Measurement Techniques for Multiagent Systems

Robert N. Lass, Evan A. Sultanik, William C. Regli
Drexel University
Department of Computer Science
College of Engineering
3141 Chestnut Street
Philadelphia, PA 19104

{urlass, eas28, regli}@cs.drexel.edu

ABSTRACT

Multiagent Systems (MAS) are a software paradigm for build-
ing large scale intelligent distributed systems. Increasingly,
these systems are being deployed on handheld computing
devices, or on non-traditional networks such as mobile ad-
hoc networks and satellite links. These systems present new
challenges for computer scientists in describing the perfor-
mance of a system and analyzing competing systems. This
paper surveys existing metrics that can be used to describe
MASes and related components, and provides a framework
for analyzing MASes with a case study using DCOPolis, a
distributed constraint reasoning system.

1. INTRODUCTION

An agent is a situated computational process with one
or more of the following properties: autonomy, pro-activity
and interactivity. A multiagent system (MAS) is a system
with one or more agents. MASes are a software paradigm
for building large scale intelligent distributed systems. In-
creasingly, these systems are being deployed on handheld
computing devices, or on non-traditional networks such as
mobile ad-hoc networks and satellite links. These systems
present new challenges for computer scientists in describ-
ing the performance of a system and analyzing competing
systems.

Much of the research in this area is entirely theoretical,
in the sense that no examples of large-scale systems of this
type exist. As a result, most work utilizes simulators or met-
rics that have not been validated against real-world results.
Furthermore, there is a lack of standard terminology or even
an agreed upon set of functions that a MAS must provide.
Hopefully the recently published Agent Systems Reference
Model [7] will provide this in the same way that the OSI
reference model has for the field of computer networking.

This is not to say that the simulators or metrics have
no value. So many variables exist that comparing a fielded
system of this type against another fielded system is not
a straightforward task. In some cases the researchers may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PerMIS 08 August 19-21, 2008, Gaithersburg, MD, USA

Copyright 2008 ACM 978-1-60558-293-1 ...$5.00.

135

not even have access to hardware or enough experience to
successfully run experiments with real systems [43].

Problems with current methods of evaluating decentral-
ized systems are discussed at length in [23]. Specifically, the
authors claim that current practices have a tendency to be
inappropriately generalized, to use technically inappropri-
ate but “standard” evaluation techniques, and to focus too
heavily on feasible systems. Generalization is caused by only
evaluating the performance of the system in a small portion
of the environmental and workload space. Standard evalua-
tion techniques bias research towards systems that perform
well with regard to those techniques. The difficulty of estab-
lishing new methods may cause systems to be evaluated at
points that are not commensurate with their intended use.
As a result of these three points, research may become os-
sified: increasing the difficulty of making new discoveries.
Lastly, the authors discuss robustness: focusing on a few
evaluation points may not uncover behavior that may occur
in a more dynamic environment.

The main contributions of this paper are a procedure
for developing and testing frameworks and procedures for
MASes to avoid these problems, and to present results from
an example application of this procedure to a framework for
distributed constraint optimization. As advocated in [23],
the framework separates the implementation of the algo-
rithms being studied from the platform (simulator, real 802.11
network, etc.) to allow code to be written once and then
tested in the simulator or run as part of a real system. The
latter also allows the simulation data, as well as algorithm
metrics to be verified.

2. MULTIAGENT SYSTEM MODEL

Models describe relationships between components of a
system to facilitate reasoning about the system. Many ab-
stract models of MASes have been written. In this paper,
we use the model derived in the Agent Systems Reference
Model (ASRM), and classify metrics based on the layer of
this model to which they are applied. We believe that this
model is more relevant than others for applied researchers
because the various components of the model were informed
by reverse engineering of existing multiagent systems, rather
than theories about how multiagent systems ought to op-
erate. In addition, the ASRM was not written by a single
research group, but a collection of people from industry, gov-
ernment and academia.

2.1 Abstract Model of a MAS

An abstract representation of a MAS is shown in Fig. 1,

and is taken from the Agent Systems Reference Model (ASRM) [7].

At the top of the diagram are agents, represented as tri-
angles. Conceptually, an agent is a process with a sensor
interface that determines the state of the world. It gives
information about the world to a controller, performs some
computation, and may result in the effector taking some ac-
tion to modify the world. A thermostat could be taken as
simple example: the sensor consists of a thermometer, the
controller decides whether or not to turn the air-conditioner
or heater on, and the effector is the air conditioner or heater
interface.

