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Incoherent imaging of crystals using 
thermally scattered electrons 

BY D. E. JESSON AND S. J. PENNYCOOK 
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, 

TN 37831-6030, U.S.A. 

Thermal diffuse scattering of electrons through large angles by a simple low-index 
crystal projection is examined in the context of a phonon model, based on the 
Warren approximation of X-ray diffraction. The scattering from an individual 
atomic column is visualized in terms of an assembly of independent 'packets' of 
atoms. Within a packet, the scattering is partially coherent, causing the columnar 

intensity to deviate from that calculated with an Einstein independent oscillator 
model. For typical atomic spacings, this deviation is limited to within 20%. 

1. Introduction 

It is now over 20 years since the first images of single atoms and atom clusters 
were obtained in a scanning transmission electron microscope (STEM) equipped 
with an annular dark-field (ADF) detector (Crewe 1970; Crewe & Wall 1970; Wall 
et al. 1974). Such early images of very thin objects were interpreted in the frame- 
work of an incoherent particle scattering model, even though they were formed 

predominantly from coherently scattered electrons, which led naturally to the 

question of the degree to which the images could be interpreted using incoherent 

scattering theory (Cowley 1976; Ade 1977; Colliex & Mory 1983). In a previous 
paper (Jesson & Pennycook 1993), it was demonstrated that, for the range of 
ADF detector angles used in forming these early images, interpretation based on 
incoherent scattering theory was justified, but with the important proviso that 
atoms need to be separated in a plane perpendicular to the optic axis. 

Interference effects between atoms possessing the same projected coordinates 

along the axis are preserved in the high-angle signal and must be considered 

explicitly. This is conveniently illustrated by considering the image of a crystal 
aligned along a zone axis direction. In the thin crystal limit, the intensity of a 
column will increase as the number of atoms in the column squared (n2) and 
not n as would be expected from incoherent imaging theory. This has led, for 

example, to a reevaluation (Jesson & Pennycook 1993) of the early images of a 
uranium microcrystal (Isaacson et al. 1979). 

From the above discussion, it would appear that interference effects along a 
column are, at least in practice, an inescapable feature of STEM ADF imaging. 
However, Howie (1979) appreciated that by increasing the inner angle of the ADF 

detector, it would be possible to suppress Bragg reflections and form images from 
thermal diffuse scattering (TDS). Images formed in this way are generally referred 
to as atomic number or Z-contrast images. From a simplified Einstein picture of 
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atoms acting as independent oscillators, it can be expected that coherence effects, 
even along an atomic column, will be destroyed as long as Bragg reflections do 
not make a significant contribution to the high-angle signal. However, unlike a full 

phonon TDS description, involving correlated displacements, the Einstein model 
assumes incoherent scattering from each atom in the vibrating column, and there- 
fore does not properly describe the interference effects present in large-angle TDS. 

At present, it therefore remains an open question as to the efficiency of phonons 
in breaking the coherence along an atom column. This issue of longitudinal co- 
herence along a column has recently assumed considerable importance through 
the development of atomic-resolution Z-contrast imaging techniques where it has 
now become possible to image columns individually (Pennycook & Jesson 1990, 
1991, 1992). Clearly, atomic correlations along a column could significantly in- 
fluence the large-angle scattering to the high-angle ADF detector and potentially 
complicate the simple dependence on columnar scattering cross section as derived 
from the Einstein theory. 

The purpose of this paper is to address the issue of coherence along an atomic 
column and evaluate the contributions of correlated vibrations to the Z-contrast 

image. Our approach is based on the approximation of Warren (1990). Although 
simple in nature, this approach shows clearly the extent to which phonons break 
the coherence along a column. It includes all orders of phonon scattering and 
reduces to the coherent and Einstein expressions in the limits of completely co- 
herent and incoherent scattering, respectively. 

2. An intensity expression for Z-contrast imaging 

In this section, we will derive an approximate intensity expression describing 
Z-contrast imaging. For simplicity, our treatment will retain only the important 
physics governing the dynamical diffraction of the incident probe with the em- 
phasis placed on a realistic description of atomic vibrations. 

A schematic representation of the Z-contrast imaging geometry is given in 
figure 1 where a coherent probe of atomic dimensions is focused on the top surface 
of a thin crystal. It is now well established (Fertig & Rose 1981; Loane et al. 

1988) that if the crystal is aligned along a low-index zone axis, the projected 
atomic columns behave as microlenses, focusing the probe to peak up at the 
atom sites as shown schematically in figure 2a. Interestingly, the peaking of the 
wave function at the atomic columns closely adheres to the envelope of the surface 
probe amplitude. This can be explained quantum mechanically by the selection of 
non-dispersive s-type Bloch states of the fast electron (figure 2b) over the angular 
range of the incident probe (Pennycook & Jesson 1990). We therefore model the 
probe wave function as single or, where appropriate, clusters of axial s-states 
weighted by the surface probe, which is known to provide a good description 
of the current density propagating down the atomic columns underneath the 
incident probe (Pennycook & Jesson 1990, 1991). In very thin crystals, s-states 
are not well resolved from other Bloch states, but they rapidly dominate at the 
atom sites in the ca. 20 nm thickness range relevant to Z-contrast imaging. This is 
shown clearly in figure 2c. Note that the scale of interference oscillations between 
Bloch states in the full calculation is approximately 20 nm, which we shall find 
is considerably greater than the range of atomic correlations along a column (see 
? 5 b). It is, therefore, possible to adopt an s-state model of probe propagation 
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Figure 1. A schematic illustration of the Z-contrast imaging geometry. A focused electron probe 
channels along the projected atom columns and undergoes a large-angle scattering event to the 
high-angle detector. Images are formed by scanning the electron probe across the surface and 
can be interpreted in terms of the projected specimen scattering power. The Si(1 10) example at 
100 kV illustrates a case where the individual atomic columns comprising a dumbbell separated 
by 1.36 A cannot be resolved by the 2.2 A FWHM probe. 

while still retaining a physically reasonable description of correlations along a 
column. 

