

THE BONSE-HART

USANS TECHNIQUE FOR NEUTRONS

Michael Agamalian^a and Irina Pozdnyakova^b

a) Oak Ridge National Laboratory, USA

^{b)} Lebedev Physics Institute, Russia

We present an overview of the most significant experimental and theoretical studies made in the past two decades, which resulted in adoption of the Bonse-Hart USAXS technique for neutrons.

Having over four orders of magnitude smaller absorption neutrons penetrate much deeper inside condensed matter revealing "internal" dynamical diffraction effects "invisible" for X-rays.

These effects have not been studied before more or less systematically, thus a serious experimental and theoretical research has been done to make performance of the USANS instrument comparable to its X-ray analog. Application of the Bonse-Hart USANS instruments clearly demonstrated a real breakthrough to the μ m-scale range of the neutron diffraction structural analysis. The new instrument extended a total dynamical Q-range of the neutron scattering by two orders of magnitude.

BEFORE 1996 THE USANS TECHNIQUE HAD LIMITED APPLICATION ONLY DUE TO THE LOW SIGNAL-TO-NOISE RATIO

THE USANS RESOLUTION WAS JUST "AS GOOD AS IT GETS" FROM THE DARWIN THEORY: $Q_{min} \approx 4\pi\delta\theta_D/\lambda \sim 2*10^{-5} \text{ Å}^{-1}$

THE BONS-HART DCD HAS PRACTICALLY THE SAME RESOLUTION, HOWEVER IMPROVES DRAMATICALLY THE SIGNAL-TO-NOISE RATIO

FHE DOUBLE-CRYSTAL PARALLEL BRAGG ARRANGMENT

U. BONSE & M.HART Cornell University, 1965

The best result obtained for Si(220): I(Q=1.7•10⁻⁴ Å⁻¹)/I(0) ~ 10⁻⁵

THE RESULTS OBTAINED BY U. BONSE & M. HART IN 1965 ARE BASED ON THE FOLLOWING THEORETICAL COSIDERATION OF THE ROCKING CURVE FROM A DCD WITH CHANNEL-CUT CRYSTALS

The rocking curve is a convolution:

$$\mathbf{R}(\Delta) = \int \mathbf{R}_{\mathbf{D}}^{\mathbf{n}}(\mathbf{y}) \cdot \mathbf{R}_{\mathbf{D}}^{\mathbf{m}}(\mathbf{y} + \Delta) \, \mathbf{d}\mathbf{y},$$

where **n** and **m** are the numbers of reflections in the monochromator and analyzer channel-cut crystals correspondingly and $R_D(y)$ is the Darwin reflectivity function:

$$R_{D}(y) = 1, |y| < 1,$$

$$\mathbf{R}_{\mathbf{D}}(\mathbf{y}) = \{|\mathbf{y}| - (\mathbf{y}^2 - 1)^{0.5}\}^2, |\mathbf{y}| > 1,$$

where $y = (\theta - \theta_B)/\delta\theta_D$, is deviation from the Bragg angle, θ_B , and $\delta\theta_D$ is the Darwin width. In case of X-rays the absorption effect has been taken into consideration.

X-RAY AND NEUTRON ROCKING CURVES The best results obtained before 1995

CONTAMINATION OF THE FRONT-FACE TRIPLE-BOUNCE REFLECTION WITH THE BACK-FACE SINGLE-BOUNCE REFLECTION WAS THE MAIN PROBLEM FOR THE USANS INSTRUMENTS. THIS EFFECT DOES NOT OCCUR IN USAXS DCDs DUE TO ABSORPTION OF X-RAYS IN Si

THE FIRST OBSERVATION OF BFRC (THE DINOSAUR -CAMEL)

T. Takahashi et al, J. Phys. Soc. Japan, 45, 1978

"TRANSMITTED" CAMEL? D. Schwahn *et al*, NIM, <u>A239</u>, 1985

Fig. 5. Observed asymmetry of the transmitted intensity behind the fifth reflection (see fig. 2).

OBSERVATION OF A "CAMEL-SHAPED" ROCKING CURVE AT THE HFIR "MEMORIAL" USANS INSTRUMENT

M. Agamalian et al, J. Appl. Cryst., (1997), 30, 345.

THE DARWIN SOLUTION CONSIDERS A VERY THICK CRYSTAL WITH NEGLIGIBLY SMALL ABSORPTION $(\mu_0 \approx 0; \mu t_0 >> 0)$

THE EWALD SOLUTION CONSIDERS A THICK CRYSTAL WITH ZERO ABSORPTION ($\mu_0 = 0$; $\mu t_0 = 0$)

The Darwin formula (Darwin, 1914):

 $\mathbf{R}_{\mathbf{D}}(\mathbf{y}) = \mathbf{1}, \qquad |\mathbf{y}| \le \mathbf{1}$

 $R_D(y) = [|y| - (y^2 - 1) 0.5]^2, |y| > 1$

The Ewald formula (Ewald, 1917):

 $\mathbf{R}_{\mathbf{E}}(\mathbf{y}) = \mathbf{1}, \qquad |\mathbf{y}| \le \mathbf{1}$

 $R_E(y) = 1 - (1 - y - 2) 0.5,$ |y| > 1

RELATIONSHIP BETWEEN THE DARWIN & EWALD FORMULAS T. Takahashi *et al*, Phys. Lett., (1995) A200, 73.