The agent is supported by an agent framework. An agent
framework is the software components that support agent
execution. In some agent systems, the agent framework may
be trivial, if the agents run natively on the platform (as op-
posed to in a virtual machine or some other local execution
environment). Most agent systems, however, are based on a
framework that supports key functionality agents commonly
use, such as services for migration, agent messaging, and
matchmaking. Examples of such systems are JADE [27],
Cougaar [14], and A-Globe [22].

Under the framework is the platform. The platform con-
sists of all non-agent software present, such as the operat-
ing system, databases, networking software or window man-
agers. As depicted in Figure 1, each platform may have
multiple frameworks on top.

The platform executes on a computing device, or a host.
This is the physical computing platform on which the soft-
ware is executing. A host may have multiple platforms ex-
ecuting on it. These hosts are distributed in the physical
world, which is the bottom layer in the figure.

To summarize, measurement can take place at four lay-
ers in the model: agent, framework, platform, and environ-
ment/host. In addition, system measurements that cover
the whole system (i.e. all of the components functioning to-
gether) can be taken. Within each of these layers, there
are different levels and classifications of components to be
measured, such as:

e Framework: The OSI [52] layer 7 application pro-
tocol could be analyzed, the memory footprint, cpu
usage, and other framework related metrics.

e Platform: Except for in the trivial case where the
agents run directly on the platform, the OSI [52] layers
2—6 occur within the platform. Measurement could oc-
cur at any of these levels. This means the performance
of 802.11, Internet Protocol (IP), Transmission Con-
trol Protocol (TCP), Session Initiation Protocol (SIP),
and Secure Sockets Layer (SSL) may all be measured,
each of which is at a different OSI layer.

e Environment: This layer is primarily composed of
the OSI layer one.

3. METRICS SURVEY
3.1 Meta-Metrics

There are a number of types of metrics that can be applied
at each layer of the model. They are generally classified
based on their purpose, or based on the domain of the values
they may take on.

136

-
Agents T
o ©
<
Framework s
Instantiation ~
S
=3
°5
& —
—
[T
s
Host Lo 5
s ©
8 5
o
__d—l
S =
7]
€ 0o
c T
[
S
Z®
L

Figure 1: An abstract representation of a multia-
gent system. This diagram shows all of the differ-
ent agents, frameworks, platforms (along with their
non-agent software), and hosts needed to deliver the
functionality of the system. Different colored cir-
cles represent different types of frameworks. The
framework layer links show the logical connections
that exist between hosts, the platform layer shows
the communications connections that exist between
hosts, and the environment layer shows the state
of the physical medium (in this case, radio signals)
used for communications between hosts.

3.1.1 Effectiveness vs Performance

Measures of Effectiveness (MoE) quantify the system’s
ability to complete its task in a given environment. In some
cases this could be a binary value (the system succeeds or it
fails) while in other cases it could be a range of values (the
system saved 2% of the hostages).

Measures of Performance (MoP) are quantitative mea-
sures of some system characteristic, such as bandwidth re-
quired, power consumed, communications range or time to
perform some task. They do not describe the quality of the
solution, but the quality of obtaining the solution.

Often, these two types of measures will be combined to
say something about the performance required to achieve a
level of effectiveness with a system. For example, one might
produce a graph showing the trade off between time and
solution quality for a certain system.

3.1.2 Data Classification

The most widely adopted method of data classification di-
vides data into one of four different categories [47]. Nominal
measurements are labels that are assigned to data. Ordinal
measurements are rankings; greater than and less than can
be applied to the measurements, but meaningful arithmetic
transformations are not possible. Interval measurements are
also numbers, but the difference between them has meaning.
Ratio measurements are the same as interval measurements,
except that there is a known zero point.

3.2 Agents and Frameworks

An agent is a situated computational process, and for our
purposes agents are the components that achieve the de-
sired functionality of the system at the highest level. The
framework is a part of the system that provides functional-
ity to the agents. Depending on the system, due to the way
in which agents and frameworks are differentiated, metrics
that are relevant for the agents in one system may be rel-
evant to the framework in another system, and wvice versa.
Therefore, such metrics are categorized together herein.

A method for comparing ontology matching algorithms
that is compatible with the accepted criteria of recall and
precision is proposed in [17]. The author states that this is
more accurate as it takes into account semantics, not just
syntax.