Weak large-angle scattering from the zero-layer s-states to the high-angle ADF 
detector is essentially a kinematic process which can be treated using perturbation 
theory in a distorted-wave Born approximation (see, for example, Schiff 1968; 
Vincent et al. 1984). Of considerable interest for further simplification is the 
extent to which the scattering events are localized within the crystal. The large- 
angle signal can be visualized in terms of three basic components; residual zero 
layer diffraction, diffraction to higher-order Laue zones (HOLZS) of the reciprocal 
lattice, and TDS. Large-angle kinematic scattering implicates the sharply varying 
regions of the atomic potentials. As seen by the s-states, these 'point' (ca. 0.1 A) 
scattering centres are thermally smeared by atomic vibrations. However, typical 
vibration amplitudes are only of the order of 0.1 A, considerably less than the 
spatial variation of s-states. This degree of spatial localization about the projected 
atom sites enables us to write out a simplified expression for residual zero-layer 
diffraction, HOLZ scattering, and TDS integrated over the high-angle detector as 

IHi(R0) = 
ls2 ls(m(Rn) R)P(R - Ro)P*(Rn - Ro) 

m,n 
x j f2(s)ef)exp[is ( is (m - r)](exp[iseff (uln (un)])ds, (2.1) 

e etector 
in which we assume a monatomic crystal containing atoms of scattering factor 
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Figure 2. A schematic representation of probe channelling along a simple crystal projection. The 
peaking of the probe at the positions of the atomic columns in (a) results from the preferential 
selection of s-type Bloch states as shown in plan view in (b). In (c), we display results for the 
thickness integrated probe wavefunction intensity at the atom sites with a 2.2 A probe located 
over a Si(1 10) dumbbell as shown in figure 1. The solid line corresponds to a full dynamical 
calculation and is in good agreement with the experimental data points (solid circles). The 
dashed line represents an independent s-state calculation. 

f (se). Here, u, denotes the instantaneous displacement of the mth atom about 
its lattice position rm. It is convenient to partition the coordinate system into 
vectors z and R, which are parallel and perpendicular to the optical axis respec- 
tively (see figure 1). In this way, we can specify the position of the mth lattice site 
rm = {Rm, Zm}. P(R) represents the probe amplitude corrected for channelling, 
which apart from an overall scaling factor is very similar to the incident probe 
profile (Pennycook & Jesson 1991). With the probe located at R0, the amplitude 
illuminating an atom column at Rm is P(Rm - Ro), which excites an s-state 

Trl(Rm) of excitation amplitude cls. The modified deviation parameter sef takes 
into account the additional deviation introduced by the s-state wavevector. Here 
and henceforth, we put sef equal to the conventional value s without significantly 
affecting the results of our calculations at large scattering angles. In the further 
interest of clarity, absorption has not been included explicitly in (2.1). We will, 
however, introduce the necessary modifications in ? 6. 

The single s-state model, equation (2.1), will be a good approximation if the 
thickness integrated ADF signal is dominated by kinematic scattering from a single 
s-state or s-state cluster. The localized potential approximation will somewhat 
underestimate the enhancement of the f(s) by s-states and reduce the overall 
magnitude of large-angle scattering. The model does, however, fully address the 
three-dimensional nature of the problem within a kinematic approximation and 
is therefore suitable for the investigation of coherence along an atomic column. 
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The important atomic correlation information in (2.1) is contained in the time 
average term (exp[isef. (U- un)]). To evaluate this quantity, it is first necessary 
to make approximations. In ? 3, we begin with the analytical approach of Warren 
(1990), which provides the most satisfactory basis for evaluating the time average. 
Existing approaches in the literature and their limitations in describing atomic 
correlations involved in large-angle scattering will be considered in ? 4 and ? 5. 

