Status and Achievements in EGS Technology

Susan Petty
Black Mountain Technology

Roy Baria Mil-Tech UK Ltd

Status and Achievements in EGS Technology

- Role on MIT panel
- Objectives
- Methodology
- Basis for analysis and assumptions
- Uncertainties
- Affect of uncertainties on outcome
- Technology gaps and barriers
- Future work to overcome gaps and barriers

Role on MIT Panel

- Using data provided by Dave Blackwell and SMU group (Chapter 3):
 - Determine recoverable EGS resource
 - Conductive resource starting at 3 km
 - Convective resource above 3 km
- Review history of EGS technology development (Chapter 4) (Garnish, Batchelor, Baria, Tester)
 - Prepare database of EGS project data
 - Examine history of projects to determine lessons learned
- Evaluate current status of EGS technology (Chapter 5) (Baria, Garnish, Batchelor, Testor)
 - Determine current practice
 - Evaluate technology gaps
 - Recommend technology improvement areas

Objectives

- Make estimate of recoverable EGS resource in US
- Examine history of EGS development and lessons learned from past projects
- Determine current best practice for reservoir development
- Determine technical and economic feasibility of using EGS for power generation in US
- Recommend technology improvements to reduce cost and improve performance

Methodology for Study

Recoverable resource

- Use data from Blackwell/SMU on temperature at depth in 1 km slices
- Review literature to determine standard practice for calculating recoverable heat
- Review literature and work with power plant panel members to determine conversion efficiencies
- Review available data on resource that should be excluded from development (Parks, wilderness recreation area)
- Develop batch processing methods for determining project economics using DOE GETEM costing code
- Develop database of site by site reserves estimates from existing data for identified EGS sites associated with hydrothermal sites from published sources

Energy from the Earth's Heat

- Conductive heat energy
 - Greater than 3 km
 - Requires stimulation or other engineering to develop reservoir
- Convective heat energy
 - Hydrothermal systems
 - Impermeable or low permeability systems on the edges of hydrothermal systems
 - Fractured, but may require stimulation or engineering to develop
- Hot water co-produced with oil and gas

Methodology for Study

- History of EGS Technology Development
 - Review literature and data on past EGS projects
 - Meet with and discuss past projects with panel members and invited speakers
 - Prepare database of EGS projects including drilling data, well completion data, stimulation methods and test data
 - Evaluate data to determine lessons learned

Major EGS Projects Worldwide

Methodology for Study

- Subsurface system design current practice and issues
 - Review literature and data on current best practice for EGS stimulation
 - Meet with and discuss current technology with panel members and invited speakers
 - With panel members and outside experts determine issues and possible solutions for improving stimulation technology