Quantifiable measures for autonomy are described in [5].
The autonomy metric is a number between 0 and 1, and is
always defined with respect to a goal and an agent. The
number is calculated by determining the percentage of de-
cisions that are made by the agent to reach the goal. For
example, consider an agent a; working to achieve goal gi. If
one out of every four decisions used to reach g1 were made
by a1, the autonomy metric with respect to a1 and g; is 0.25.
If the agents vote on decisions, then the metric is the weight
that this agents vote has on the final decision. For exam-
ple, if five agents each cast votes of equal weight for each
decision, each agent’s autonomy metric is 0.2.

For conflict resolution, metrics such as those used by the
distributed constraint reasoning community may be used.
Cycle-based runtime (CBR) [16], NCCC [36] and ENCCC [42]
are three popular metrics based on logical clocks that may
be extended to measure virtually any asynchronous decision
process.

3.3 Platform

137

3.3.1 Distributed Systems

Many MAS are distributed systems, and it follows that
techniques for analyzing distributed systems can be applied
to MAS analysis. Hollingsworth summarized metrics [25]
and techniques for evaluating the performance of distributed
systems [24]. Lynch gives an overview of many widely used
distributed algorithms, along with their analysis in [34]. The
reader is referred to these three publications.

3.3.2 Networking

Networking is major component of most realistic MASes,
and very diverse and active research in networking metrics is
ongoing. First is a brief overview of two types of networking
metrics, connectivity and capacity, followed by a discussion
of MANETS.

Connectivity.

Connectivity refers to the state of the communications
links between computers in a network. Often, this is repre-
sented as a graph with the nodes representing the computers
and the edges representing communications links. If a com-
puter can communicate with another computer, there is a
communications link between them.

The volatility of these links depends on the type of net-
work. On traditional wired networks, the communications
links between computers are relatively static. On a MANET,
the links between nodes change as the nodes move spatially.

The performance of the network at OSI layer three, specif-
ically the routing protocol, is also critical. In [28], three dif-
ferent ad-hoc routing protocols are each tested under three
different scenarios. In these experiments, the scenarios dif-
fered in terms of the network load.

Capacity.

There are several ways of measuring cross-layer network
performance. First, by using a program such as netperf [29],
throughput can be measured for a given network topology
and configuration.

MANET.

Various metrics specifically for evaluating MANETS are
described by [15], mainly at the four lowest layers of the
OSI model. End-to-end throughput and delay, route acqui-
sition time, percentage out-of-order delivery and efficiency.
The latter is a general term describing the overhead involved
in sending data. Three example efficiency ratios are given:
bits transmitted to bits delivered, control bits transmitted
to data bits delivered and control and data packets trans-
mitted to data packets delivered. It also describes different
contexts under which a MANET may operate. These con-
texts include network size, connectivity, topological rate of
change, link capacity, fraction of unidirectional links, traffic
patterns, mobility and the fraction and frequency of sleep-
ing nodes. When evaluating the performance of a MANET
system, it is important to note the context under which the
researcher performs the evaluation.

3.4 Environment/ Host

These metrics describe some aspect of the environment in
which the system was tested are environmental measures.
In the case of a robot, this might be the physical world. In
the case of a software agent, this is the services, users, and
other agents with which it interacts.

In [1], the quantification of the complexity of a test envi-
ronment is proposed. The intent is to allow one to measure
the task performance of an agent with respect to the tests’
complexities. A more specific example of the complexity of
a test environment is given in [38], which describes three
metrics for describing the “traverseability” of terrain by a
robot. Two are for roughness and one is for “crossability.”

Since humans can be part of the environment in which
agents operate, it may be useful to describe the level of
interaction agent(s) have with them. A classification sys-
tem for autonomous systems is proposed in [26], based on
the complexity of the mission, independence from humans
and difficulty of the operational environment. Terms and
other metrics for autonomous systems are also defined in
this work.

3.5 System

System metrics are overall metrics that measure some-
thing about the system as a whole. When comparing dif-
ferent systems for a task, often the evaluator wants a brief
summary they can present to others on the overall perfor-
mance or effectiveness of the system, making these metrics
some of the most relevant.

An approach to evaluating performance in surveillance
systems is presented in [20], along with domain specific met-
rics are also proposed.

