logo

Astronomy Picture of the Day
Search Results for "elliptical galaxy"




Found 96 items.

Thumbnail image of picture found for this day. APOD: 2009 March 13 - Hickson Compact Group 90
Explanation: Scanning the skies for galaxies, Canadian astronomer Paul Hickson and colleagues identified some 100 compact groups of galaxies, now appropriately called Hickson Compact Groups (HCGs). This sharp Hubble image shows one such galaxy group, HCG 90, in startling detail. Three galaxies are revealed to be strongly interacting: a dusty spiral galaxy stretched and distorted between a pair of large elliptical galaxies. The close encounter will trigger furious star formation. On a cosmic timescale, the gravitational tug of war will eventually result in the merger of the trio into a large single galaxy. The merger process is now understood to be a normal part of the evolution of galaxies, including our own Milky Way. HCG 90 lies about 100 million light-years away in the constellation Piscis Austrinus. This Hubble view spans about 80,000 light-years at that estimated distance. Of course, Hickson Compact Groups also make for rewarding viewing for Earth-bound astronomers with more modest sized telescopes.

Thumbnail image of picture found for this day. APOD: 2009 January 9 - NGC 4945 in Centaurus
Explanation: Large, dusty, spiral galaxy NGC 4945 is seen edge-on near the center of this rich telescopic image. The field of view spans nearly 2 degrees, or about 4 times the width of the Full Moon, toward the expansive southern constellation Centaurus. About 13 million light-years distant, NGC 4945 is almost the size of our own Milky Way Galaxy. But X-ray and infrared observations reveal even more high energy emission and star formation in the core of NGC 4945. The other prominent galaxy in the field, NGC 4976, is an elliptical galaxy. Left of center, NGC 4976 is much farther away, at a distance of about 35 million light-years, and not physically associated with NGC 4945.

Thumbnail image of picture found for this day. APOD: 2008 September 9 - M110: Satellite of the Andromeda Galaxy
Explanation: Our Milky Way Galaxy is not alone. It is part of a gathering of about 25 galaxies known as the Local Group. Members include the Great Andromeda Galaxy (M31), M32, M33, the Large Magellanic Cloud, the Small Magellanic Cloud, Dwingeloo 1, several small irregular galaxies, and many dwarf elliptical and dwarf spheroidal galaxies. Pictured on the lower right is one of the dwarf ellipticals: NGC 205. Like M32, NGC 205 is a companion to the large M31, and can sometimes be seen to the south of M31's center in photographs. The image shows NGC 205 to be unusual for an elliptical galaxy in that it contains at least two dust clouds (at 9 and 2 o'clock - they are visible but hard to spot) and signs of recent star formation. This galaxy is sometimes known as M110, although it was actually not part of Messier's original catalog.

Thumbnail image of picture found for this day. APOD: 2008 September 2 - NGC 1316: After Galaxies Collide
Explanation: Astronomers turn detectives when trying to figure out the cause of startling sights like NGC 1316. Their investigation indicates that NGC 1316 is an enormous elliptical galaxy that started, about 100 million years ago, to devour a smaller spiral galaxy neighbor, NGC 1317, just above it. Supporting evidence includes the dark dust lanes characteristic of a spiral galaxy, and faint swirls of stars and gas visible in this wide and deep image. What remains unexplained are the unusually small globular star clusters, seen as faint dots on the image. Most elliptical galaxies have more and brighter globular clusters than NGC 1316. Yet the observed globulars are too old to have been created by the recent spiral collision. One hypothesis is that these globulars survive from an even earlier galaxy that was subsumed into NGC 1316.

Thumbnail image of picture found for this day. APOD: 2008 February 13 - Elliptical Galaxy NGC 1132
Explanation: NGC 1132 is one smooth galaxy -- but how did it form? As an elliptical galaxy, NGC 1132 has little dust and gas, and few stars have formed in it recently. Although many elliptical galaxies are in clusters of galaxies, NGC 1132 appears as a large, isolated galaxy toward the constellation of the River (Eridanus). To probe the history of this intriguing trillion-star ball, astronomers imaged NGC 1132 in both visible light with the Hubble Space Telescope and X-ray light with the Chandra X-ray Observatory. In this composite false-color image, visible light is white, while the X-ray light is blue and indicates the unusual presence of very hot gas. The X-ray light also likely traces out the location of dark matter. One progenitor hypothesis is that NGC 1132 is the result of a series of galaxy mergers in what once was a small group of galaxies. NGC 1132 is over 300 million light years away, so the light we see from it today left before dinosaurs roamed the Earth. Many fascinating background galaxies can be seen far in the distance.

Thumbnail image of picture found for this day. APOD: 2008 January 10 - Active Galaxy Centaurus A
Explanation: A mere 11 million light-years away, Centaurus A is a giant elliptical galaxy - the closest active galaxy to Earth. This remarkable composite view of the galaxy combines image data from the x-ray ( Chandra), optical(ESO), and radio(VLA) regimes. Centaurus A's central region is a jumble of gas, dust, and stars in optical light, but both radio and x-ray telescopes trace a remarkable jet of high-energy particles streaming from the galaxy's core. The cosmic particle accelerator's power source is a black hole with about 10 million times the mass of the Sun coincident with the x-ray bright spot at the galaxy's center. Blasting out from the active galactic nucleus toward the upper left, the energetic jet extends about 13,000 light-years. A shorter jet extends from the nucleus in the opposite direction. Other x-ray bright spots in the field are binary star systems with neutron stars or stellar mass black holes. Active galaxy Centaurus A is likely the result of a merger with a spiral galaxy some 100 million years ago.

Thumbnail image of picture found for this day. APOD: 2007 October 12 - The Whale and the Hockey Stick
Explanation: NGC 4631 is a big beautiful spiral galaxy seen edge-on (top right) only 25 million light-years away towards the small northern constellation Canes Venatici. This galaxy's slightly distorted wedge shape suggests to some a cosmic herring and to others the popular moniker of The Whale Galaxy. Either way, it is similar in size to our own Milky Way. In this gorgeous color image, the Whale's dark interstellar dust clouds, yellowish core, and young blue star clusters are easy to spot. A companion galaxy, the small elliptical NGC 4627, appears above the Whale Galaxy. At the lower left is another distorted galaxy, the hockey stick-shaped NGC 4656. The distortions and mingling trails of gas detected at other wavelengths suggest that all three galaxies have had close encounters with each other in their past. The Whale Galaxy is also known to have spouted a halo of hot gas glowing in x-rays.

Thumbnail image of picture found for this day. APOD: 2007 October 8 - Galaxy NGC 474: Cosmic Blender
Explanation: What's happening to galaxy NGC 474? The multiple layers of emission appear strangely complex and unexpected given the relatively featureless appearance of the elliptical galaxy in less deep images. The cause of the shells is currently unknown, but possibly tidal tails related to debris left over from absorbing numerous small galaxies in the past billion years. Alternatively the shells may be like ripples in a pond, where the ongoing collision with the spiral galaxy to the right of NGC 474 is causing density waves to ripple though the galactic giant. Regardless of the actual cause, the above image dramatically highlights the increasing consensus that the outer halos of most large galaxies are not really smooth but have complexities induced by frequent interactions with -- and accretions of -- smaller nearby galaxies. The halo of our own Milky Way Galaxy is one example of such unexpected complexity. NGC 474 spans about 250,000 light years and lies about 100 million light years distant toward the constellation of the Fish Pisces.

Thumbnail image of picture found for this day. APOD: 2007 July 19 - The Hercules Cluster of Galaxies
Explanation: These are galaxies of the Hercules Cluster, an archipelago of island universes a mere 500 million light-years away. Also known as Abell 2151, this cluster is loaded with gas and dust rich, star-forming spiral galaxies but has relatively few elliptical galaxies, which lack gas and dust and the associated newborn stars. The colors in this remarkably deep composite image clearly show the star forming galaxies with a blue tint and galaxies with older stellar populations with a yellowish cast. The sharp picture spans about 1/2 degree across the cluster center, corresponding to over 4 million light-years at the cluster's estimated distance. In the cosmic vista many galaxies seem to be colliding or merging while others seem distorted - clear evidence that cluster galaxies commonly interact. In fact, the Hercules Cluster itself may be seen as the result of ongoing mergers of smaller galaxy clusters and is thought to be similar to young galaxy clusters in the much more distant, early Universe.