Energy Output of Past and Current Projects

PROJECTS PERIOD MAX. ROCK TEMP. DEPTH SEPARATION MPal/s MPal/s MPal/s MWth Cubic meters		COMPADICON OF MAINLIND DECEDVOIDS IN THE WORLD								
TEMP. Deg C Meters SEPARATION meters S		COMPARISON OF MAIN HDR RESERVOIRS IN THE WORLD								
TEMP. Deg C Meters SEPARATION meters S		555105	5001							
Deg C meters meters Vs % MPa//s MWth Cubic meters	PROJECTS	PERIOD						IMPEDANCE		
Los Alamos (USA) 1973-1979 232 3500 ~ 150-300 ~ 7 <10										
Rosemanowes (UK) 1980-1993 80 2000 ~ 180-270 ~ 15 ~ 25 0.4 ~ 4 ~ 200-300 Hijjori (Japan) 1985-> 270 2200 ~ 130 ~ 12 ~ 25 0.3 ~ 7 ~ 50-150 Soultz (France) 1989-1997 168 3500 ~ 450 ~ 26 0 0.23 ~ 11 ~ 7000 Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650 -730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; lower capital investment. Best value achieved to date.			Deg C	meters	meters	l/s	%	MPa/l/s	MWth	Cubic meters
Rosemanowes (UK) 1980-1993 80 2000 ~ 180-270 ~ 15 ~ 25 0.4 ~ 4 ~ 200-300 Hijjori (Japan) 1985-> 270 2200 ~ 130 ~ 12 ~ 25 0.3 ~ 7 ~ 50-150 Soultz (France) 1989-1997 168 3500 ~ 450 ~ 26 0 0.23 ~ 11 ~ 7000 Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650 -730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; lower capital investment. Best value achieved to date.										
Hijiori (Japan) 1985-> 270 2200 ~ 130 ~ 12 ~ 25 0.3 ~ 7 ~ 50-150 Soultz (France) 1989-1997 168 3500 ~ 450 ~ 26 0 0.23 ~ 11 ~ 7000 Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650-730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; lower capital investment. Best value achieved to date.	Los Alamos (USA)	1973-1979	232	3500	~ 150-300	~7	<10	2.5	~5	~ 80-100
Hijiori (Japan) 1985-> 270 2200 ~ 130 ~ 12 ~ 25 0.3 ~ 7 ~ 50-150 Soultz (France) 1989-1997 168 3500 ~ 450 ~ 26 0 0.23 ~ 11 ~ 7000 Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650-730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; lower capital investment. Best value achieved to date.										
Hijiori (Japan) 1985-> 270 2200 ~ 130 ~ 12 ~ 25 0.3 ~ 7 ~ 50-150 Soultz (France) 1989-1997 168 3500 ~ 450 ~ 26 0 0.23 ~ 11 ~ 7000 Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650-730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; lower capital investment. Best value achieved to date.							_			
Soultz (France) 1989-1997 168 3500 ~ 450 ~ 26 0 0.23 ~ 11 ~ 7000 Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650 - 730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.	Rosemanowes (UK)	1980-1993	80	2000	~ 180-270	~15	~25	0.4	~ 4	~ 200-300
Soultz (France) 1989-1997 168 3500 ~ 450 ~ 26 0 0.23 ~ 11 ~ 7000 Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650 - 730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.		ļ								
Soultz (France) 1989-1997 168 3500 ~ 450 ~ 26 0 0.23 ~ 11 ~ 7000 Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650 - 730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.										
Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650 -730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.	Hijiori (Japan)	1985->	270	2200	~ 130	~12	~25	0.3	~7	~ 50-150
Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650 -730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.										
Anticipated 2000 + 1997-> 202 5000 ~ 600-700 ~ 100 0 0.12 ~ 50 ~ 20,000 Actual in 2004 2004 202 5000 ~ 650 -730 22 l/s 0 0.29 (2 wells) ~ 10 BTT 4.5 days lower values = Advantageous; low running cost Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.					. = .					
Actual in 2004 202 5000 ~ 650 -730 22 l/s 0 0.29 (2 wells) ~10 BTT 4.5 days lower values = Advantageous; low running cost	Soultz (France)	1989-1997	168	3500	~ 450	~ 26	0	0.23	~ 11	~ 7000
Actual in 2004 202 5000 ~ 650 -730 22 l/s 0 0.29 (2 wells) ~10 BTT 4.5 days lower values = Advantageous; low running cost		100=				400		2.12		
lower values = Advantageous; low running cost Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.	Anticipated 2000 +	1997->	202	5000	~ 600-700	~ 100	0	0.12	~ 50	~ 20,000
lower values = Advantageous; low running cost Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.	A	0004		- 000		20.1/		0.00 (0	10	DTT 4.5.1
Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.	Actual in 2004	2004	202	5000	~ 650 -730	22 l/s	Ü	0.29 (2 wells)	~10	BTT 4.5 days
Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.										
Higher value = Advantageous; bigger resource & longer life Lower value = Advantageous; lower capital investment. Best value achieved to date.										
Lower value = Advantageous; lower capital investment. Best value achieved to date.		lower value	s = Advanta	geous; low ru	inning cost					
Lower value = Advantageous; lower capital investment. Best value achieved to date.										
Best value achieved to date.		Higher valu	ie = Advanta	ageous; bigg	er resource & lo	onger life				
Best value achieved to date.		•				4				
		Lower valu	ie = Advanta	geous; lower	capital investm	nent.				
		Rost value achieved to date								
RB/coparison1xis		Dest value achieved to date.							DD/serreinerdule	
										KB/coparison1.xls

Lessons Learned From Past Projects

We can:

- Drill deep, directional wells into hard, crystalline rock
- 5000m for ~5 million EU ~\$7.5 million (2003)
- Reach targeted economic temperatures
- Fracture large volumes up to 2.5 km²
- Stimulate and improve permeability in pre-existing fractures
- Map stimulated fractures using acoustic emissions
- Drill into stimulated fractures
- Make connection between wells at well separations that are suitable for long term heat mining
- Complete more than one well in the same fractured volume
- Circulate fluid between wells without high pressure drop
- Circulate without high, or any, fluid losses
- Circulate at moderate flow rates with potential for higher

Assumptions and Basis for Analysis

- Rejection temperature 10°C below mean temperature in 1 km slice
- Best case recoverability factor approaches 40%
 - 20% recovery likely
 - 2% conservative
- Energy conversion efficiencies based on resource temperature

Recoverable Heat

□Sanyal and Butler, 2005.

Usable Energy – Converting Heat to Power

- Heat alone is beneficial.
- Conversion of heat to power better justifies well cost
- Heat in kilojoules = heat in kiloWatt-sec
- Convert heat to electric power
 - kW-sec/1000 kW/MW = MWt-sec
 - MWt-sec/(30 yrs in seconds)
 - Conversion efficiency MWt x ηth → MWe

Uncertainties

- Resource uncertainties
 - Temperature range of temperatures in 1 km slices ±50°C
 - Areal extent of temperature at depth based on data density
 - Energy conversion efficiencies have large influence on calculated recoverable resource
- Uncertainties in history of technology development
 - Actual data availability limited.
 - Need to use mostly published data
 - Information filtered by author perception
- Uncertainties in assessment of current technology
 - Data on older projects hard to obtain
 - Current new projects in Europe and Australia
 - Data not always available.

Current Status of Technology

- How do we go about developing an EGS reservoir?
 - Install a microseismic monitoring system
 - Drill a well into high temperature rock >200°C
 - Evaluate the natural fracture system and stress state
 - Stimulate a large volume of rock by pumping cold water at just above the critical pressure for the local stress regime
 - Map the created fracture system using MEQ monitoring
 - Drill wells into created fractures
 - Re stimulate to improve connectivity
 - Circulate fluid by pumping production wells

Affect of Uncertainties on Outcome

- Range of values for recoverable resource
- Costs depend on temperature, depth and potential flow per production well.
 - Temperature variation linked to cost
 - Flow per well most important variable for cost but not related to recoverable resource
- Inaccessible areas with resource not directly removedfraction that is inaccessible removed
- History of technology may be missing pieces deemed unimportant or detrimental to researchers efforts
- Status of technology constantly changing
- Technology for reservoir stimulation has very large impact on cost of power

Inaccessible Areas

- Some areas are inaccessible for development:
 - Parks State and National
 - Recreation Areas
 - National Monuments
 - Wilderness
 Subtract inaccessible fraction

Total Recoverable Power

Total Recoverable Electric Power in Net MWe for 30 Years,

20% Recoverable Fraction of Thermal Energy from the Reservoir

Depth of Slice, km	Power available for slice, MWe	Amount at 150°C, MWe	Amount at 200°C, MWe	Amount at 250°C, MWe	Amount at 300°C, MWe	Amount at 350°C, MWe
3 to 4	122,000	120,000	800	700	400	
4 to 5	719,000	678,000	39,000	900	1,200	
5 to 6	1,536,000	1,241,000	284,000	11,000	600	
6 to 7	2,340,000	1,391,000	832,000	114,000	2,800	
7 to 8	3,245,000	1,543,000	1,238,000	415,000	48,000	1,200
8 to 10	4,524,000	1,875,000	1,195,000	1,100,000	302,000	54,000
TOTAL	12,486,000					

Total Recoverable Power

Total Recoverable Energy in Net MWe for 30 Years

2% Recoverable Fraction of Thermal Energy from the Reservoir

Depth of Slice, km	Power available for slice, MWe	Amount at 150°C, MWe	Amount at 200°C, MWe	Amount at 250°C, MWe	Amount at 300°C, MWe	Amount at 350°C, MWe
3 to 4	12,000	12,000	80	70	40	
4 to 5	72,000	68,000	4,000	90	120	
5 to 6	154,000	124,000	28,000	1,100	60	
6 to 7	234,000	139,000	83,000	11,000	300	
7 to 8	324,000	154,000	124,000	41,000	5,000	120
8 to 10	452,000	187,000	119,000	110,000	30,000	5,000
TOTAL	1.249.000					

