2003).C. Trahan, K. Hughes, R. Wyatt, J. Chem. Phys. 118, 9911 (2003).

The idea:  Develop an infinite hierarchy of coupled The idea:  Develop an infinite hierarchy of coupled DEsDEs for S and its spatial derivatives evaluatedfor S and its spatial derivatives evaluated
along the trajectory.along the trajectory.

To make progress, truncate the infinite coupled system at some oTo make progress, truncate the infinite coupled system at some order.  The highest spatial derivativerder.  The highest spatial derivative
retained has order n. retained has order n. 

‘Regional non‘Regional non--locality’ is built in because locality’ is built in because somesome of the spatial derivatives of S are retained.  of the spatial derivatives of S are retained.  



J. Chem. Phys. 125, 231103 (2006)

The synthetic approach to approximate complex valued quantum traThe synthetic approach to approximate complex valued quantum trajectoriesjectories

J. Chem. Phys. 127, 197101(2007) comment by Sanz and Miret-Artes
J. Chem. Phys. 127, 197102(2007) reply to comment

Also..
Interference effects in reflected wave packet, 2007-8



Substitute into the time-dependent Schrodinger equation to obtain…

This is the quantum Hamilton-Jacobi equation in the Eulerian frame.   
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Define The complex-valued quantum potential, which explicitly brings in 
quantum effects 

QC is NOT the same as the Bohm quantum potential  QB
Example:  Gaussian wave packet 
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Usually neglected in semiclassical approaches

Ansatz: exponential form for the time-dependent wave function
( , ) /( , ) iS x tx t eψ = h

S  is the complex-valued quantum action function

Equations of motion for complex-valued QTs

Origin of complex-valued dynamics

complex  action S complex  momentum  p  complex  coordinate  z

( , )S z t ( , ) ( , ) /p z t S z t z= ∂ ∂ / ( , ) /dz dt p z t m=
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The quantum HJ equation
Notation for derivs.
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Take the x-derivative 

Another x-derivative

Keep going, do it n times

Next, convert to the moving frame  

Up coupling
to ‘higher terms’

n nonlinear 1-st order     
DEs for derivatives

How to approximately solve the QHJE using individual trajectories

Down-coupling
to lower terms

Now, start the DPM…(1)  take the spatial derivatives



(3) Truncation of the infinite hierarchy

Hard truncation: Set the ‘next two’ higher spatial derivs. to zero 1 20, 0n nS S+ +

Soft truncation: Put in approximations for

= =

In either case, we have a closed system of equations: 
(n+1) coupled DEs for the functions

0 1, ,... nS S S

(2) Convert these equations of motion to the moving frame

1 2,n nS S+ +

This leads to the ‘usual’ DPM (derivative propagation method)

For example, run a small cluster and compute                    from nS1 2,n nS S

This leads to CDPM (cluster derivative propagation method); David and Wyatt
+ +

,df f f dxv v
dt t x dt

∂ ∂
= + =
∂ ∂ The ‘observer’ moves at ‘arbitrary’ velocity v
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S+ + += + n=0,1,2,…This gives

However, we still have an infinite coupled hierarchy of equations.  What to do?

Special case: Lagrangian dynamics 1
1
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These are the equations of motion in the ALE frame (Los Alamos, early 1970s)
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Example: Truncate system at n = 2  

Equations of motion in the Eulerian frame

Now have 4 equations in the ALE frame

The result: complex classical trajectories
launched with quantum initial  conditions
and carrying approximate quantum phase
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In the Lagrangian frame
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Quantum Trajectories in Complex Space:
Current work, Developments, Problems, and Questions

Density, flux, and continuity equation in complex space
Poirier 2008,  Chou and Wyatt, 2008

The isochrone problem: find launch points for quantum trajectories
Can circumvent, but this doesn’t solve the problem

Why go complex?
What are the advantages?
Feasibility beyond a few degrees of freedom?
Does it overcome difficulties of running real valued QTs?