Thumbnail image of picture found for this day. APOD: 2007 June 30 - Jumbled Galaxy Centaurus A
Explanation: At the center of this sharp skyscape, Centaurus A seems to be a fantastic jumble of old yellow stars, young blue star clusters, and imposing dark dust lanes. Spanning over 60,000 light-years, the peculiar elliptical galaxy is apparently the result of a collision of two otherwise normal galaxies. The left over cosmic debris is steadily being consumed by a black hole with a billion times the mass of the Sun which lies at the center of Centaurus A. It's likely that such black hole central engines generate the radio, X-ray, and gamma-ray energy radiated by Centaurus A and other active galaxies. For an active galaxy Centaurus A is close, a mere 10 million light-years away, and is well-studied by earthbound astronomers.

Thumbnail image of picture found for this day. APOD: 2007 May 31 - Dwarf Galaxies in the Coma Cluster
Explanation: In visible light images, over a thousand galaxies are seen to lie within a volume about 20 million light-years across in the rich Coma Galaxy Cluster. But infrared images of the Coma Cluster have now been used to add thousands more to the Coma's galaxy count in the form of previously undiscovered dwarf galaxies. This composite combines infrared Spitzer Space Telescope image data (red and green) with visible light Sloan Sky Survey data (blue) for the central part of the cluster. Over 1 degree wide, the field is dominated by two giant elliptical galaxies in blue. Still, many of the small green smudges (see magnified inset) are identified as dwarf galaxies, roughly comparable to the Small Magellanic Cloud. Dwarf galaxies are thought to form first, providing building blocks for larger galaxies. The well-studied, friendly, Coma Cluster is 320 million light-years away.

Thumbnail image of picture found for this day. APOD: 2007 March 19 - Galaxy Group Hickson 44
Explanation: Galaxies, like stars, frequently form groups. A group of galaxies is a system containing more than two galaxies but less than the tens or hundreds typically found in a cluster of galaxies. A most notable example is the Local Group of Galaxies, which houses over 30 galaxies including our Milky Way, Andromeda, and the Magellanic Clouds. Pictured above is nearby compact group Hickson 44. This group is located about 60 million light-years away toward the constellation of Leo. Also known as the NGC 3190 Group, Hickson 44 contains several bright spiral galaxies and one bright elliptical galaxy on the upper left. The bright source on the upper right is a foreground star. Many galaxies in Hickson 44 and other compact groups are either slowly merging or gravitationally pulling each other apart.

Thumbnail image of picture found for this day. APOD: 2007 February 8 - Galaxies Away
Explanation: This stunning group of galaxies is far, far away - about 450 million light-years from planet Earth - cataloged as galaxy cluster Abell S0740. Dominated by the cluster's large central elliptical galaxy (ESO 325-G004), this sharp Hubble view takes in a remarkable assortment of galaxy shapes and sizes with only a few spiky foreground stars scattered through the field. The giant elliptical galaxy spans over 100,000 light years and contains about 100 billion stars, comparable in size to our own spiral Milky Way. The Hubble data reveal a wealth of detail in even these distant galaxies, including magnificent arms and dust lanes, star clusters, ring structures, and gravitational lensing arcs.

Thumbnail image of picture found for this day. APOD: 2006 September 8 - Messier 110
Explanation: This very sharp telescopic vista features the last object in the modern version of Charles Messier's catalog of bright clusters and nebulae - Messier 110. A dwarf elliptical galaxy, M110 (aka NGC 205) is actually a bright satellite of the large spiral galaxy Andromeda, making M110 a fellow member of the local group of galaxies. Seen through a foreground of nearby stars, M110 is about 15,000 light-years across. That makes it comparable in size to satellite galaxies of our own Milky Way, the Large and Small Magellanic Clouds. Though elliptical galaxies are normally thought to be lacking in gas and dust to form new stars, M110 is known to contain young stars, and faint dust clouds can easily be seen in this detailed image at about the 7 and 11 o'clock positions relative to the galaxy center.

Thumbnail image of picture found for this day. APOD: 2006 July 4 - Elliptical Galaxy Centaurus A from CFHT
Explanation: Why is peculiar galaxy Centaurus A so dusty? Dramatic dust lanes that run across the galaxy's center mark Cen A. These dust lanes are so thick they almost completely obscure the galaxy's center in visible light. This is particularly unusual as Cen A's red stars and round shape are characteristic of a giant elliptical galaxy, a galaxy type usually low in dark dust. Cen A, also known as NGC 5128, is also unusual compared to an average elliptical galaxy because it contains a higher proportion of young blue stars and is a very strong source of radio emission. Evidence indicates that Cen A is likely the result of the collision of two normal galaxies. During the collision, many young stars were formed, but details of the creation of Cen A's unusual dust belts are still being researched. Cen A lies only 13 million light years away, making it the closest active galaxy. Cen A, pictured above, spans 60,000 light years and can be seen with binoculars toward the constellation of Centaurus.

Thumbnail image of picture found for this day. APOD: 2006 May 20 - Elliptical Galaxy M87
Explanation: In spiral galaxies, majestic winding arms of young stars and interstellar gas and dust rotate in a flat disk around a bulging galactic nucleus. But elliptical galaxies seem to be simpler. Lacking gas and dust to form new stars, their randomly swarming older stars, give them an ellipsoidal (egg-like) shape. Still, elliptical galaxies can be very large. Over 120,000 light-years in diameter (larger than our own Milky Way), elliptical galaxy M87 is the dominant galaxy at the center of the Virgo Galaxy Cluster, some 50 million light-years away. M87 is likely home to a supermassive black hole responsible for the high-energy jet of particles emerging from the giant galaxy's central region.

Thumbnail image of picture found for this day. APOD: 2006 May 6 - Three Galaxies in Draco
Explanation: This intriguing trio of galaxies is sometimes called the NGC 5985/Draco Group and so (quite reasonably) is located in the northern constellation Draco. From left to right are face-on spiral NGC 5985, elliptical galaxy NGC 5982, and edge-on spiral NGC 5981 -- all within this single telescopic field of view spanning a little more than half the width of the full moon. While this grouping is far too small to be a galaxy cluster and has not been cataloged as a compact group, these galaxies all do lie roughly 100 million light-years from planet Earth. On close examination with spectrographs, the bright core of the striking face-on spiral NGC 5985 shows prominent emission in specific wavelengths of light, prompting astronomers to classify it as a Seyfert, a type of active galaxy. Not as well known as other tight groupings of galaxies, the contrast in visual appearance makes this triplet an attractive subject for astrophotographers. This impressively deep exposure of region also reveals faint and even more distant background galaxies.

Thumbnail image of picture found for this day. APOD: 2006 April 27 - NGC 4696: Energy from a Black Hole
Explanation: In many cosmic environments, when material falls toward a black hole energy is produced as some of the matter is blasted back out in jets. In fact, such black hole "engines" appear to be the most efficient in the Universe, at least on a galactic scale. This composite image illustrates one example of an elliptical galaxy with an efficient black hole engine, NGC 4696. The large galaxy is the brightest member of the Centaurus galaxy cluster, some 150 million light-years away. Exploring NGC 4696 in x-rays (red) astronomers can measure the rate at which infalling matter fuels the supermassive black hole and compare it to the energy output in the jets to produce giant radio emitting bubbles. The bubbles, shown here in blue, are about 10,000 light-years across. The results confirm that the process is much more efficient than producing energy through nuclear reactions - not to mention using fossil fuels. Astronomers also suggest that as the black hole pumps out energy and heats the surrounding gas, star formation is ultimately shut off, limiting the size of large galaxies like NGC 4696.