Economic Modeling-GETEM

GETEM		BINARY SYSTEM INPUT SHEET					
Version:	GETEM-2005-A3 (dje-July-06-05)						
BINARY Case Name:	EGS-AC binary-200C-4km-2015-July 18 2005						
File Name:	GETE	Л-2005-EGS- 150С 2015-sp-1С-July 18 05					
		Baseline	Change	Improved			
Case Date:	1/8/2007	2005		2015			
Cost of Electricity, cent/kV	/h	17.32	-63%	6.44			
Input		Baseline	Change	Improved			
Global Economic Parameters							
Fixed.Charge.Rate	Ratio	0.128	1.00	0.128			
Utiliz.Factor	Ratio	0.95	1.00	0.95			
Contingency	%	5%	1.00	0.05			
Input parameters							
Temperature of GT Fluid in Reservoir	Deg-C	200	1.00	200			
Plant Size (Exclusive of Brine Pumping)	MW(e)	500.0	1.00	500.00			
Number of independent power units		10	0.50	5.00			
Brine Effectiveness (exclusive of brine		v					
pumping)	Calculate Y or N	Y		Υ			
If N (no), enter value in cell C19 and/or E19	W-h/lb	8.00	1.00	8.00			
Calculated Brine Effectivenss	W-h/lb	10.86	1.25	13.57			
Brine Effectiveness	W-h/lb	10.86		13.57			
Apply improvement to reducing flow			_				
requirement or increasing power output			F				
Plant Cost	Calculate Y or N	Υ		Υ			
If N (no), enter value in cell C24 and/or E24	\$/kW	\$ 1,800	1.00	\$ 1,800			
Calculated Plant Cost	\$/kW	\$ 1,551	0.75	\$ 1,006			
Plant Cost	\$/kW	\$ 1,551		\$ 1,006			
Wells Cost Curve: 1=Low, 2=Med, 3=High		4	1.00	3			
PRODUCTION WELL Depth	Feet	13,123	1.00	13,12 <mark>3</mark>			
Estimated Cost, from SNL Curve	\$K/well	\$6,955		\$6,955			
User's Cost Curve Multiplier	ratio	1.000	TIO 😃	1.000			
Producer, Final Cost	\$K/well	\$6,955	0.75	\$5,216			
INJECTION WELL Depth	Feet	13,123	1.00	13,12 <mark>3</mark>			
Estimated Cost, from SNL Curve	\$K/well	\$6,955	TIO	\$6,955			
Injector, Final Cost	\$K/well	\$6,955	0.75	\$5,216			

Supply Curve for U.S. Conductive EGS

Supply Curve for EGS Power

Reality Check EGS What would need to happen to make EGS a reality?

- Reduce the cost of power through technology improvement and learning by doing
 - Increase flow rate per producer by improving stimulation methods
 - Reduce drilling cost by reducing number of casing intervals, improving rate of penetration and reducing risk
 - Improve conversion efficiency
- Demonstrate the technology at a number of sites with different geology
- Develop a large scale, ie >250 MW, commercial project with industry

Reaching the Goal

- To get 1000 MW of EGS power on line we need:
 - 1 well in 3 months, average 5 MW per well
 - 16 rigs drilling for three years
 - 4 sites with 250 MW potential
 - Test technology on edges of hydrothermal systems
 - Move to large areas of uniform hot rock at reasonable depth
 - Use hot oil/gas fields to get data and starting points for projects

Technology gaps and barriers

- Need reliable methods to increase the fractured heat exchange area without inducing felt seismic events or making short circuits
- Need to divert stimulation to zones that have been less affected
- So far, can't reliably connect into an existing hydrothermal reservoir
- Short circuits may develop during treatment or during long term operation
- Injecting at high pressures to increase flow results in induced seismicity, reservoir growth and fluid loss
- Need to be able to pump production wells with electric submersible pumps at high temperatures to increase flow per well

Future Work to Overcome Gaps and Barriers

- Develop high temperature instrumentation to better evaluate fractures prior to stimulation (discriminate between open and sealed fractures)
- Develop methods to isolate zones for stimulation or divert treatment to unstimulated zones
- Develop methods for repairing short circuits
- Better understand link between stimulation, geology, tectonics and inducing felt earthquakes
- Develop high temperature electric submersible pumps