3. The Warren approximation 

In this section, we perform the time average in (2.1), based on the treatment 
given by Warren (1990). The chief advantage of this approach is that through a 
series of reasonable approximations, the time average can be obtained in terms of 
a simple tabulated function. Most importantly, the approach retains important 
information on the atomic correlations contributing to the high-angle signal. It 
has become customary to evaluate the time average in (2.1) by expressing the 
atomic displacements in terms of a set of normal modes (see, for example, James 
1954): 

Un = aqj oqj cs{ qjt- 27rq q - qj), (3.1) 
q,J 

where aqj is the amplitude of the wave of wavevector q and angular frequency 
wqj. The arbitrary phase 6qj reflects the fact that there is no phase relationship 
between different waves and eqj specifies a unit vector in one of the three inde- 
pendent vibration directions (j = 1, 3) indicating the polarization of the wave. It 
is usual to express the time average in terms of the physically meaningful mean 
square amplitude for each wave (Warren 1990), 

(exp[iseff (u - Un)]) = exp Gqj cos{27-rq (rn - rn)} exp(-2M), (3.2) 
q,J 

where the coefficients 

Gqj = (S e j) (aqj) (3.3) 

Here, exp(-M) is the usual Debye-Waller factor term with M = Bs2. Now 
consider the average energy per elastic wave given by 

(Eqj) = Nmw (aqj), (3.4) 

where there are N atoms of mass m present in the crystal. From (3.3) we have 

s2 COS2(s, qj) Gqj - Nm S2 (Eqj), (3.5) qj Nmwqj 

where cos(s, &qj) represents the cosine of the angle between vectors s and qej. 
Treating each elastic wave as a harmonic oscillator, then apart from very low 
temperatures T, we have (Eqj) = kT. With the further assumption of a Debye 
dispersion relation (wqj = 27vq) in which all waves are assumed to have the same 
mean velocity v, then from (3.5), we obtain 

s2kT 
j 

47r2q2Nmv2 (3.6) 
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Replacing the Brillouin zone boundary at qB by a sphere of equal volume 47rq 
and noting hUwB = kOD (OD is the Debye temperature) then v = khD/hqB. 
Writing s = 47 sin0B/A in terms of the Bragg angle OB and incident electron 

wavelength A and defining 

Ymn = E Gqj cos[2TTq (rm - r)], (3.7) 
q,j 

then gives 

Ymn- 
4h T 

(sin B) qB 
cos{2rq. (r, - r/)} (3.8) ^ - 

E N 92 
2- 

q 

from (3.6). 
Following Warren (1990) and using the standard result for the Debye-Waller 

factor, 

12h [(T sinB+ ) 2M - 
mkO (3.9) 

with the approximations [0(x) + x] = and 3m = OD, we obtain 

2M 2 E cos{2rq. (rm - r)} (3.10) 

q, 3N q 

The summation over modes is then replaced by an integration in the Brillouin 
zone using a density of points N/(4q3q): 

2Mq2 fqB f( cos{27qrmncos o} N 
-Ym 

- 
L3N J 2J3q2 sin s dob dq 
"" 3N q2 ~?irq3 

- 2M Si(2rqBrn) (3.11) 
2wqB rmn 

Here, rmn = Irm - rn and Si(x) is the sine integral function, 

Si(x) = du. (3.12) 

In the Warren approximation, the time average (equation (3.2)) becomes 

_Si27rqBrmn J 
Kexp[isf (Un - un)]) = exp {2M [ 2 rrn 1]} (3.13) 

Inserting (3.13) into (2.1) then provides the intensity expression, 

IH (Ro) = 's2 7Tls(Rm)Tls* (R,)P(Rm 
- 

Ro)P*(Rn- Ro) 
m,n 

x etector 
f (s) exp{is. (rm - rn)}exp 2M 2[) -1]} ds. (3.14) 

This is our basic result describing large-angle electron scattering which will be 

applied in subsequent sections to discuss atomic correlations in Z-contrast images. 
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(a) 

(b) 

(C) 

Figure 3. (a) A schematic representation of the surface probe illuminating two atomic columns. 
Interference between atoms located in different atomic columns ((b) and (c)) is termed lateral 
coherence. 

4. Lateral coherence 

In this section, we will apply (3.14) to discuss lateral interference effects present 
in Z-contrast images of low index crystal projections. In the context of atomic- 
resolution STEM imaging, it is instructive to consider the situation where the 
incident electron probe illuminates only two neighbouring columns of the crystal 
as represented schematically in figure 3a. We refer to interference effects involv- 
ing atoms located in different columns (figure 3b or 3c) as transverse or lateral 
coherence. Longitudinal coherence involving interferences between atoms in the 
same column will be considered in ? 5. 

(a) Stationary atoms 

We begin our discussion of lateral coherence by considering the intensity con- 
tribution resulting from the atom pair represented in figure 3b for the specific 
case of a non-vibrating crystal. This idealized coherent scattering limit can never 
be reached in practice, but does provide useful insight into the geometrical role 
of the high-angle detector. The significance of phonons will be considered later 
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Figure 4. (a) Detector plane intensity distribution resulting from two point scatterers separated 
by 1.5 A. The inner and outer detector angles are 10.3 and 150 mrad, respectively. The solid 
circle shows that by increasing the inner detector angle to 50 mrad, more interference fringes 
are sampled at the detector periphery. (b) Ratio of the ADF signal to the incoherent signal 
[R(si, Ro,0)] for two stationary Si atoms separated by 1.5 A as a function of inner detector 
angle. The probe is located between the atom pair. 
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Figure 5. Multiphonon intensity distribution terms II plotted over the range of the ADF detector 
for B = 0.45. (b) Total intensity (equation 4.4) calculated in multiphonon (solid line) and single 
phonon (dashed line) models. The atom separation is 1.5 A. 

in ? 4 b. For a non-vibrating simple cubic crystal, the atom pair in figure 3b will 
contribute an intensity distribution in the ADF detector plane (equation (3.14)), 

I(R0, s) -- Es2rs(Rl )f2(s)[2(R - R) + P2(R2- Ro) 
+2Re{P(R1 - Ro)P*(R2 - R) cos[ARR s]}], (4.1) 

where AR = R1-R2 defines the separation between the atoms located at (R1, zl) 
and (R2, z1). Note we have neglected terms in sin(AR s), which would integrate 
to zero over the ADF detector. 