There is much research in the literature on evaluating the
effectiveness of robots, which have many similarities with
MAS. A brief overview of metrics related to human-robot
interaction is provided by [46]. The robots’ performance
usually cannot be measured in terms of optimality, as they
have to deal with a messy environment, making it difficult
to objectively assess them. Often this means that the robots
are given a number of tasks that are taken to be representa-
tive and evaluated based on how well they are able to com-
plete these tasks. For example, [4] deals with autonomous
robots in a disaster scenario. The authors propose metrics
that award points based on how well the robots are able to
map their environment and find disaster victims. In a hybrid
human-robot system, one method of analysis is to measure
the effect of the robot on the human user’s effectiveness at
a task [9]. Other works on evaluating human-robot interac-
tion include [21], which presents a framework for evaluating
performance and testing procedures for human-robot teams,
and [39] which evaluates a number of metrics for how well
robots help humans complete tasks.

Another human-machine hybrid system is the integrated
automobile crash warning system, presented in [18]. Three
metrics describing effectiveness were given based on the warn-
ings the system gave: percent true, percent false and per-
cent missed. A measure of performance (see next section)
was also used describing how far before an area of danger a
driver will be able to stop.

A discussion of endurance testing for robots and a recom-
mendation for all safety, security and rescue (SSR) robots to
undergo endurance testing is given in [31]. Using WEKA[50],
statistical analysis was performed on the failure data col-
lected to determine the causes of fault.

The results of a long term experimental use of robots in a
joint effort between Swedish academic and military organiza-
tions was described in [33]. It included a qualitative analysis
of the users attitude towards the robots before, during and
after the study.

138

When the optimal or actual solution is known, one way
to evaluate effectiveness is to compare the optimal or actual
solution to the solution produced by the MAS. In [19], the
authors present a new approach to analysis of road recog-
nition algorithms. In this approach, the feature extraction
results are compared to actual features from a National In-
stitute of Standards and Technology (NIST) database. The
feature search trees were also used to describe the computa-
tional complexity of the search.

When it’s not clear what the optimal solution is, or when
there are many ways to describe the effectiveness of the sys-
tem’s solution, several metrics may be needed. In [45], the
experimenters set up a slalom course, and wanted to mea-
sure the performance of a hybrid human-robot system at
navigating the course. There is no single metric that de-
scribes how well the system performed, so a number of per-
formance measures were recorded such as time to navigate
the course, gates passed through, symbols seen, and the re-
sults of a human user’s survey. The latter covered efficiency,
effectiveness and user satisfaction.

Some of this work is more general. For example, in [30],
the authors proposes a general effectiveness metric P =
A — B, where A is the success metric, B is the failure met-
ric and P is the combined performance metric. This type
of metric works with a wide variety of systems that have
some notion of success and failure. Similarly, in [11], the
authors proposes an information theoretic metric for evalu-
ating the quality of the amount of information processed by
an intelligent system.

If a single performance metric is desired, a number of met-
rics can be combined. In [49], the authors propose a number
of performance metrics for the Mars Rover and a formula for
generating a composite performance score. The scores are
combined using a technique inspired by information theory,
described in [41].

A definition of performance, scalability and stability in
terms of multiagent systems, and an example of analyzing
a MAS for these factors is presented in [32]. In general,
performance is computational cost and throughput (compu-
tational complexity and message complexity), scalability is
the rate at which the overhead increases as the agent popu-
lation increases, and stability is whether or not there is an
equilibrium point that the system will return to after per-
turbations. An example of analyzing these factors is given
for a MAS that solves a standard contract net [44] problem.

In many cases, a number of different metrics are needed
to get a sense of the performance of the system. An exam-
ple of this is [13], which investigates benchmarks for UGVs
in terms of reconfiguration, communications and adaptation
and learning. Another is [8], in which four metrics (2 MOE,
2 MOP) are used to evaluate an algorithm for transforming
disparate data sets to a common coordinate system: conver-
gence (MOP), speed (MOP), translation error (MOE) and
rotation error (MOE).

4. ANALYSIS FRAMEWORK FOR MULTI-
AGENT SYSTEMS

This section presents a framework for applying these met-
rics to a decision making task. There are three main compo-
nents: selection, collection, and application. First the eval-
uator decides which metrics to use, which must be grounded
in some overall goal for the system. Next, the metrics are

collected by performing experiments. Finally, the metrics
are applied to the original goals to determine if the system
meets the goal or perhaps if one system performs better than
another.