Thumbnail image of picture found for this day. APOD: 2005 November 22 - A Galactic Collision in Cluster Abell 1185
Explanation: What is a guitar doing in a cluster of galaxies? Colliding. Clusters of galaxies are sometimes packed so tight that the galaxies that compose them collide. A prominent example occurs on the left of the above image of the rich cluster of galaxies Abell 1185. There at least two galaxies, cataloged as Arp 105 and dubbed The Guitar for their familiar appearance, are pulling each other apart gravitationally. Most of Abell 1185's hundreds of galaxies are elliptical galaxies, although spiral, lenticular, and irregular galaxies are all clearly evident. Many of the spots on the above image are fully galaxies themselves containing billions of stars, but some spots are foreground stars in our own Milky Way Galaxy. Recent observations of Abell 1185 have found unusual globular clusters of stars that appear to belong only to the galaxy cluster and not to any individual galaxy. Abell 1185 spans about one million light years and lies 400 million light years distant.

Thumbnail image of picture found for this day. APOD: 2005 July 16 - Galaxy Group HCG 87
Explanation: Posing for this cosmic family photo are the galaxies of HCG (Hickson Compact Group) 87, about four hundred million light-years distant toward the amphibious constellation Capricornus. The large edge-on spiral near picture center, the fuzzy elliptical galaxy immediately to its right, and the spiral near the top of the image are identified members of the group, while the small spiral galaxy in the middle is likely a more distant background galaxy. In any event, a careful examination of the deep image reveals other galaxies which certainly lie far beyond HCG 87. While not exactly locked in a group hug, the HCG 87 galaxies are interacting gravitationally, influencing their fellow group members' structure and evolution. This image is from the commissioning phase of an instrument on the Gemini Observatory's South Telescope at Cerro Pachon, Chile. It compares favorably with views of this photogenic galaxy group recorded by the Hubble Space Telescope.

Thumbnail image of picture found for this day. APOD: 2005 June 28 - The Giant Radio Lobes of Fornax A
Explanation: Together, the radio lobes span over one million light years -- what caused them? In the center is a large but peculiar elliptical galaxy dubbed NGC 1316. Detailed inspection of the NGC 1316 system indicates that it began absorbing a small neighboring galaxy about 100 million years ago. Gas from the galactic collision has fallen inward toward the massive central black hole, with friction heating the gas to 10 million degrees. For reasons not yet well understood, two oppositely pointed fast moving jets of particles then developed, eventually smashing into the ambient material on either side of the giant elliptical galaxy. The result is a huge reservoir of hot gas that emits radio waves, observed as the orange (false-color) radio lobes in the above image. The radio image is superposed on an optical survey image of the same part of the sky. Strange patterns in the radio lobes likely indicate slight changes in the directions of the jets.

Thumbnail image of picture found for this day. APOD: 2005 May 12 - Stars, Galaxies, and Comet Tempel 1
Explanation: Faint comet Tempel 1 sports a fuzzy blue-tinted tail, just right of center in this lovely field of stars. Recorded on May 3rd slowly sweeping through the constellation Virgo, periodic comet Tempel 1 orbits the Sun once every 5.5 years. Also caught in the skyview are two galaxies at the upper left - NGC 4762 and NGC 4754 - both members of the large Virgo Cluster of galaxies. Classified as a lenticular galaxy, NGC 4762 presents an edge-on disk as a narrow gash of light while NGC 4754 is a football-shaped elliptical galaxy. Similar in apparent size, the galaxies and comet make for an intriguing visual comparison, but Tempel 1 is only about 3 light-minutes from planet Earth. The two Virgo cluster galaxies are 50 million light-years away. NASA's Deep Impact spacecraft is scheduled to encounter Tempel 1 on July 4th, launching a probe to impact the comet's nucleus.

Thumbnail image of picture found for this day. APOD: 2005 April 27 - The Hercules Cluster of Galaxies
Explanation: These are galaxies of the Hercules Cluster, an archipelago of "island universes" a mere 650 million light-years distant. This cluster is loaded with gas and dust rich, star forming, spiral galaxies but has relatively few elliptical galaxies, which lack gas and dust and the associated newborn stars. Colors in the composite image show the star forming galaxies with a blue tint and ellipticals with a slightly yellowish cast. In this cosmic vista many galaxies seem to be colliding or merging while others seem distorted - clear evidence that cluster galaxies commonly interact. Over time, the galaxy interactions are likely to affect the the content of the cluster itself. Researchers believe that the Hercules Cluster is significantly similar to young galaxy clusters in the distant, early Universe and that exploring galaxy types and their interactions in nearby Hercules will help unravel the threads of galaxy andcluster evolution.

Thumbnail image of picture found for this day. APOD: 2005 April 4 - NGC 1316: After Galaxies Collide
Explanation: How did this strange-looking galaxy form? Astronomers turn detectives when trying to figure out the cause of unusual jumbles of stars, gas, and dust like NGC 1316. A preliminary inspection indicates that NGC 1316 is an enormous elliptical galaxy that includes dark dust lanes usually found in a spiral. The above image taken by the Hubble Space Telescope shows details, however, that help in reconstructing the history of this gigantic jumble. Close inspection finds fewer low mass globular clusters of stars toward NGC 1316's center. Such an effect is expected in galaxies that have undergone collisions or merging with other galaxies in the past few billion years. After such collisions, many star clusters would be destroyed in the dense galactic center. The dark knots and lanes of dust indicate that one or more of the devoured galaxies were spiral galaxies. NGC 1316 spans about 60,000 light years and lies about 75 million light years away toward the constellation of the Furnace.

Thumbnail image of picture found for this day. APOD: 2005 March 16 - Markarian's Chain of Galaxies
Explanation: Across the heart of the Virgo Cluster of Galaxies lies a striking string of galaxies known as Markarian's Chain. The chain, pictured above, is highlighted on the upper right with two large but featureless lenticular galaxies, M84 and M86, and connects to the large spiral on the lower left, M88. Prominent on the lower right but not part of Markarian's Chain is the giant elliptical galaxy M87. The home Virgo Cluster is the nearest cluster of galaxies, contains over 2000 galaxies, and has a noticeable gravitational pull on the galaxies of the Local Group of Galaxies surrounding our Milky Way Galaxy. The center of the Virgo Cluster is located about 70 million light years away toward the constellation of Virgo. At least seven galaxies in the chain appear to move coherently, although others appear to be superposed by chance.

Thumbnail image of picture found for this day. APOD: 2005 February 13 - In the Center of the Virgo Cluster
Explanation: The Virgo Cluster of Galaxies is the closest cluster of galaxies to our Milky Way Galaxy. The Virgo Cluster is so close that it spans more than 5 degrees on the sky - about 10 times the angle made by a full Moon. It contains over 100 galaxies of many types - including spiral, elliptical, and irregular galaxies. The Virgo Cluster is so massive that it is noticeably pulling our Galaxy toward it. The cluster contains not only galaxies filled with stars but also gas so hot it glows in X-rays. Motions of galaxies in and around clusters indicate that they contain more dark matter than any visible matter we can see. Pictured above, the center of the Virgo cluster might appear to some as a human face, and includes bright Messier galaxies M86 at the top, M84 on the far right, NGC 4388 at the bottom, and NGC 4387 in the middle.

Thumbnail image of picture found for this day. APOD: 2004 December 11 - M87's Energetic Jet
Explanation: An energetic jet from the core of giant elliptical galaxy M87 stretches outward for 5,000 light-years. This monstrous jet appears in the panels above to be a knotted and irregular structure, detected across the spectrum, from x-ray to optical to radio wavelengths. In all these bands, the observed emission is likely created as high energy electrons spiral along magnetic field lines, so called synchrotron radiation. But what powers this cosmic blowtorch? Ultimately, the jet is thought to be produced as matter near the center of M87 swirls toward a spinning, supermassive black hole. Strong electromagnetic forces are generated and eject material away from the black hole along the axis of rotation in a narrow jet. Galaxy M87 is about 50 million light-years away and reigns as the large central elliptical galaxy in the Virgo cluster.