The properties of (4.1) with regard to incoherent imaging have been consid- 
ered in detail by Jesson & Pennycook (1993) (see also Gibson & Howie 1978). The 
first two terms describe incoherent scattering from each atom whereas the third 
term introduces interference fringes into the intensity distribution. This is shown 
schematically in figure 4a for an atom pair separated by 1.5 A. Here, the atomic 
scattering factor dependence has been removed from the intensity distribution 
to emphasize the fringe pattern. The important role of the high-angle detec- 
tor geometry is clearly evident. Increasing the inner detector angle Oi samples 
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more fringes around the detector periphery. The third term in (4.1), therefore, 
decreases, and the signal approaches the result anticipated from incoherent imag- 
ing theory (figure 4b). In real space, increasing Oi reduces the lateral coherence 
length by decreasing the width of the ADF detector function d(R). Based on this 
description, a useful detector geometry criterion for the incoherent imaging of two 
point scatterers separated by a distance AR was given by Jesson & Pennycook 
(1993) as 

0ic = 1.22A/AR, (4.2) 
where A is the incident electron wavelength. For 100 keV electrons and AR = 
1.5 A, this gives in = 30 mrad, which, from figure 4b, indicates that the deviation 
from the incoherent signal is less than 5%. 

The high-angle detector, therefore, efficiently destroys interference effects be- 
tween atoms located in different atomic columns, even in the limit of non- 
vibrating stationary atoms. Thermal vibrations can only assist in this process, 
and this will be considered in the following section. 

(b) Vibrating atoms 
We introduce phonons by expanding the time average (equation (3.13)) in 

powers of the sine integral function, 

(exp[is. (ur 
- u,)]) - exp(-2M){1 + 2MSi(2wrqBrmn) 2FqBrmn 

(2M2 [Si(2 rm 2 (2M)l Si(27rBr )] (4.3) + 2! 2 qBrmn 
+ + 

1! 2qBrn (4 3) 

Inserting the expansion into the intensity expression (2.1) then produces a series 
of intensity terms I1. For the pair of atoms embedded in a simple cubic vibrating 
crystal, as shown in figure 3b, we may then write the intensity distribution in the 
detector plane as 

I(Ro, s) = ZI, (4.4) 

where 

I, = s Tl2 (RI)f2(s) exp(-2M) (2M) [P2(R1 - Ro) + P2(R2- Ro) 1! 

+ 2Re{P(R1- Ro)P*(R2- Ro)}[Si(7r)/T] cos(AR. s)]. (4.5) 
The intensity contributions Iz are plotted over the range of the ADF detector 

in figure 5a. The zero-order term (l = 0) is similar to the expression for coherent 

scattering from a pair of stationary atoms (equation (4.1)) except it is reduced by 
the temperature factor exp(-2M). Higher-order terms correspond to scattering 
events which simultaneously involve the creation or annihilation of 1 phonons. It 
can be seen that the interference maxima are less pronounced for the higher-order 
terms and that multiphonon scattering events increase in importance at larger 
scattering angles. This suggests that it is necessary to include higher-order terms 
in large-angle TDS models. Recently, however, Wang & Cowley (1989, 1990) have 
utilized a first-order TDS model, equivalent to truncating the expansion in (4.4) 
to the I = 1 term. Although this can be a good approximation at low angles 
(Takagi 1958), figure 5b shows that a first-order TDS model can significantly un- 
derestimate the total scattering in the vicinity of the high-angle detector (see also 
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Figure 6. Ratio of the ADF signal to the incoherent signal for two vibrating Si atoms separated 
by 1.5 A and embedded in a crystal as in figure 3 b. The probe is centred exactly between the 
atom positions. The ratio is plotted as a function of inner detector angle for B = 0, 0.45, and 
1.0. 

Hall 1965). Apart from ignoring coherence effects along the column (see ? 6), the 
neglect of multiphonon terms by Wang & Cowley (1989, 1990) underestimates 
the effective TDS scattering cross section per atom in Z-contrast imaging. Con- 
sider, for example, a single atom embedded in a vibrating crystal which obeys the 
Einstein model for thermal vibrations. The ADF intensity resulting from single 
phonon scattering as a fraction of the total TDS cross section involving a sum 
over all multiphonon processes is given by 

Ql=l Eli-Io 
/ i 

f2(s) exp(-2M)2Msds f2()[l - exp(-2M)lsds, (4.6) 
si si 

where si and So correspond to the inner and outer peripheries of the ADF detector. 
Q1 is a factor of 2.6 too small for a 75-150 mrad detector (with B = 0.45). This 
discrepancy increases at larger scattering angles and/or for greater Debye-Waller 
factors, explaining why Wang & Cowley found coherent scattering to contribute 
significantly to the high-angle signal. 

