Statistical mechanics of long range interactions

Introduction

In presence of long range interactions, some of our
usual intuition for statistical mechanics and thermo-
dynamics is not valid anymore. For instance, it has
been known for a long time to astrophysicists that
self-gravitating systems may exhibit a negative spe-
cific heat. Inequivalence between statistical mechan-
ics at fixed energy or fixed temperature, that is in-
equivalence between statistical ensembles, may also
occur. The underlying reason for these unusual be-
haviors is lack of energy additivity: a long range in-
teracting system with internal energy E cannot be
divided into two macroscopic parts with internal en-
ergy E; and E» such that E = E; + Es.

This in turn allows us to be more precise on the
definition of long range interactions: an interaction is
long range in this sense when it renders the internal
energy not additive, which is often equivalent to say
that the range of the interaction is comparable to the
size of the system.

Systems with long range interactions, according to
the above definition, are rather common in physics:
self gravitating systems, that we already mentioned;
point vortices, and more generally vortex-vortex in-
teractions in 2D turbulence and related geophysi-
cal flows; wave-particles interactions, where the wave
conveys the interaction over long distance... These
long range interacting systems also share some phe-
nomenology with small systems: in a system of a few
dozens of particles (an atomic cluster for instance),
the range of the interaction is comparable to the size
of the system [1].

Many of the usual statistical mechanics analytical
methods focus on partition function calculations,
in the canonical or grand canonical ensembles.
In presence of long range interactions however,
ensembles may be inequivalent, and it can be argued
in many cases that the microcanonical one, at fixed
energy, is the most relevant: a galaxy, an atomic
cluster, or an unforced 2D fluid for instance can
be considered as isolated on reasonable time scales.
This calls for the development of analytical methods
for microcanonical calculations.

Large deviation, a tool for microcanonical
calculations

In the presence of long range interactions, a given
particle, or spin, interacts with many others. As a
consequence, it feels a local field averaged over many
particles, which fluctuations are thus much smaller
than in the case of a nearest neighbor interaction.
This is the basic observation that allows for the use
of large deviation techniques to exactly solve a large
number of problems with long range interactions, in
the canonical as well as in the microcanonical ensem-

bles. This general method was described in a math-
ematically rigorous setting by R. S. Ellis [2]; we ap-
plied it to several models of different types in [3].
Fig. 1 shows an exemple of ensemble inequivalence
and negative specific heat in a mean field (that is
the interaction is of infinite range) spin system. The
Hamiltonian is given by

S :
H:Azsi—ﬁ(zsi) ;
i=1 i

where the spins S; can take the values 0,1, —1.
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Figure 1: Temperature vs energy relation in the mi-
crocanonical ensembles for different values of A/J.
A negative specific heat region is visible on panels
b, ¢ and d. The dotted line indicates the canonical
solution when different from the microcanonical one.
There is ensemble inequivalence on panels b to e.

Application to a model of free electron laser
Wave-particles systems, where the interaction be-
tween particles is mediated by a wave, may sometimes
be considered as long range interacting systems. In-
deed, the wave is a macroscopic degree of freedom,
propagating in the whole system, inducing effective
long range interactions. One example is a free elec-
tron laser (FEL). In such a device, a beam of rela-
tivistic electrons travels in a region of variable mag-
netic field (an undulator), and interacts with the light
it emits. In some conditions, this light is amplified
through an energetic transfer from the kinetic energy
of the electrons. A very simplified model of this phe-
nomenon is given by the following Hamiltonian:

N 2 N
b; .
HN:Z%—N6A2+2AZsm(0j—<p) (2)

Jj=1 7j=1
The p;’s represent the velocities relative to the cen-
ter of mass of the N electrons and the conjugated
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variables 6; characterize their positions with respe
to the co-propagating wave. The complex electr
magnetic field variable, A = A%, defines the ar
plitude and the phase of the dominating mode (
and A* are conjugate variables). ¢ is a paramet
which measures the average deviation from the re
onance condition. Starting from an initially sm:
value, A is amplified and saturates to an asymptot
value. Analytic calculations of this asymptotic valu
by definition deep in the non linear regime, are n
very common in the field. Fig. 2 compares nume
ical results and large deviation calculations for tk
asymptotic value [4].
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Figure 2: Laser intensity and a parameter character-
izing the bunching of the electron beam as a function
of the detuning parameter §. Symbols are numerical
results, solid lines are the analytical curves. Above
the threshold, there is no amplification.

Application to a model of micromagnetism

When considering a small numbers of particles (say
for instance a few tens), the range of the interaction
is necessarily comparable to the size of the whole
system. Some effects similar to those induced by
long range interactions may thus be expected in that
case [1], and the same analytical techniques might be
useful. An example of such small samples is molecular
magnetism: the spins of atoms in a single molecule
interact with one another, and one is interested in
the total magnetization of the molecule, and how it
may change sign. We studied a toy model for this
magnetization reversal, aiming at demonstrating the
potential use of large deviation techniques in this set-
ting [5]. The toy model is an assembly of Heisenberg
spins, with Hamiltonian

N J N
H=B) Si+3) > (Si57-5s!s)), (3)
=1

i=1 j#i

As a first step, we study the classical dynamics of the
model; some results are presented on Fig. 3. Future
work implies turning to more realistic models of real
molecules like Mn-12-acetate.
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Figure 3: The top panel is for N = 5, the bottom
one for N = 50. Numerically computed temporal
average of the total magnetization m,, as a function
of the energy per spin €. The agreement with the
large deviation calculation (dashed line) is excellent
when m, # 0. In addition, this calculation estimates
the ¢ for which m, falls to 0: ¢ = —1 for the top
panel, e = —.28 for the bottom one.
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