Thumbnail image of picture found for this day. APOD: 2004 June 16 - Elliptical Galaxy M87
Explanation: Elliptical galaxy M87 is a type of galaxy that looks much different than our own Milky Way Galaxy. Even for an elliptical galaxy, though, M87 is peculiar. M87 is much bigger than an average galaxy, appears near the center of a whole cluster of galaxies known as the Virgo Cluster, and shows an unusually high number of globular clusters. These globular clusters are visible as faint spots surrounding the bright center of M87. In general, elliptical galaxies contain similar numbers of stars as spiral galaxies, but are ellipsoidal in shape (spirals are mostly flat), have no spiral structure, and little gas and dust. The above image of M87 was taken recently by the Canada-France-Hawaii Telescope on top of the dormant volcano Mauna Kea in Hawaii, USA.

Thumbnail image of picture found for this day. APOD: 2004 January 23 - NGC 4631: The Whale Galaxy
Explanation: NGC 4631 is a big beautiful spiral galaxy seen edge-on only 25 million light-years away towards the small northern constellation Canes Venatici. This galaxy's slightly distorted wedge shape suggests to some a cosmic herring and to others the popular moniker of The Whale Galaxy. Either way, it is similar in size to our own Milky Way. In this gorgeous color image, the Whale's dark interstellar dust clouds, young bright blue star clusters, and purplish star forming regions are easy to spot. A companion galaxy, the small elliptical NGC 4627 appears above the Whale Galaxy. Out of view off the lower left corner of the picture lies another distorted galaxy, the hockey stick-shaped NGC 4656. The distortions and mingling trails of gas and dust detected at other wavelengths suggest that all three galaxies have had close encounters with each other in their past. The Whale Galaxy is also known to have spouted a halo of hot gas glowing in x-rays.

Thumbnail image of picture found for this day. APOD: 2003 August 6 - Dusty Galaxy Centaurus A
Explanation: Why is peculiar galaxy Centaurus A so dusty? Dramatic dust lanes that run across the galaxy's center mark Cen A. These dust lanes are so thick they almost completely obscure the galaxy's center in visible light. This is particularly unusual as Cen A's red stars and round shape are characteristic of a giant elliptical galaxy, a galaxy type usually low in dark dust. Cen A, also known as NGC 5128, is also unusual compared to an average elliptical galaxy because it contains a higher proportion of young blue stars and is a very strong source of radio emission. Evidence indicates that Cen A is likely the result of the collision of two normal galaxies. During the collision, many young stars were formed, but details of the creation of Cen A's unusual dust belts are still being researched. Cen A lies only 13 million light years away, making it the closest active galaxy. Cen A spans 60,000 light years and can be seen with binoculars toward the constellation of Centaurus.

Thumbnail image of picture found for this day. APOD: 2003 August 4 - In the Center of the Virgo Cluster
Explanation: The Virgo Cluster of Galaxies is the closest cluster of galaxies to our Milky Way Galaxy. The Virgo Cluster is so close that it spans more than 5 degrees on the sky - about 10 times the angle made by a full Moon. It contains over 100 galaxies of many types - including spiral, elliptical, and irregular galaxies. The Virgo Cluster is so massive that it is noticeably pulling our Galaxy toward it. The cluster contains not only galaxies filled with stars but also gas so hot it glows in X-rays. Motions of galaxies in and around clusters indicate that they contain more dark matter than any visible matter we can see. Pictured above, the center of the Virgo cluster might appear to some as a human face, and includes bright Messier galaxies M86 at the top, M84 on the far right, NGC 4388 at the bottom, and NGC 4387 in the middle.

Thumbnail image of picture found for this day. APOD: 2003 July 31 - Galaxy Group HCG 87
Explanation: Posing for this cosmic family photo are the galaxies of HCG (Hickson Compact Group) 87, about four hundred million light-years distant toward the amphibious constellation Capricornus. The large edge-on spiral near picture center, the fuzzy elliptical galaxy immediately to its right, and the spiral near the top of the image are identified members of the group, while the small spiral galaxy in the middle is likely a more distant background galaxy. In any event, a careful examination of the deep image reveals other galaxies which certainly lie far beyond HCG 87. While not exactly locked in a group hug, the HCG 87 galaxies are interacting gravitationally, influencing their fellow group members' structure and evolution. This new image is from an instrument undergoing commissioning on the Gemini Observatory's South Telescope at Cerro Pachon, Chile. It compares favorably with views of this photogenic galaxy group recorded by the Hubble Space Telescope.

Thumbnail image of picture found for this day. APOD: 2003 July 27 -The Aquarius Dwarf
Explanation: Our Milky Way Galaxy is not alone. It is part of a gathering of about 50 galaxies known as the Local Group. Members include the Great Andromeda Galaxy (M31), M32, M33, the Large Magellanic Cloud, the Small Magellanic Cloud, Dwingeloo 1, several small irregular galaxies, and many dwarf elliptical and dwarf spheroidal galaxies. Pictured above is the Aquarius Dwarf, a faint dwarf irregular galaxy over 3 million light years away. An earlier APOD erroneously identified the above image as the Sagittarius Dwarf.

Thumbnail image of picture found for this day. APOD: 2003 July 5 - Centaurus A: X-Rays from an Active Galaxy
Explanation: Its core hidden from optical view by a thick lane of dust, the giant elliptical galaxy Centaurus A was among the first objects observed by the orbiting Chandra X-ray Observatory. Astronomers were not disappointed, as Centaurus A's appearance in x-rays makes its classification as an active galaxy easy to appreciate. Perhaps the most striking feature of this Chandra false-color x-ray view is the jet, 30,000 light-years long. Blasting toward the upper left corner of the picture, the jet seems to arise from the galaxy's bright central x-ray source -- suspected of harboring a black hole with a million or so times the mass of the Sun. Centaurus A is also seen to be teeming with other individual x-ray sources and a pervasive, diffuse x-ray glow. Most of these individual sources are likely to be neutron stars or solar mass black holes accreting material from their less exotic binary companion stars. The diffuse high-energy glow represents gas throughout the galaxy heated to temperatures of millions of degrees C. At 11 million light-years distant in the constellation Centaurus, Centaurus A (NGC 5128) is the closest active galaxy.

Thumbnail image of picture found for this day. APOD: 2003 May 5 - NGC 1275: A Galactic Collision
Explanation: In NGC 1275, one galaxy is slicing through another. The disk of the dusty spiral galaxy near the image center is cutting through a large elliptical galaxy, visible predominantly on the lower left. Galaxies can change significantly during a collision like this, with gravitational tides distorting each galaxy and gas clouds being compressed and lighting up with new star formation. Galaxy collisions occur in slow motion to the human eye, with a single pass taking as much as 100 million years. NGC 1275 is a member of the Perseus cluster of galaxies that lies about 230 million light years away toward the constellation of Perseus. Each galaxy spans about 50,000 light years across. The above picture is a composite of images taken by the Hubble Space Telescope in 1995 and 2001.

Thumbnail image of picture found for this day. APOD: 2003 January 16 - NGC 1700: Elliptical Galaxy and Rotating Disk
Explanation: In spiral galaxies, majestic winding arms of young stars and interstellar gas and dust rotate in a disk around a bulging galactic nucleus. Elliptical galaxies seem to be simpler, randomly swarming with old stars and lacking gas and dust. So astronomers were excited to find that NGC 1700, a young elliptical galaxy about 160 million light-years away, shows evidence for a 90,000 light-year wide rotating disk of multi-million degree hot gas. The evidence comes from data recorded by the orbiting Chandra Observatory, whose sharp x-ray image of NGC 1700 is seen above. Balancing gravity, the rotation of the x-ray hot disk, the largest of its type yet discovered, gives the galaxy a pronounced boxy profile in this false-color picture. Theories about the origin of the disk suggest that NGC 1700 may be the result of a cosmic scale galactic merger, perhaps between a spiral and elliptical galaxy. NGC 1700 is just visible with small telescopes toward the flowing constellation Eridanus.