4.1 Selection

There are an infinite number of metrics that could be ap-
plied to a system, and an infinite number of ways to apply
them. How does a researcher go about deciding which met-
rics need to be measured for his or her system?

The Goal, Question, Metric (GQM) [6] approach for evalu-
ation was developed during a series of projects at the NASA
Software Engineering Lab. This technique is intended to
provide a focus to investigation and evaluation of systems.

In this approach the evaluator first chooses goals for differ-
ent products, processes, and / or resources. There are four
parts to a goal: the purpose, the issue, the object and the
viewpoint. The example given in [6] is “Improve (purpose)
the timeliness of (issue) change request processing (object)
from the managers viewpoint (viewpoint).”

Next, the evaluator selects questions, usually with quan-
tifiable answers, that must to be answered to understand if
the system meets the goal. Each goal may need multiple
questions.

Finally, the metric is a set of data associated with the
questions that can be subjective (depends on the point of
view, such as ease of use of a UI) or objective (independent
of the point of view, such as program size). This data is used
to answer the questions, which in turn informs the evaluator
about the goals.

As an example scenario to illustrate how the GQM ap-
proach works, consider evaluating two systems for solving
a Distributed Constraint Reasoning (DCR) problem [51] on
a MANET. First, we must decide on a goal, such as “Se-
lect (purpose) the system (object) providing the lowest av-
erage runtime in a bandwidth constrained environment (is-
sue) from the point of view of the last agent to converge on
a solution (viewpoint).” There is still some fuzziness to the
statement, but the scope is narrower. For example, this goal
is not concerned with the networking cost of a system, the
amount of information an algorithm leaks to other agents,
or memory utilization. There are usually multiple goals in a
real evaluation, but for the rest of this example we will only
look at this single goal.

The next step is to select questions that allow to charac-
terize the object with respect to the goal, such as “How long
does the system take to converge with test data A?” “How
long does the system take to converge with test data B?”

Alternatively, there may be metrics or tests that are com-
monly used in the domain in which the system operates.
For example, [31], describes a specific type of test that the
authors recommend performing on a certain class of robots.

4.2 Collection

From the questions chosen in the previous section we need
to select a set of metrics to collect that will allow us to
answer them. In the example questions we selected we were
only concerned with time to completion. So, we need to
collect runtime information for the system. This could be
a sophisticated solution, such as instrumenting the code to
record timing information, or it could be something more
informal such as having the user time it with a stopwatch.

Papers describing practices for conducting research, meth-

139

ods for analyzing data are classified here as “empirical meth-
ods.” Some of them are general, such as [3] which provides
some “rules of thumb” to keep in mind when comparing al-
gorithms, and an example of the application of each of those
rules. One widely cited resource for empirical methods for
MASes is [12].

4.3 Application

In our example scenario, we asked the questions “How
long does the system take to converge with test data A?”
and “How long does the system take to converge with the
test data B?” to help us meet the goal "Select the system
providing the lowest average runtime from the point of view
of the last agent to converge on a solution.” Al, all that is
left is to compare the runtime of each system to determine
which is the lowest. If the runtime using both sets of test
data is lower for one system, clearly that is the system to
select. If one system has a lower runtime for test data A
and another has a lower runtime for test data B, then we
have to either decide which data set is most similar to the
use the system will see once deployed, or we need to create
new goals and re-assess the system.

5. CASE STUDY: DCOPOLIS

A large class of multiagent coordination and distributed
resource allocation problems can be modeled as distributed
constraint reasoning (DCR) problems. DCR has generated a
lot of interest in the constraint programming community and
a number of algorithms have been developed to solve DCR
problems [37, 35, 40, 10]. A formal treatment of DCOP is
outside of the scope of this paper, and the reader is referred
to [61] for an introduction to the topic.

Informally, DCR is a method for agents to collaboratively
solve constraint reasoning problems distributedly with only
local information. The four main components of a DCR
problem are variables, domains, agents and constraints. Each
agent has a set of variables, to which it must assign values.
Each variable has an associated domain, which is the set of
all possible value assignments to the variable. Constraints
are a set of functions that specify the cost of any set of
partial variable assignments. Finally, each agent is assigned
one or more variables for which it is responsible for value as-
signment. DCOP algorithms work by exchanging messages
between agents, who give each other just enough informa-
tion to allow each agent to make a globally optimal variable
assignment.