This has been recently studied both theoretically and experimentally (Takahashi & Hashimoto, 1995, Phys.Lett., A200, 73.) and shown that for a transparent thick crystal (when the crystal thickness is much larger than the coherence length of neutrons) the Darwin formula gives the reflectivity only from the front-face, while the Ewald equation describes the total Bragg reflection from the front-and back-faces. Therefore, the simple relation between the **R**E(y) and **R**D(y) reflectivity functions can be written by the series:

 $R_E(y) = R_D(y) + [1 - R_D(y)]^2 R_D(y) [1 + R_D(y)^2 + R_D(y)^4 + ...] =$

= 2RD(y) / [1 + RD(y)]

where the term $[1 - RD(y)]^2RD(y)$ corresponds to the first back-face reflection.

EXPERIMENTAL PROF OF THE TAKAHASHI THEORY

T. Takahashi et al, Phys. Lett., (1995) A200, 73.

A "DARWIN-MINYS-EWALD" MODEL BASED ON THE TAKAHASHI THEORY, WHICH HAS BEEN ORIGINALLY USED TO FIT THE EXPERIMENTAL BFRC

M. Agamalian et al, J. Appl. Cryst., (1998), 31, 235

THE EXPERIMENTAL BFRC FITTED TO THE "DARWIN-MINYS-EWALD" MODEL (solid and dotted lines are calculated for the triple- and single-bounce monochromators correspondingly)

THE CLASSICAL EWALD AND DARWIN THEORIES DO NOT EXPLAIN THE EXPERIMENTALLY OBSERVED ASSYMETRY OF THE BFRC AND THE INTERNAL DIFFRACTION PEAK M. Agamalian *et al*, J. Appl. Cryst., (1998), 31, 235

SCANNING 1.8 mm DETECTOR SLIT

BACK-FACE (0-4-5) & GARLAND (0-1, 0-2, 0-3) TRAJECTORIES INSIDE A LIGHTLY DEFORMED CRYSTAL SHOULD BE CONSIDERED TO EXPLAIN THE OBSERVED DYNAMICAL DIFFRACTION EFFECTS M. Agamalian *et al*, Phys. Rev. B, (2001), 64, 161402(R)

THE CALCULATED BACK-FACE (4-4) & GARLAND (1, 2, 3) REFLECTIONS FROM A LIGHTLY DEFORMED CRYSTAL

M. Agamalian et al, Phys. Rev. B, (2001), 64, 161402(R)

THE EXPERIMENTAL (7) & THEORETICAL BFRC OBTAINED FOR THE Si CRYSTAL, WHICH IS LIGHTLY DEFORMED WITH THE DEPOSITED THIN NI FILM

M. Agamalian et al, Phys. Rev. B, (2001), 64, 161402(R)

THE EXPERIMENTAL (6) & THEORETICAL GARLAND REFLECTIONS OBTAINED FOR A LIGHTLY DEFORMED Si CRYSTAL

M. Agamalian et al, Phys. Rev. B, (2001), 64, 161402(R)

PARASITIS SCATTERING FROM A TRIPLE-BOUNCE Si CRYSTAL

X-RAY (2) AND NEUTRON (1, 3) ROCKING CURVES AFTER BLOCKING THE SINGLE-BOUNCE BACK-FACE REFLECTION (1) AND REDUCING THE SURFACE-INDUCED SCATTERING (2) M. Agamalian *et al*, J. Appl. Cryst., (1998), 31, 235

"10⁻⁶ QUALITY" ROCKING CURVES WERE OBTAINED ON Si(111) and Si(220) CRYSTALS

COMPARISON OF THE USAXS AND USANS ROCKING CURVES IN Q-SPACE

EVOLUTION OF THE USANS ROCKING CURVES

IN 1996 ORNL SECURITY BUSTED CAMELS AND PUT THEM BEHIND CADMIUM BARS... AND THE μm MILLENIUM BEGAN

THE SIGNAL-TO-NOISE RATIO OF USANS INSTRUMENTS HAS BEEN INCREASED BY THREE ORDERS OF MAGNITUDE THAT LEADS TO NEW SCIENCE MICROMETRIC SCALE NEUTRON DIFFRACTION STRUCTURAL ANALYSIS

Whenever you invent a method ten or a hundred times better than the existing ones, you can be sure that this will lead to new science.

H. Meier-Leibnitz

INSTRUMENT PERFORMANCE THE USANS INSTRUMENT AT NIST IS TAKEN AS AN EXAPLE

Dynamical Q-range: Dynamical I-range: Q-resolution: Flux at Sample: Max Sample Size: 2*10⁻⁵ Å⁻¹ to ~ 0.01 Å⁻¹ six orders of magnitude $Q_{min} \approx 4\pi\delta\theta_D/\lambda \sim 2*10^{-5}$ Å⁻¹ <3,000 n/cm²sec 4 cm wide x 5 cm high

DIFFERENT DESIGN OF CHANNEL-CUT CRYSTALS

ORIGINAL "MEMORIAL" DESIGN OF THE TRIPLE-BOUNCE CHANNEL-CUT CRYSTAL WITH AN ADDITIONAL GROOVE FOR CADMIUM ABSORBER (ORNL)

CADMIUM-FREE DESIGN OF THE TRIPLE-BOUNCE CHANNEL-CUT CRYSTAL WITHOUT THE "CAMEL CAVE" (ILL)

STRESS-FREE DESIGN OF THE TRIPLE-BOUNCE CHANNEL-CUT CRYSTAL (NIST)

EVOLUTION OF THE INTENSITY AT SAMPLE POSITION

ORNL "MEMORIAL" USANS: ~ 800 n/cm²sec

NIST USANS:

~ 3000 n/cm²sec (focus)

ILL USANS:

 $\sim 5000 \text{ n/cm}^2 \text{sec}$

PROPOSED ORNL USANS (Monte-Carlo simulation): $\sim 40000 \text{ n/cm}^2 \text{sec}$ (focus)

THE NEXT GENERATION OF USANS: A "TIME-OF-FLYING" CAMEL