Thumbnail image of picture found for this day. APOD: 2003 January 14 - 0313-192: The Wrong Galaxy
Explanation: Centered above is distant galaxy 0313-192, some one billion light-years away. Radio emission from the galaxy has been mapped by the National Radio Astronomy Observatory's Very Large Array and is shown in red, composited with a visible light image from the Hubble Space Telescope's new Advanced Camera for Surveys. Dust lanes and other features in the Hubble image as well as infrared Gemini telescope data demonstrate clearly that 0313-192 is a spiral galaxy seen edge-on. (Note the unrelated spiral galaxy seen face-on above and to the right.) For years, double cosmic clouds of radio emission such as those flanking this spiral galaxy's core have been studied and cataloged. But, at least until now, such radio sources were only known to arise from the cores of giant elliptical galaxies or in violent merging galaxy systems, making 0313-192 the wrong kind of galaxy to be found in this scenario. Astronomers are searching for clues to why this spiral galaxy, potentially similar to our own Milky Way, shows such powerful activity.

Thumbnail image of picture found for this day. APOD: 2002 October 26 - Dark Matter, X-rays, and NGC 720
Explanation: Elliptical galaxy NGC 720 is enveloped in a cosmic cloud of x-ray emitting gas. Seen in this false color image from the Chandra X-ray Observatory, the extreme temperature of the gas - about 7 million degrees Celsius - makes it impossible to confine the cloud to the vicinity of NGC 720 based on the gravity of this galaxy's visible stars alone. In fact, the x-ray cloud is taken as solid evidence for the presence of dark matter surrounding NGC 720 -- unseen material which has gravitational influence that can keep the x-ray hot gas cloud from escaping. Chandra's remarkable vision clearly distinguishes the bright point-like x-ray sources from the diffuse cloud. Astronomers can then use the detailed shape of the cloud to infer the distribution of dark matter in NGC 720 and even test theories about the fundamental nature of dark matter. According to modern understanding, the mysterious dark matter, whatever it is, is by far the most common form of matter in the Universe. Galaxy NGC 720 lies about 80 million light-years distant toward the constellation Cetus.

Thumbnail image of picture found for this day. APOD: 2002 October 17 - Centaurus A: Young Blue Star Stream
Explanation: Almost lost in this cosmic jumble of stars, gas and dust is a faint but definite blue arc -- a stream of young stars whose formation was probably triggered as a small dwarf galaxy was torn apart approaching the giant elliptical galaxy Centaurus A. The 2,000 light-year long arc is revealed in the upper right corner of this processed color digital image, while the dense central region of Centaurus A is near the bottom. Star clusters that make up the blue arc are likely strung out along the incoming trajectory of the small galaxy and are estimated to be only 200-400 million years old. The remarkable result suggests that astronomers have identified a spectacular example of a kind of galactic cannibalism in progress, a process which is believed to contribute to the formation and evolution of large galaxies, including our own Milky Way. Over time, stars and star clusters in this stream should eventually disperse and merge with tumultuous Centaurus A. The image data was recorded with the four meter Blanco telescope at Cerro Tololo Inter-American Observatory.

Thumbnail image of picture found for this day. APOD: 2002 July 4 - Young Star Clusters in an Old Galaxy
Explanation: Elliptical galaxy NGC 4365 is old, probably about 12 billion years old. Like most elliptical galaxies, this galaxy was thought to be full of old stars too, its burst of star forming activity having long since ended. But combining data from the Hubble Space Telescope and the European Southern Observatory's ground-based Antu Telescope, a team of European and US astronomers discovered NGC 4365's surprising secret -- some of its star clusters are young. In this composite image, the galaxy's bright nucleus is at the upper left. NGC 4365's star clusters themselves appear as bright dots against a diffuse glow of unresolved starlight and fuzzy, distant background galaxies. The notched border outlines Hubble's WFPC2 camera field. Moving the cursor over the image identifies individual star clusters, with the relatively young (few billion year-old) clusters circled in blue, and the anticipated 12 billion year-old clusters circled in red. NGC 4365 is 60 million light-years away in the Virgo galaxy cluster.

Thumbnail image of picture found for this day. APOD: 2002 June 17 - NGC 4697: X-Rays from an Elliptical Galaxy
Explanation: The many bright, point-like sources in this Chandra Observatory x-ray image lie within NGC 4697, an elliptical galaxy some 40 million light-years away towards Virgo. Like other normal elliptical galaxies, NGC 4697 is a spherical ensemble of mainly older, fainter, low mass stars, with little star forming gas and dust compared to spiral galaxies. But the luminous x-ray sources in the Chandra image indicate that NGC 4697 had a wilder youth. Powering the x-ray sources are neutron stars and black holes in binary star systems, where x-rays are generated as matter from a more ordinary companion star falls in to these bizarre, compact objects. Since neutron stars and black holes are the endpoints in the lives of massive stars, NGC 4697 must have had many bright, massive stars in its past. An exceptionally large number of NGC 4697's x-ray binaries are found in the galaxy's globular star clusters, suggesting that dense star clusters are a good place for neutron stars and black holes to capture a companion. Stellar winds and supernovae explosions of massive stars could also have produced the hot gas responsible for this galaxy's diffuse x-ray glow.

Thumbnail image of picture found for this day. APOD: 2002 April 8 - NGC 2787: A Barred Lenticular Galaxy
Explanation: Lenticular galaxies aren't supposed to be photogenic. Like spiral galaxies, they contain a disk, but like elliptical galaxies, they are usually short on dust, gas, and pretty spiral arms. Lenticulars are relatively little studied, possibly because of their seemingly benign nature. Famous galaxies historically classified as lenticular include M84, M85, and M86. Recent pictures and evidence, however, indicate that lenticulars can be both photogenic and scientifically interesting. For example, the above image of NGC 2787 taken with the Hubble Space Telescope shows that the center of this lenticular galaxy has interesting structure. The image was taken to help determine how lenticular galaxies formed, and what happens in their centers. The span of NGC 2787 in the above image is about 4500 light years, while the galaxy lies about 25 million light years away toward the constellation of Ursa Major.

Thumbnail image of picture found for this day. APOD: 2002 March 29 - NGC 4631: The Whale Galaxy
Explanation: NGC 4631 is a big beautiful spiral galaxy seen edge-on only 25 million light-years away towards the small northern constellation Canes Venatici. This galaxy's slightly distorted wedge shape suggests to some a cosmic herring and to others the popular moniker of The Whale Galaxy. Either way, it is similar in size to our own Milky Way. In this gorgeous color image, the Whale's dark interstellar dust clouds, young bright blue star clusters, and purplish star forming regions are easy to spot. A companion galaxy, the small elliptical NGC 4627 appears above the Whale Galaxy. Out of view off the lower left corner of the picture lies another distorted galaxy, the hockey stick-shaped NGC 4656. The distortions and mingling trails of gas and dust detected at other wavelengths suggest that all three galaxies have had close encounters with each other in their past. The Whale Galaxy is also known to have spouted a halo of hot gas glowing in x-rays.

Thumbnail image of picture found for this day. APOD: 2002 March 6 - Simulated Galaxy Cluster View
Explanation: Stunningly detailed, this picture is a computer simulated view of a cluster of galaxies in the distant cosmos. A large, elliptical galaxy dominates this hypothetical cluster's central region surrounded by a swarm of member galaxies. Other galaxies which lie far behind the cluster are seen as numerous visible concentric arcs - lensed by the enormous gravitational field dominated by dark matter within the cluster itself. Such magnificent images are expected to be achieved by the Advanced Camera for Surveys (ACS), one of the upgrades being installed on the Hubble Space Telescope during the ongoing servicing mission. Compared to Hubble's workhorse Wide Field Planetary Camera 2 (WFPC2), whose achievements include the current deep field views of the Universe, the new technology ACS will be twice as sharp an imager with twice the field of view and five times the sensitivity. Along with extended views of the distant cosmos, enthusiastic astronomers also plan to use the ACS to monitor our own Solar System and to search for planets orbiting stars beyond the Sun.