DCOPolis [48] is a framework for comparing and deploying
DCR software in heterogeneous environments. DCOPolis
has three key points:

1. The communications platform, DCR algorithm, and
problems instances are all modular and may be swapped
for a truly comprehensive analysis of algorithmic per-
formance;

2. DCOPolis contributes to comparative analysis of DCR
algorithms by allowing different state-of-the-art algo-
rithms to run in the same simulator under the same
conditions or to be deployed on “real” hardware in
“real” scenarios; and

3. DCOPolis introduces a new form of distributed algo-
rithm simulation that shows promise of accurate pre-
diction of real-world runtime.

DCOPolis has three primary abstract components: prob-

lems, algorithms, and platforms. The main function of DCOPo-

lis is to provide an interface through which the three com-
ponents can interact. By writing a new instance of any of
these components that properly adheres to DCOPolis’ API,
any algorithm should be able to solve any instance of any
problem while running on any platform—even without prior
knowledge of such. This makes implementation and testing
of new algorithms and platforms trivial.

In keeping with the example given in Section 4 (“Select
(purpose) the system (object) providing the lowest aver-
age runtime in a bandwidth constrained environment (is-
sue) from the point of view of the last agent to converge
on a solution (viewpoint).”), let us apply the framework to
DCOPolis running two different algorithms.

e Agent: DCOPolis agents are instantiated with a lo-
cal view of the problem and then assign values to their
variables, send messages to other agents, and change
the assigned values based on the messages they re-
ceived from other agents. Here, we need to record the
time each agent takes to converge upon a solution.

e Framework: In this case, the framework is what the
ASRM refers to as a “NULL framework.” The func-
tionality is contained within the agents, which inter-
act directly with the platform through the Java Virtual
Machine. There is nothing to be measured here.

e Platform: Any of the metrics in Section 3.3.2 can
measure the performance of the network at the plat-
form layer. Then an estimation of the system’s per-
formance were the bandwidth to drop below our test
environment’s could be made. Also at this level, the
metric in [2] could also be used to determine which
bottlenecks could be optimized, if we were interested
in improving as well as comparing the systems.

e Environment: Our goal stated that we must be con-
cerned with bandwidth constrained environment. The
main thing to measure here is available bandwidth.

6. CONCLUSION

MAS are complicated systems made up a number of inter-
connected components. Measuring these systems presents
new challenges, especially when these systems are deployed
in dynamic environments such as mobile ad-hoc networks.
This paper surveyed a number of metrics that can be used to
measure these types of systems, as well as a general frame-
work for analyzing M ASes and its application to an example
MAS, DCOPolis.

7. REFERENCES

[1] Michael L. Anderson. A flexible approach to
quantifying various dimensions of environmental
complexity. In 2004 Performance Metrics for
Intelligent Systems Workshop, 2004.

Thomas E. Anderson and Edward D. Lazowska.
Quartz: a tool for tuning parallel program
performance. In Proceedings of the 1990 ACM
SIGMETRICS conference on measurement and
modeling of computer systems, pages 115 — 125, New
York, NY, USA, 1990. ACM Press.

140

[3] S. Balakirsky and T. R. Kramer. Comparing
algorithms: Rules of thumb and an example. In 200/
Performance Metrics for Intelligent Systems
Workshop, 2004.

S. Balakirsky, C. Scrapper, S. Carpin, and M. Lewis.
Usarsim: Providing a framework for multi-robot
performance evaluation. In 2006 Performance Metrics
for Intelligent Systems Workshop, 2006.

KS Barber and CE Martin. Agent autonomy:
Specification, measurement, and dynamic adjustment.
Proceedings of the Autonomy Control Software
Workshop at Autonomous Agents (Agents2019 99),
pages 8-15, 1999.

V. Basili, G. Caldiera, , and H.D. Rombach. The Goal
Question Metric Approach, pages 528-532. John Wiley
and Sons, Inc., 1994.

Brandon Bloom, Christopher J. Dugan, Tedd Gimber,
Bernard Goren, Andrew Hight, Moshe Kam,

Joseph B. Kopena, Robert N. Lass, Israel Mayk,
Spiros Mancoridis, Pragnesh Jay Modi, William M.
Mongan, William C. Regli, Randy Reitmeyer, Jeff K.
Salvage, Evan A. Sultanik, and Todd Urness. Agent
Systems Reference Model. Drexel University,
Philadelphia, PA, 2006.
http://gicl.cs.drexel.edu/people/regli/reference_model-
vla.pdf.