It is clear from (4.5) that thermal vibrations assist in suppressing interference 
between atoms located in different columns. To quantify this, we consider the ratio 
of the ADF signal to the ideal incoherent signal for the two vibrating embedded 
atoms (figure 3b), 

2Re[P(RI - Ro)P*(R2 - Ro)] 
R(si,, RoM) =1+ p2P2 ( R) R, M), (4.7) 

[P2(R1 - Ro) +P2(R2 - Ro)1 
where 

((si, AR, M) f2(s)sJo(sAR) exp {2M S ds f2 (s)s ds. 

(4.8) 
Equations (4.7) and (4.8) are directly analogous to (31) and (32) of Jesson & 
Pennycook (1993) for the case of stationary atoms where ~ was interpreted as the 
real part of the complex degree of coherence. R(si, Ro, M) is plotted in figure 6 as 
a function of inner detector angle Oi and Debye-Waller parameter B for an atom 
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Figure 7. A schematic representation of an individual column (shaded atoms) embedded in a 
vibrating crystal. Longitudinal coherence involves interference effects between atoms within the 
column. 

separation of 1.5 A. The minimum at around 35 mrad closely corresponds to the 
stationary atom condition, equation (4.2). At this point, the error in assuming 
incoherent imaging theory is only 3%. Increasing the amplitude of thermal vi- 
brations further suppresses interference effects, particularly at large scattering 
angles. However, the geometrical role of the detector still dominates in attain- 
ing lateral incoherence between columns at relatively low Oi. It would, therefore, 
appear reasonable to utilize (4.2) to define the detector geometry required for 
lateral incoherence, even in the presence of thermal vibrations. 

5. Longitudinal coherence 

In the previous section, we have demonstrated that the lateral coherence be- 
tween atoms located in different atomic columns of a low-index crystal projection 
can be efficiently suppressed by the Z-contrast imaging geometry. In this section, 
we consider longitudinal coherence in the scattering from atoms in the same 
atomic column. We assume that the inner detector angle is chosen to meet the 
criterion for lateral incoherence as discussed in ? 4. It is, therefore, sufficient to 
consider the scattering from an individual column embedded in a vibrating crystal 
(figure 7). The intensity from such a column, located at Rc, is given by (3.14): 

IH(R)6 T pRc- Ro) J f(s) COS { Zmn} 

x exp{2M [Si[(m 
- 

n)] } 2sds (5.1) 

where the summation is performed over atoms within the column and Zm = 

Zm - Zn. Here, X is the magnitude of the incident electron wavevector. The prop- 
erties of (5.1) are illustrated in figure 8a-d where azimuthally integrated inten- 
sity distributions (i.e. integrated over a narrow annulus at 0) corresponding to 
columns of length 2, 4, 18 and 200 A are plotted in the range of the ADF detector. 
In each case, this is compared with the intensity distribution associated with an 
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Figure 8. Columnar intensity distributions IA(Ro,s) (azimuthally integrated) in the detector 
plane calculated for columns of length (a) 2 A, (b) 4 A, (c) 18 A, and (d) 200 A. The dashed 
line is calculated using the integrand of (5.1) with a Debye-Waller parameter B = 0.45. This is 
compared with the coherent calculation (solid line) for stationary atoms (B = 0) in all cases. 
The atom separation along the column is 2 A. 

identical, non-vibrating column (B 0). It is evident that for very thin crystal 
slabs and detector angles considerably smaller than 50 mrad, the scattering to the 
ADF detector can be regarded as perfectly coherent. This is consistent with the 
stationary atom description of STEM ADF imaging of very thin specimens utilized 
by Jesson & Pennycook (1993). However, for the moderately large scattering an- 
gles or thicker specimens generally associated with Z-contrast imaging, thermal 
vibrations play a strong and usually dominant role. 

As with our discussion of lateral coherence, we will begin by considering the 
scattering from a non-vibrating atomic column. In this case, we find that station- 
ary atoms do not give a physically realistic description of the intensity distribution 
from a column at high angles. However, they do highlight the nature of the co- 
herent effects to be expected and demonstrate that the geometrical role of the 
ADF detector is far less important than in the case of lateral coherence. In ad- 
dition a non-vibrating column illustrates the very different signal characteristics 
associated with zero layer scattering and diffraction to higher-order Laue zones 
(HOLZS). 

(a) Stationary atoms 
In figure 9a, we show the thickness dependence of a Z-contrast image of a 

non-vibrating atomic column. The dramatic departure from the linear thickness 
dependence of ideal incoherent imaging theory emphasizes the importance of lon- 
gitudinal coherence in scattering to the high-angle detector. A very short column 
behaves as a two-dimensional phase object, with the atoms all scattering in phase 
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Figure 9. The thickness dependence of a non-vibrating atomic column (B = 0) containing atoms 
spaced 2 A apart for an (a) 75-150 mrad and (b) 75-200 mrad ADF detector range. In (c), thermal 
vibrations are added (B = 0.45) for the 75-150 mrad range for direct comparison with (a). 

a 

4 

a cos 6 

,, 

Figure 10. Geometry for scattering to the nth columnar HOLZ ring. 

to high angles. The intensity, therefore, increases as the number of atoms in the 
column squared (Jesson & Pennycook 1993). However, for an inner detector an- 

gle of 75 mrad, destructive interference is significant for columns only a few A 
in length. Hence, for this detector geometry (which does not include any HOLZ 
lines), the coherent signal from a column never rises above the value associated 
with the thin crystal phase object, and demonstrates the relative inefficiency of 
the high-angle detector in destroying longitudinal coherence. 