Thumbnail image of picture found for this day. APOD: 2002 February 26 - Jets from Radio Galaxy 3C296
Explanation: Jets of streaming plasma expelled by the central black hole of a massive elliptical galaxy likely light up this composite image of 3C296. The jets emanating from NGC 5532 and are nearly a million light years long. Exactly how the central black hole expels the infalling matter is still unknown. After clearing the galaxy, however, the jets inflate large radio bubbles that could glow for millions of years. If excited by a passing front, radio bubbles can even light up again after a billion years. Visible light is depicted in the above image in blue, while radio waves are shown in red. The radio map was created with the Very Large Array of radio telescopes.

Thumbnail image of picture found for this day. APOD: 2002 February 2 - Centaurus A: The Galaxy Deep Inside
Explanation: Deep inside Centaurus A, the closest active galaxy to Earth, lies ... another galaxy! Cen A is a giant elliptical galaxy a mere 10 million light-years distant with a central jumble of stars, dust, and gas that probably hides a massive black hole. This composite combines an optical picture of Cen A with dark lines tracing lobes of radio emission and an infrared image from the ISO satellite (in red). The ISO data maps out the dust in what appears to be a barred spiral galaxy about the size of the prominent nearby spiral M33. The discoverers believe that the giant elliptical's gravity helps this barred spiral galaxy maintain its shape. In turn, material funneled along the spiral's bar fuels the central black hole which powers the elliptical's radio lobes. This apparently intimate association between two distinct and dissimilar galaxies suggests a truly cosmic symbiotic relationship.

Thumbnail image of picture found for this day. APOD: 2001 November 1 - M87's Energetic Jet
Explanation: An energetic jet from the core of giant elliptical galaxy M87 stretches outward for 5,000 light-years. This monstrous jet appears in the panels above to be a knotted and irregular structure, dectected across the spectrum, from x-ray to optical to radio wavelengths. In all these bands, the observed emission is likely created as high energy electrons spiral along magnetic field lines, so called synchrotron radiation. But what powers this cosmic blowtorch? Ultimately, the jet is thought to be produced as matter near the center of M87 swirls toward a spinning, supermassive black hole. Strong electromagnetic forces are generated and eject material away from the black hole along the axis of rotation in a narrow jet. Galaxy M87 is about 50 million light-years away and reigns as the large central elliptical galaxy in the Virgo cluster.

Thumbnail image of picture found for this day. APOD: 2001 August 16 - Centaurus A: X-Rays from an Active Galaxy
Explanation: Its core hidden from optical view by a thick lane of dust, the giant elliptical galaxy Centaurus A was among the first objects observed by the orbiting Chandra X-ray Observatory. Astronomers were not disappointed, as Centaurus A's appearance in x-rays makes its classification as an active galaxy easy to appreciate. Perhaps the most striking feature of this Chandra false-color x-ray view is the jet, 30,000 light-years long. Blasting toward the upper left corner of the picture, the jet seems to arise from the galaxy's bright central x-ray source -- suspected of harboring a black hole with a million or so times the mass of the Sun. Centaurus A is also seen to be teeming with other individual x-ray sources and a pervasive, diffuse x-ray glow. Most of these individual sources are likely to be neutron stars or solar mass black holes accreting material from their less exotic binary companion stars. The diffuse high-energy glow represents gas throughout the galaxy heated to temperatures of millions of degrees C. At 11 million light-years distant in the constellation Centaurus, Centaurus A (NGC 5128) is the closest active galaxy.

Thumbnail image of picture found for this day. APOD: 2001 June 8 - Three Galaxies in Draco
Explanation: This intriguing trio of galaxies is sometimes called the NGC 5985/Draco Group and so (quite reasonably) is located in the northern constellation Draco. From left to right are face-on spiral NGC 5985, elliptical galaxy NGC 5982, and edge-on spiral NGC 5981 -- all within this single telescopic field of view spanning a little more than half the width of the full moon. While this grouping is far too small to be a galaxy cluster and has not been cataloged as a compact group, these galaxies do lie roughly 100 million light-years from planet Earth. On close examination with spectrographs, the bright core of the striking face-on spiral NGC 5985 shows prominent emission in specific wavelengths of light, prompting astronomers to classify it as a Seyfert, a type of active galaxy. Not as well known as other tight groupings of galaxies, the contrast in visual appearance makes this triplet an attractive subject for avid astrophotographers.

Thumbnail image of picture found for this day. APOD: 2001 April 4 - Distant Supernova, Dark Energy
Explanation: A pinpoint of light from a star that exploded over 10 billion light-years away is centered in the panel at the lower right, a cosmic snapshot of the most distant supernova. The ancient stellar detonation was detected by digitally subtracting before and after images of a faint, yellowish, elliptical galaxy included in the Hubble Space Telescope Deep Field image illustrated at the top and left. Remarkable in itself as the farthest known supernova, its measured brightness provides astounding evidence for a strange universe - one which eventually defies gravity and expands at an accelerating rate. The unseen force driving this expansion is attributed to "dark energy" and discovering the fundamental nature of dark energy has been called the challenge of this millennium.

Thumbnail image of picture found for this day. APOD: 2001 March 9 - X-rays From HCG 62
Explanation: Scanning the skies for galaxies Canadian astronomer Paul Hickson and colleagues identified some 100 compact groups of galaxies, now appropriately called Hickson Compact Groups (HCGs). With only a few member galaxies per group, HCGs are much smaller than the immense clusters of galaxies which lurk in the cosmos, but like the large galaxy clusters, some HCGs seem to be filled with hot, x-ray emitting gas. In fact, groups of galaxies like HCGs may be the building blocks of the large clusters. This false-color x-ray image from the orbiting Chandra Observatory reveals x-ray emission from the gas in one such group, HCG 62, in startling detail. In the image, black and green colors represent low intensities while red and purple hues indicate high x-ray intensities. Striking features of the x-ray image are the low brightness blobs at the upper left and lower right which symmetrically flank the intense central x-ray region. HCG 62 lies in Virgo, and near the group's center resides elliptical galaxy NGC 4761. At optical wavelengths, some HCGs make for rewarding viewing, even with modest sized telescopes.

Thumbnail image of picture found for this day. APOD: 2001 January 26 - Galaxies Of The Virgo Cluster
Explanation: Well over a thousand galaxies are known members of the Virgo Cluster, the closest large cluster of galaxies to our own local group. The galaxy cluster is difficult to see all at once because it covers such a large area on the sky. Still, this excellent telescopic view records the region of the Virgo Cluster around its dominant giant elliptical galaxy M87. M87 can be seen as a fuzzy patch near the picture's bottom center. In fact, a close examination of the image will reveal that many of the "stars" are actually surrounded by a telltale fuzz, indicating that they are Virgo Cluster galaxies. How many galaxies can you pick out? Click on the image for an uncropped, labeled version which includes the NGC catalog numbers for most of the visible galaxies. On average, Virgo Cluster galaxies are measured to be about 48 million light-years away. The Virgo Cluster distance has been used to give an important determination of the Hubble Constant and the scale of the Universe.

Thumbnail image of picture found for this day. APOD: 2000 October 23 - Dwarf Elliptical Galaxy NGC 205 in the Local Group
Explanation: Our Milky Way Galaxy is not alone. It is part of a gathering of about 25 galaxies known as the Local Group. Members include the Great Andromeda Galaxy (M31), M32, M33, the Large Magellanic Cloud, the Small Magellanic Cloud, Dwingeloo 1, several small irregular galaxies, and many dwarf elliptical and dwarf spheroidal galaxies. Pictured on the lower left is one of the many dwarf ellipticals: NGC 205. Like M32, NGC 205 is a companion to the large M31, and can sometimes be seen to the south of M31's center in photographs. The above image shows NGC 205 to be unusual for an elliptical galaxy in that it contains at least two dust clouds (at 1 and 4 o'clock - they are visible but hard to spot) and signs of recent star formation. This galaxy is sometimes known as M110, although it was actually not part of Messier's original catalog.