Beyond single approximate quantum trajectories:
Soft truncation of DPM, David-Wyatt 2008

Use of low-order approximate quantum trajectories to predict oscillatory 
structure and nodes: superimpose amplitudes carried by several trajectories
Tannor and co-workers

More developments on the next 3 overheads



The bipolar counter propagating wave method
Bill Poirier (with G. Parlant, C. Trahan, …)

Decomposition of the wave function
iS iSR e R eψ ψ ψ + −

+ − + −= + = +

Each component is smooth, slowly varying in space, and node and interference free, 
even when the total wave function is wildly oscillatory and loaded with nodes.

There are 6 papers in the BP-BP series:

1. Stationary bound states, 2004
2. Stationary scattering states for discontinuous potentials, 2006
3. Stationary scattering states for continuous potentials, 2006
4. Multi-potential surface dynamics, 2007

5. 1D wave packet dynamics, 2008 
6. Multi-dimensional wave packet dynamics, 2008

1D stationary states

Bipolar trajectories, running on two Langangian manifolds, are ‘classical like’ and well behaved.  

Original motivation: reconcile profound differences between semiclassical and Bohmian mechanics

fixed grid, no trajectories



This approach is based upon an equivalence postulate (similar in content to the equivalence principle of 
general relativity) rather than on the traditional Copenhagen axioms and interpretation of quantum 
mechanics. 

The EP states: all one particle systems can be connected by coordinate (point) transformations. 

The EP implies the QSHJE.  This quantum version of the Hamilton–Jacobi equation differs from the 
classical one by the presence of the quantum potential (a self energy, somewhat like a rest energy). 
The QSHJE implies the Schrödinger equation with normalization of the wave function, and thus quantization 
of energy, due to continuity conditions of the quantum potential. The theory, a work in progress, includes a 
trajectory description of quantum mechanics.   

The Equivalence Postulate and Quantum Mechanics

Review:  Int. J. Mod. Phys. 15, 1869 (2000)

Questions…
Extensions to multi-particle and/or multi-dimensional systems?
Non-stationary systems?  
Does the EP ‘imply’ the time dependent Schrodinger equation?

Alon Faraggi and Marco Matone, 1998-



Bohmian mechanics for the density matrix
Bittner, Burghardt, Durr, Goldstein, 

Connection of Bohmian mechanics
to WKB and semiclassical mechanics
Goldfarb, Schiff, Tannor
Sanz, Miret-Artes

Mixed quantum-classical dynamics
Burghardt, Bittner, Hughes..

Chaotic dynamics and transition to chaos
Durr, Goldstein; Wu, Sprung
Falsaperla, Fonte; Chattaraj

Quantum trajectories for the Wigner function
Rowland and Wyatt

Classical limit of Bohmian mechanics
Is there still confusion?
Bowman, Burghardt, …

New opportunities for you in Bohmian mechanics

Some Additional Research Areas Involving Quantum Trajectories

Applications to systems with high dimensionality

Aproximations to the quantum potential
Garaschuk and Rassolov



O. Choustova, Application of Bohmian mechanics to dynamics of prices of shares,
Int. J. Theor. Phys. 47, 252 (2008)

O. Choustova, Bohmian mechanism for financial processes,
J. Mod. Optics 51, 1111 (2004)

E. Haven, Pilot wave theory and financial option pricing, 
Int. J. Theor. Phys. 47, 252 (2008)

Dynamics of price trajectories (of stocks, options, etc) in price phase space
The information wave function evolves according to the financial Schrodinger equation
The quantum force becomes the ‘information force’ 

Bohmian brain mechanics: de Broglie Pilot-wave theory in cognitive psychology

A. Khrennikov, Classical and quantum mechanics of ideas on decision trees,
Biosystems, 56, 95 (2000).

A. Khrennikov, Quantum psychological model of the stock market, 2003

A. Khrennikov, Quantum-like brain: interference in minds
Biosystems, 84, 225 (2006).

Use your expertise in Bohmian mechanics to make $$$ !!



Now for…..

Thanks to Brian, Bill, and all of the participants
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