A further illustration of the departure from incoherent imaging theory is ap- 
parent in the sensitivity of the signal to detector geometry. Consider, for example, 
extending the outer angle of the high-angle detector from 150 to 200 mrad. This 
enables the first high-order Laue zone (HOLZ) ring to be detected (see figure 8) 
and dramatically changes the thickness dependence of the column, as shown in 
figure 9b. HOLZ diffraction is connected with three-dimensional Bragg scatter- 
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Figure 11. Comparison of HOLZ ring intensities IA (azimuthally integrated) calculated using the 
integrand of (5.1) for stationary atoms, B = 0 (solid line), atoms at room temperature, B = 0.45 

(dotted line), and atoms at absolute zero, B = 0.15 (dashed line). The atoms are spaced (a) 2 A 
and (b) 4 A apart along a column of length 200 A. 

ing and a simple geometrical argument (figure 10) gives the scattering angle for 
diffraction to the nth columnar HOLZ ring as 

-= arccos(l - nA/a), (5.2) 

where a is the spacing along the column. For a = 2 A, we find 9O = 193 mrad, 
which is in excellent agreement with the HOLZ ring position in figure 8. 

The large scattering angles involved render HOLZ diffraction very sensitive to 
small atomic displacements. As seen in figure 8, the presence of thermal vibrations 
markedly reduces the strength of HOLZ rings. It is important to realize that this 
is a significant effect even at absolute zero due to zero-point vibrations. For Si at 
0 K, B = 0.15 (International tables for X-ray crystallography 1962), which still 
results in a significantly reduced HOLZ intensity compared to the stationary atom 
prediction, even for the favourable case involving a 4 A atom spacing along the 
column (figure 11). 

Nevertheless, utilizing a cooled specimen and a thin annular detector, our cal- 
culations indicate that a HOLZ ring image might be formed under favourable 
circumstances which approaches 30% of the typical signal associated with a Z- 
contrast image. We, therefore, briefly speculate on the properties and potential 
uses of such an image. It is well appreciated that HOLZ diffraction is sensitive to 
the arrangement of atoms along a column in the form of conditional projected 
potentials (Baker 1983; Vincent et al. 1984; Jesson & Steeds 1990). For example, 
two identical atoms in a column separated by half the unit cell repeat distance 
will cancel completely from the first-order Laue zone intensity. This suggests that 
a HOLZ ring image could, in principle, provide important three-dimensional infor- 
mation concerning the nature of multicomponent strings in a crystal projection 
and would be highly complementary to Z-contrast images formed from TDS. 

The above discussion clearly demonstrates that HOLZ and TDS contrast mech- 
anisms are fundamentally different. Even in the case of monatomic strings, the 
discrete nature of HOLZ rings implicates a specific value of the atom scattering 
factor. In the case of TDS, however, f2(s) is integrated over the entire range of 
the ADF detector, producing an apparent difference in scattering cross section 
per atom, as evidenced by the differing slopes in figure 12. The linear thickness 
dependence displayed by both HOLZ and TDS has led to understandable confusion 
in the literature as to the important contrast mechanisms involved in Z-contrast 
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Column Length (A) 

Figure 12. A comparison of the thickness dependence of vibrating (B = 0.45) and non-vibrating 
(B = 0) column intensities containing atoms spaced 2 A apart and a 75-200 mrad ADF detector. 
The non-vibrating column intensity is dominated by HOLZ diffraction (see figure 8). 

imaging (Spence et al. 1989; Loane et al. 1991). It is clear from our calculations 
that in practice, TDS will dominate in the formation of Z-contrast images and 
that the resulting contrast is fundamentally different in nature from that to be 
expected from HOLZ diffraction. 

(b) Vibrating atoms 

It is evident from figure 8 that thermal vibrations strongly suppress HOLZ 
diffraction and modify the scattering distribution in the vicinity of the high-angle 
detector. In this section, we consider the important role of TDS in suppressing 
longitudinal coherence. The influence of phonons is described directly by the 
term, 

Wmn = exp{m - 2M} exp 2M [ i(m - n 
- 

] , (5.3) 

as contained in (5.1). It is convenient to consider Wmn as a correlation function 
which expresses the degree of correlation along a column. For example, by select- 
ing the m = 0 atom, then Won will describe its ability to interfere with the nth 
atom along a column (see figure 13a). 