Bruce Brendle. 3d data registrnation based on human
perception. In 2006 Performance Metrics for
Intelligent Systems Workshop, 2006.

Jennifer L. Burke, Robin R. Murphy, Dawn R. Riddle,
and Thomas Fincannon. Task performance metrcis in
human-robot interaction: Taking a systems approach.
In 2004 Performance Metrics for Intelligent Systems
Workshop, 2004.

Anton Chechetka and Katia Sycara. No-commitment
branch and bound search for distributed constraint
optimization. In AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents
and multiagent systems, pages 1427-1429, New York,
NY, USA, 2006. ACM Press.

Rama Chellappa and Amit K. Roy Chowdhury. An
information theoretic evaluation criterion for 3d
reconstruction algorithms. In 2004 Performance
Metrics for Intelligent Systems Workshop, 2004.

Paul R. Cohen. Empirical methods for artificial
intelligence. MIT Press Cambridge, MA, USA, 1995.
Sesh Commuri, Yushan Li, Dean Hougen, and Rafael
Fierro. Evaluating intelligence in unmanned ground
vehicle teams. In 2004 Performance Metrics for
Intelligent Systems Workshop, 2004.

BBN Corporation. Cognitive Agent Architecture
(Cougaar). http://www.cougaar.org,/.

S. Corson and J. Macker. Mobile Ad hoc Networking
(MANET): Routing Protocol Performance Issues and
Evaluation Considerations. RFC 2501, January 1999.
John Davin and Pragnesh Jay Modi. Impact of
problem centralization in distributed constraint
optimization algorithms. In AAMAS ’05: Proceedings
of the fourth international joint conference on
Autonomous agents and multiagent systems, pages
1057-1063, New York, NY, USA, 2005. ACM Press.

[17] Jérome Euzenat. emantic precision and recall for

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

[18]

[27]

[28]

ontology alignment evaluation. In IJCAI ’07:
Proceedings of the 21st International Joint Conference
on Artificial Intelligence, 2007.

Jack J. Ference, Sandor Szabo, and Wassim G. Najm.
Performance evaluation of integrated vehicle-based
safety systems. In Performance Metrics for Intelligent
Systems Workshop, pages 85 — 89. NIST Special
Publication, 2006.

M. Foedisch, C. Schlenoff, and R. Madhavan.
Performance analysis of symbolic road recognition for
on-road driving. In 2006 Performance Metrics for
Intelligent Systems Workshop, 2006.

Michael Freed, Robert Harris, and Michael Shafto.
Measuring autonomous uav surveillence. In 2004
Performance Metrics for Intelligent Systems
Workshop, 2004.

A. Freedy, J. McDonough, R. Jacobs, E. Freedy,

S. Thayer, and G. Weltman. A mixed initiative
human-robots team performance assessment system
for use in operational and training environments. In
2004 Performance Metrics for Intelligent Systems
Workshop, 2004.

Agent Technology Group. A-globe.
http://agents.felk.cvut.cz/aglobe/.

Andreas Haeberlen, Alan Mislove, Ansley Post, and
Peter Druschel. Fallacies in evaluating decentralized
systems.

Jeffrey K. Hollingsworth, James Lumpp, and

Barton P. Miller. Techniques for performance
measurement of parellel programs. In Parallel
Computers: Theory and Practice. IEEE Press, 1995.
Jeffrey K. Hollingsworth and Barton P. Miller.
Parallel program performance metrics: A comparison
and validation. In Proceedings of the 1992 ACM/IEEE
conference on Supercomputing, pages 4 — 13, Los
Alamitos, CA, USA, 1992. IEEE Computer Society
Press.

Hui-Min Huang. The autonomy levels for unmanned
systems alfus framework. In Performance Metrics for
Intelligent Systems Workshop, pages 47 — 51. NIST
Special Publication, 2006.

Telocom Italia. Java Agent DEvelopment Framework
(JADE). http://jade.tilab.com/.

Per Johansson, Tony Larsson, Nicklas Hedman,
Bartosz Mielczarek, and Mikael Degermark.
Scenario-based performance analysis of routing
protocols for mobile ad-hoc networks. In MobiCom
’99: Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and
networking, pages 195-206, New York, NY, USA,
1999. ACM Press.