Thumbnail image of picture found for this day. APOD: 2000 August 16 - Unusual Giant Galaxy NGC 1316
Explanation: Can unusual giant galaxy NGC 1316 help calibrate the universe? Quite possibly -- if it turns out this atypical galaxy is composed of typical stars. NGC 1316, pictured above, is most obviously strange because it has a size and shape common for an elliptical galaxy but dust lanes and a disk more commonly found in a spiral galaxy. These attributes could be caused by interactions with another galaxy over the past billion years. Most recently, NGC 1316 has been monitored to find novae, explosions emanating from white dwarf stars that should have a standard brightness. Again, NGC 1316 was found atypical in that the nova rate was unexpectedly high. If, however, the stars and white dwarfs that compose NGC 1316 are typical, then the novae observed should be just as bright as novae in other galaxies so that astronomers can use them to compute an accurate distance. This distance can then be used to calibrate other distance indicators and result in a more accurate scale for distances throughout the universe.

Thumbnail image of picture found for this day. APOD: 2000 July 6 - A Jet from Galaxy M87
Explanation: What's causing a huge jet to emanate from the center of galaxy M87? Although the unusual jet was first noticed early in the twentieth century, the exact cause is still debated. The above recently released picture taken by the Hubble Space Telescope shows clear details, however. The most popular hypothesis holds that the jet is created by energetic gas swirling around a massive black hole at the galaxy's center. The result is a 5000 light-year long blowtorch where electrons are ejected outward at near light-speed, emitting eerily blue light during a magnetic spiral. M87 is a giant elliptical galaxy residing only 50 million light-years away in the Virgo Cluster of Galaxies. The faint dots of light surrounding M87's center are large ancient globular clusters of stars.

Thumbnail image of picture found for this day. APOD: 2000 June 2 - The Secret Spiral Of IC3328
Explanation: IC3328 is an otherwise unremarkable dwarf elliptical galaxy about 50 million light-years away in the Virgo cluster. But hidden within IC3328 is a subtle, beautifully symmetric spiral structure! A team of astronomers recently made this totally surprising discovery using detailed digital images from the European Southern Observatory's 8.2 meter Antu telescope. They numerically modeled the smooth distribution of light for this galaxy (left) to enable more accurate measurements of its distance. When the smooth distribution was subtracted from the digital image, the startling spiral structure became apparent (right). Typical of large, rotating, disk galaxies with density waves, spiral structure is unprecedented in the blob-shaped aggregates of stars normally classified as elliptical galaxies. What created the "secret" spiral in IC3328? Some possibilities under consideration include tidal interactions with nearby galaxies and amplified internal stellar motions.

Thumbnail image of picture found for this day. APOD: 2000 March 11 - Messier Marathon
Explanation: Gripped by an astronomical spring fever, it's once again time for many amateur stargazers to embark on a Messier Marathon! The Vernal Equinox occurs March 20, marking the first day of Spring for the Northern Hemisphere. It also marks a favorable celestial situation for potentially viewing all the objects in 18th century French astronomer Charles Messier's catalog in one glorious dusk to dawn observing run. This year a bright full moon will interfere with dark skies near the actual equinox, so good nights near new moon for weekend marathoners are March 11/12 and April 1/2. (As an added bonus all the planets in the solar system can be viewed on these dates.) Astronomer Paul Gitto has created this masterful Messier Marathon grid with 11 rows and 10 columns of Messier catalog objects. In numerical order, the grid begins with M1, the Crab Nebula, at upper left and ends with M110, a small elliptical galaxy in Andromeda (lower right). Gitto's images were made with a digital camera and a 10-inch diameter reflecting telescope.

Thumbnail image of picture found for this day. APOD: November 25, 1999 - 3C 295: X-rays From A Giant Galaxy
Explanation: Did this galaxy eat too much? Five billion light-years away, the giant elliptical galaxy 3C295 is a prodigious source of energy at radio wavelengths. Bright knots of X-ray emission are also seen at the center of this false-color Chandra Observatory image of the region. The X-ray and radio emission are believed to be the result of an explosive event triggered when too much material flowed into a supermassive black hole at the heart of the giant galaxy. Additionally, the Chandra picture beautifully reveals an extensive cloud of 50 million degree gas surrounding 3C295. Embedded in the cloud is a cluster of about 100 galaxies, too cool to be seen in the X-ray picture. About two million light-years across, the X-ray hot cloud itself contains enough material to create another 1,000 galaxies or so making the cluster and cloud among the most massive objects in the Universe. However, X-ray data indicate that there is still not enough observed mass to hold the cloud and cluster together gravitationally, suggesting the presence of large amounts of dark matter.

Thumbnail image of picture found for this day. APOD: November 21, 1999 - Elliptical Galaxy NGC 4881 in Coma
Explanation: Elliptical galaxies are unlike spiral galaxies and hence unlike our own Milky Way Galaxy. The giant elliptical galaxy named NGC 4881 on the upper left lies at the edge of the giant Coma Cluster of Galaxies. Elliptical galaxies are ellipsoidal in shape, contain no spiral arms, contain little interstellar gas or dust, and are found mostly in rich clusters of galaxies. Elliptical galaxies appear typically yellow-red, as opposed to spirals which have spiral arms that appear quite blue. Much speculation continues on how each type of galaxy can form, on whether ellipticals can evolve from colliding spirals, or spirals can be created from colliding ellipticals, or both. Besides the spiral galaxy on the right, all other images in this picture are of galaxies that lie well behind the Coma Cluster.

Thumbnail image of picture found for this day. APOD: November 7, 1999 - The Heart Of NGC 4261
Explanation: Who knows what evil lurks in the hearts of galaxies? The Hubble knows. This Hubble Space Telescope picture of the center of the nearby elliptical galaxy NGC 4261 tells one dramatic tale. The gas and dust in this disk are swirling into what is almost certainly a massive black hole. The disk is probably what remains of a smaller galaxy that fell in hundreds of millions of years ago. Collisions like this may be a common way of creating such active galactic nuclei as quasars. Strangely, the center of this fiery whirlpool is offset from the exact center of the galaxy - for a reason that for now remains an astronomical mystery.

Thumbnail image of picture found for this day. APOD: November 3, 1999 - M32: Blue Stars in an Elliptical Galaxy
Explanation: Elliptical galaxies are known for their old, red stars. But is this old elliptical up to new tricks? In recent years, the centers of elliptical galaxies have been found to emit unexpectedly high amounts of blue and ultraviolet light. Most blue light from spiral galaxies originates from massive young hot stars, in contrast to the red light from the old cool stars thought to compose ellipticals. In the above recently released, false-color photograph by the Hubble Space Telescope, the center of nearby dwarf elliptical M32 has actually been resolved and does indeed show thousands of bright blue stars. The answer is probably that these blue stars are also old and glow blue, reaching relatively high temperatures by the advanced process of fusing helium, rather than hydrogen, in their cores. M32 appears in many pictures as the companion galaxy to the massive Andromeda Galaxy (M31).

Thumbnail image of picture found for this day. APOD: October 28, 1999 - X Ray Jet From Centaurus A
Explanation: Spanning over 25,000 light-years, comparable to the distance from the Sun to the center of our own Milky Way galaxy, a cosmic jet seen in X-rays blasts from the center of Centaurus A. Only 10 million light-years away, Centaurus A is a giant elliptical galaxy - the closest active galaxy to Earth. This composite image illustrates the jumble of gas, dust, and stars visible in an optical picture of Cen A superposed on a new image recorded by the orbiting Chandra X-ray Observatory. The X-ray data is shown in red. Present theories hold that the X-ray bright jet is caused by electrons driven to extremely high energies over enormous distances. The jet's power source is likely to be a black hole with about 10 million times the mass of the Sun coincident with the X-ray bright spot at the galaxy's center. Amazingly, while some material in the vicinity of the black hole falls in, some material is blasted outward in energetic jets. Details of this cosmic power generator can be explored with the Chandra X-ray data.