The Einstein model of independent vibrating atoms is the simplest and most 
commonly used model for TDS. This is equivilent to assuming an Einstein dis- 
persion where the angular frequency w qj of all modes and polarizations is equal 
to a constant value WE. In this case, Gqj is independent of q (3.5) so that noting 

.qj Gqj - 2M, we obtain Ymn = 2M6mn from (3.7). Equation (5.3) then gives, 

Wo = exp{2M[6o0 - 1]}, (5.4) 

which is a delta function at the zeroth atom and exp(-2M) for all other atoms 

(figure 13c). The zeroth atom is perfectly correlated with itself but sees all other 
atoms as independent oscillators. For a column of Nc atoms, this very convenient 
result enables the TDS intensity expression (5.1) to be partitioned into coherent 
and incoherent terms in the usual way: 

IH(Ro) - eIT ls (R)P2(R - Ro) Nc j f2(s)(1 - exp(-2M))27s ds 

+ j f2(s) exp {i Zm} exp(-2M)2rsds]. (5.5) 
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Figure 13. (a) Schematic of an atomic column showing the location of the nth atom away from 
the zeroth atom (m = 0, n = 0). (b) Representation of the column scattering as individual 
packets (see text). (c) Values of Won in the Warren approximation (triangles), the Einstein 
limit (solid line) and the coherent limit (dashed line) for B = 0.45 and 0i = 75 mrad. The 
arrowed vertical line defines the packet cut-off limit (see text). 

It is important to emphasize, however, that the Einstein model naturally builds 
incoherence into the scattering process via the use of (5.4). Approaches based on 
this approximation (see, for example, Loane et al. 1991; Treacy & Gibson 1993) 
will, therefore, not correctly describe the coherence length along a column because 
they do not take into account near-neighbour correlations. The opposite extreme 
to the Einstein model is obtained by putting Won = 1 for all n (figure 13c). This 
corresponds to the stationary atom case discussed in ? 5 a where the zeroth atom 
is perfectly correlated with all other atoms in the column. 

In the Warren approximation, Wo, lies between the Einstein and non-vibrating 
atom extremes as shown in figure 13c. The correlation factor is unity at the 
origin but falls off rapidly as atoms become less correlated further away from the 
zeroth atom. Eventually, the curve is asymptotic to the exp(-2M) line associated 
with independent oscillators. This leads to a useful physical interpretation of TDS 
within the Warren approximation. By defining a packet cut-off limit as shown 
in figure 13c, we can consider the zeroth atom as being partially correlated with 
atoms contained within the packet and uncorrelated with those atoms outside the 
packet. It is, therefore, possible to visualize scattering from an atomic column as 
similar to scattering from an assembly of independent packets of atoms with 
the important proviso that the atoms contained within a packet are partially 
coherent. 

The division of a column of atoms into packets (figure 13b) enables (5.1) to be 
partitioned into coherent and incoherent terms in a manner directly analogous to 

Proc. R. Soc. Lond. A (1995) 

288 



Incoherent imaging of crystals 

the Einstein expression (5.5). For a column of Nc atoms, we can write 

IH(Ro) = els s 
(Rc)P2(R - Ro) [Np E f (s)cos {Z 

n si X 

x [exp {2M ((n - ) }- exp(-2M) 2rs ds 

+Zj, f2(s) exp { 2 Zmn} exp(-2M)2ws ds]. (5.6) 
mn,ni 2X 

The second term in this expression is identical to the usual coherent scattering 
term of the Einstein approximation (5.5). The first term describes incoherent 
scattering from Np individual packets (to a good approximation Np = Nc) with 
the summation performed over the contents of a packet. The number of atoms 
in the packet depends on both the detector inner-angle and Debye-Waller factor, 
but is independent of atom spacing along a column. Figure 14 illustrates the 
effect of Debye-Waller factor on packet size and the thickness dependence of the 
detected signal. Upon decreasing B from 2.0 to 0.4, it is necessary to increase 
the packet size from three to at least seven atoms to obtain accurate agreement 
between (5.6) and the full calculation using (5.1) for Oi = 75 mrad. In figure 15, we 
show a similar relationship between the packet size and the thickness dependence 
for different values of the inner detector angle Oi. 

An important prediction of the packet approximation is that at sufficiently 
high angles, where the coherent Bragg scattering term of (5.6) can be neglected, 
the column intensity will increase linearly with thickness. However, the residual 
partial coherence evident within each packet (figure 13c) will change the effective 
scattering cross section compared with the Einstein independent oscillator model 
(5.5). For example, the scattering to the high-angle detector can be above or 
below the predictions of the Einstein model depending on the atom spacing along 
a column (figure 16a and b), which influences the net amplitude contributed by 
an individual packet. 

It is clear, therefore, that phonons efficiently break the coherence along a col- 
umn, as is evident from a comparison of the columnar thickness dependencies 
contained in figure 9a and c, but there is still residual partial coherence involving 
atoms contained within a packet. The outstanding question, therefore, concerns 
the practical significance of these effects when using an Einstein model to quan- 
tify column intensities. Consider, for example, two columns both of length 80 A, 
but with different atomic separations of 1 A and 2 A along the column. Calcu- 
lations show that the use of the Einstein model can underestimate the column 
intensity ratio by 57%. This is a rather extreme example since in practice spac- 
ings as small as 1 A are not generally encountered. A more typical figure is a 16% 
underestimate associated with two 80 A columns involving spacings of 2 and 4 A. 
Therefore, although packets containing several atoms can contribute to longitudi- 
nal coherence in Z-contrast images, the coherence within a packet is only partial, 
which limits these effects to a relatively small departure from the independent 
oscillator models for atom spacings usually encountered in practice. 