Rick Jones. Netperf.
http://www.netperf.org/netperf/NetperfPage.html.
Balajee Kannan and Lynne E. Parker. Fault tolerance
based metrics for evaluating system performance in
multi-robot teams. In 2006 Performance Metrics for
Intelligent Systems Workshop, 2006.

Jeffrey A. Kramer and Robin R. Murphy. Endurance
testing for safety, security and rescue robots. In
Performance Metrics for Intelligent Systems
Workshop, pages 247 — 254. NIST Special Publication,
2006.

141

32]

33]

34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

42]

(43]

(44]

(45]

(46]

Lyndon Lee, Hyacinth Nwana, Divine Ndumu, and
Phillipe De Wilde. The Stability, Scalability and
Performance of Multi-agent Systems. BT Technology
Journal, 16(3):94-103, 1998.

C. Lundberg, H.I. Christensen, and R. Reinhold.
Intellectual performance using dynamical expert
knowledge in seismic environments. In 2006
Performance Metrics for Intelligent Systems
Workshop, 2006.

Nancy A. Lynch. Distributed Algorithms. Morgan
Kaufmann, 1996.

Roger Mailler and Victor Lesser. Solving distributed
constraint optimization problems using cooperative
mediation. In AAMAS ’04: Proceedings of the Third
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 438-445, Washington,
DC, USA, 2004. IEEE Computer Society.

A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan.
Comparing performance of distributed constraints
processing algorithms, 2002.

Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe,
and Makoto Yokoo. An asynchronous complete
method for distributed constraint optimization. In
AAMAS ’03: Proceedings of the second international
joint conference on Autonomous agents and
multiagent systems, pages 161-168, New York, NY,
USA, 2003. ACM Press.

V. Molino, R. Madhavan, E. Messina, T. Downs,

A. Jacoff, and S. Balakirsky. Treversability metrics for
urban search and rescue robots on rough terrain. In
2006 Performance Metrics for Intelligent Systems
Workshop, 2006.

Dan R. Olsen. and Michael A. Goodrich. Metrics for
evaluating human-robot interactions. Proceedings of
PERMIS, 2003, 2003.

Adrian Petcu and Boi Faltings. A distributed,
complete method for multi-agent constraint
optimization. In CP 200/ - Fifth International
Workshop on Distributed Constraint Reasoning
(DCR2004), Toronto, Canada, September 2004.
Guillermo Rodriguez and Charles R. Weisbin. A New
Method to Evaluate Human-Robot System
Performance. Autonomous Robots, 14(2):165-178,
2003.

Marius Silaghi, Robert N. Lass, Evan Sultanik,
William C. Regli, Toshihiro Matsui, and Makoto
Yokoo. Constant Cost of the Computation-Unit in
Efficiency Graphs. In The Tenth Annual Workshop on
Distributed Constraint Reasoning, May 2008.

Emin Gun Sirer. Sextant deployment (accessed
10/31/2007).
http://www.cs.cornell.edu/People/egs/sextant /deployment.php.
Reid G. Smith. The contract net protocol: High level
communication and control in a distributed problem
solver. In IEFE Transactions on Computers, volume
C-29 12, pages 1004 — 1113, december 1980.

Brian Stanton, Brian Antonishek, and Jean Scholtz.
Development of an evaluation method for acceptable
usability. In Performance Metrics for Intelligent
Systems Workshop, pages 263 — 267. NIST Special
Publication, 2006.

Aaron Steinfeld, Terrance Fong, David Kaber, Michael

[52

Lewis, Jean Scholtz, Alan Schultz, and Michael
Goodrich. Common metrics for human-robot
interaction. ACM SIGCHI/SIGART Human-Robot
Interaction, pages 33—40, 2006.

S. S. Stevens. On the theory of scales of measurement.

Science, 1946.

Evan A. Sultanik, Robert N. Lass, and William C.
Regli. DCOPolis: A framework for simulating and
deploying distributed constraint optimization
algorithms. In The Ninth Annual Workshop on
Distributed Constraint Reasoning, September 2007.
Edward Tunstel. Performance metrics for operational
mars rovers. In Performance Metrics for Intelligent
Systems Workshop, pages 69 — 76. NIST Special
Publication, 2006.

Tan H. Witten and Eibe Frank. Data Mining:
Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, 2005.

M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem:
formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering, 10(5):673-685,
1998.

Herbert Zimmerman. OSI reference model—the ISO

model of architecture for open system interconnection.

IEEFE Transactions on Communications,
28(4):425-432, April 1980.

142