6. Discussion 

In this paper, we have utilized the Warren approximation to bridge the gap 
between a full phonon and independent oscillator treatment of TDS. The Debye 
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Figure 14. (a) Correlation function Won for i = 75 mrad and B = 2.0. The arrow defines 
the packet cut-off limit. (b) Columnar thickness dependence calculated using the full expression 
(5.1) and the packet approximation (5.6) for a 75-150 mrad ADF detector (B = 2.0). A packet 
consisting of three atoms is sufficient to obtain good convergence. (c) and (d) correspond to (a) 
and (b), respectively, but with B = 0.4, which requires a seven-atom packet for convergence. 
The atom spacing along the column is 2 A. 

model used probably tends to somewhat overestimate atomic correlations by as- 
signing excessively high frequencies (and hence low vibration amplitudes) to the 
shortest wavelength modes (Anderson et al. 1982; Nielsen & Weber 1980). It 
should, however, provide a useful means of assessing the limitations of the Ein- 
stein model of thermal vibrations as a basis for quantifying Z-contrast images. It 
is apparent from the analysis that atoms located in different atomic columns of 
a crystal projection can be considered to scatter independently. However, atomic 
columns scatter as an assembly of independent packets of atoms in which the 
atoms contained within a packet are partially coherent. This means that the 
intensity of a column can be above or below the Einstein model prediction de- 
pending on the phase of the residual partial coherence. 

It should be emphasized that partial coherence along a column is generally 
neglected in most TDS calculations based on the multislice approach (see, for ex- 
ample, Wang & Cowley 1989). Often, it is assumed that individual slices scatter 
incoherently even though coherence effects on the scale of a packet dimension 
are evident in figure 7 of Doyle (1969). Similarly, each slice of a crystal is gener- 
ally considered to scatter incoherently in calculations based on the Bloch wave 
formalism (Young & Rez 1975; Rez et al. 1977). The justification for this is usu- 
ally based on the assumption that matrix elements governing transitions between 
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Figure 15. (a) Correlation function Won for Oi = 100 mrad and B = 0.45. The arrow defines the 
packet cut-off limit. (b) Columnar thickness dependence calculated using the full expression (5.1) 
and the packet approximation (5.6) for a 100-150 mrad ADF detector and B = 0.45. A packet 
consisting of five atoms is sufficient to obtain accurate convergence. (c) and (d), respectively, 
correspond to (a) and (b) but with Oi = 50 mrad in (c) and a detector range of 50-150 mrad in 
(d). A packet consisting of nine atoms is required for accurate convergence. The atom spacing 
along the column is 23A. 

branches of the dispersion surface vary slowly with the z component of the phonon 
wavevector equal to 27rn/t, where t is the crystal thickness. It is then possible to 
take the matrix elements outside of the summation, 

Z exp 27t (Z z') 
n 

to obtain the independent slice result Nc6(z-z'). This approximation is, however, 
least valid for near-neighbour correlations (i.e. small (z - z')) within a packet. 

The dominant influence of packets in the context of Z-contrast imaging is to 
modify the effective scattering cross section per atom. Partial coherence limits 
this effect to typically less than 20% for most cases of practical importance. For 
atomic strings of length t containing a single atom type, the appropriate intensity 
expression, is by analogy with the result of Pennycook & Jesson (1991); 

(6.1) IH(Ro, t) - O(Ro, t)* P (Ro), 

where O(Ro, t) is the object function given by 

O(-Rt + \' c_ 2CS2(ROS - exp(-2[t'st) 
O(Ri, t)= E iC S (Ri, 0) -exp(-2ls t) 

P[i '2p 
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Figure 16. Columnar intensity thickness dependence calculated in the Einstein (dashed line) and 
Warren (solid line) approximations for atoms spaced at (a) 1 A and (b) 2 A along the column. 
The detector range is 75-150 mrad and B = 0.45. 

Here u's is the axial s-state absorption. Since the packet size is considerably 
smaller than the absorption length, ac can be calculated as before. For a column 
of Nc atoms, 

-= N 
S , (s) cos Zn 

n LX 

x [exp {2M [ - - exp(-2M)1 2rs ds. (6.3) 

The effective probe profile is given by 

^ )pls(O) Rprobe 1 e (K) exp i[K (R R0o)+ /y(K) dK (6.4) 
l() robe 

where y(K) is the usual phase factor due to spherical abberation and defocus. 
Note that atomic correlations in TDS must also influence the Z-contrast image 
intensity via the attenuation of s-states. It is possible to include these effects 
approximately through the derivation of an absorption potential based on the 
Warren treatment of atomic correlations (Jesson & Pennycook 1994, unpublished 
work). Absorption coefficients calculated from this potential can then be included 
explicitly in equation (6.2). The case of multicomponent atomic strings involves 
a more complicated scaling of the columnar scattering cross section and will be 
considered in detail in a future publication. 

7. Conclusions 

We have investigated large-angle electron scattering in the framework of the 
Warren treatment of thermal vibrations. It is shown that lateral coherence in- 
volving scattering between atoms located in different atomic columns is efficiently 
removed in Z-contrast imaging as a result of the high-angle detector geometry. 
Longitudinal coherence involving atoms constrained within the same column is 
also largely suppressed as a result of thermal vibrations. However, residual longi- 
tudinal coherence does remain and can be visualized as partially coherent scat- 
tering from an assembly of independent packets. Under typical conditions, this 
can modify the columnar intensity by around 20%, somewhat justifying the use 
of an independent oscillator model. 
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