Thumbnail image of picture found for this day. APOD: September 6, 1999 - HCG 87: A Small Group of Galaxies
Explanation: Sometimes galaxies form groups. For example, our own Milky Way Galaxy is part of the Local Group of Galaxies. Small, compact groups, like Hickson Compact Group 87 (HCG 87) shown above, are interesting partly because they slowly self-destruct. Indeed, the galaxies of HCG 87 are gravitationally stretching each other during their 100-million year orbits around a common center. The pulling creates colliding gas that causes bright bursts of star formation and feeds matter into their active galaxy centers. HCG 87 is composed of a large edge-on spiral galaxy visible on the lower left, an elliptical galaxy visible on the lower right, and a spiral galaxy visible near the top. The small spiral near the center might be far in the distance. Several stars from our Galaxy are also visible in the foreground. The above picture was taken in July by the Hubble Space Telescope's Wide Field Planetary Camera 2. Studying groups like HCG 87 allows insight into how all galaxies form and evolve.

Thumbnail image of picture found for this day. APOD: August 21, 1999 - Galaxies Away
Explanation: This striking pair of galaxies is far, far away ... about 350 million light-years from Earth. Cataloged as AM0500-620, the pair is located in the southern constellation Dorado. The background elliptical and foreground spiral galaxy are representative of two of the three major classes of galaxies which inhabit our Universe. Within the disks of spiral galaxies, like our own Milky Way, gas, dust, and young blue star clusters trace out grand spiral "arms". The dust lanes along the arms of this particular spiral stand out dramatically in this Hubble Space Telescope image as they obligingly sweep in front of the background elliptical. Like the central bulges of spiral galaxies, elliptical galaxies tend toward spherical shapes resulting from more random motions of their stars. But while spirals produce new stars, star formation in ellipticals which lack gas and dust seems to have stopped. How do galaxies evolve with cosmic time? Evidence is growing that graceful galaxy shapes can hide a violent history.

Thumbnail image of picture found for this day. APOD: March 31, 1999 - PG 1115+080: A Gravitational Cloverleaf
Explanation: All four blue images in the above photograph are the same object. The gravitational lens effect of the red, foreground, elliptical galaxy visible near image center creates a cloverleaf image of the single distant quasar. Light from the quasar is pulled around the massive galaxy in different paths, corresponding to different images. Light takes many billions of years to reach us from this quasar. Since light takes a different amount of time to traverse each path, each image shows the quasar as it appeared at a slightly different time in the past, creating time delays on the time scale of days. Since these time delays are influenced by the expansion rate of the universe, analysis of this image helps reveal Hubble's constant, the parameter that calibrates universe expansion. This recent picture by the new Subaru Telescope is perhaps the clearest image yet of this famous optical mirage.

Thumbnail image of picture found for this day. APOD: March 18, 1999 - Messier Marathon
Explanation: Gripped by an astronomical spring fever, this week many amateur stargazers embark on a Messier Marathon. The Vernal Equinox occurs Saturday, March 20, marking the first day of Spring for the Northern Hemisphere. It also marks a favorable celestial situation for potentially viewing all the objects in 18th century French astronomer Charles Messier's catalog in one glorious dusk to dawn observing run. This year, interference from bright moonlight will be minimal as the the moon is near its dark or new phase. Astronomer Paul Gitto has created this masterful Messier Marathon grid with 11 rows and 10 columns of Messier catalog objects. In numerical order, the grid begins with M1, the Crab Nebula, at upper left and ends with M110, a small elliptical galaxy in Andromeda (lower right). Gitto's images were made with a digital camera and a 10-inch diameter reflecting telescope.

Thumbnail image of picture found for this day. APOD: February 22, 1999 - NGC 1316: After Galaxies Collide
Explanation: Astronomers turn detectives when trying to figure out the cause of unusual sites like NGC 1316. A preliminary inspection indicates that NGC 1316 is an enormous elliptical galaxy that started devouring a smaller spiral galaxy neighbor about 100 million years ago. Supporting evidence includes the dark dust lanes uniquely indicative of a spiral. What remains unexplained are the unusually small globular star clusters, visible as faint dots on the above photograph. Most elliptical galaxies have more and brighter globular clusters than evident in NGC 1316. Yet the observed globulars are too old to have been created by the recent spiral collision. One hypothesis therefore holds that these globulars survive from an even earlier galaxy that was subsumed into NGC 1316.

Thumbnail image of picture found for this day. APOD: February 16, 1999 - The Large and Small of M87
Explanation: The small core of elliptical galaxy M87 appears to be energizing its whole galactic neighborhood. Recent images from the Very Large Array (VLA) of radio telescopes indicate that huge bubbles of hot gas not only exist but are still being created. These bubbles measure 200,000 light-years across and surround the entire galaxy. The source creating and feeding the bubbles has been traced to jets pointing back to M87's center, where a supermassive black hole is thought to live. The smallest scale on the above radio-map is 0.2 light-years and imaged by many radio telescopes working together (VLBI). The labeled numbers refer to the wavelength of the radio waves observed. The exact composition of these jets is not known, but thought to contain various subatomic particles.

Thumbnail image of picture found for this day. APOD: December 4, 1998 - Centaurus A: The Galaxy Deep Inside
Explanation: Deep inside Centaurus A, the closest active galaxy to Earth, lies ... another galaxy! Cen A is a giant elliptical galaxy a mere 10 million light-years distant with a central jumble of stars, dust, and gas that probably hides a massive black hole. This composite combines an optical picture of Cen A with dark lines tracing lobes of radio emission and an infrared image from the ISO satellite (in red). The ISO data maps out the dust in what appears to be a barred spiral galaxy about the size of the prominent nearby spiral M33. The discoverers believe that the giant elliptical's gravity helps this barred spiral galaxy maintain its shape. In turn, material funneled along the spiral's bar fuels the central black hole which powers the elliptical's radio lobes. This apparently intimate association between two distinct and dissimilar galaxies suggests a truly cosmic symbiotic relationship.

Thumbnail image of picture found for this day. APOD: November 2, 1998 - PG 1115: A Ghost of Lensing Past
Explanation: In this tangle of quasars and galaxies lies a clue to the expansion rate of the universe. A diffuse glow evident in the picture on the left reveals a normal elliptical galaxy. Directly behind this galaxy lies a normal quasar. Because the quasar is directly behind the galaxy, however, the gravity of the galaxy deflects quasar light like a lens, creating four bright images of the same distant quasar. When these images are all digitally subtracted, a distorted image of the background galaxy that hosts the quasar appears - here shown on the right in ghostly white. Each quasar image traces how the quasar looked at different times in the past, with the time between images influenced by the expansion rate of the universe itself. Assuming dark matter in the elliptical lens galaxy traces the visible matter, this expansion rate can be characterized by a Hubble constant of Ho near 65 km/sec/Mpc, a value close to that determined by other methods. Analysis of this image by itself sheds little light on whether the global geometry of the universe is affected by a cosmological constant.

Thumbnail image of picture found for this day. APOD: September 29, 1998 - A Peculiar Cluster of Galaxies
Explanation: Far across the universe, an unusual cluster of galaxies has been evolving. A diverse group of galaxies populate this cluster, including, on the left, an unusual galaxy showing an equatorial polar ring and a large spiral. Above looms a large elliptical galaxy. The reason for the small size of galaxies on the right is not yet known - these galaxies might be smaller or might just lie even farther in the distance. Almost every spot in this picture is a galaxy. Studying distant clusters like this may help astronomers better understand when and how these cosmic giants formed.

Thumbnail image of picture found for this day. APOD: August 27, 1998 - Hercules Galaxies
Explanation: These are galaxies of the Hercules Cluster, an archipelago of "island universes" a mere 650 million light-years distant. This cluster is loaded with gas and dust rich, star forming, spiral galaxies but has relatively few elliptical galaxies, which lack gas and dust and the associated newborn stars. Colors in the composite image show the star forming galaxies with a blue tint and ellipticals with a slightly yellowish cast. In this cosmic vista many galaxies seem to be colliding or merging while others seem distorted - clear evidence that cluster galaxies commonly interact. Over time, the galaxy interactions are likely to affect the the content of the cluster itself. Researchers believe that the Hercules Cluster is significantly similar to young galaxy clusters in the distant, early Universe and that exploring galaxy types and their interactions in nearby Hercules will help unravel the threads of galaxy and cluster evolution.

Thumbnail image of picture found for this day. APOD: June 22, 1998 - The Doomed Dust Disk of NGC 7052
Explanation: What created the dust disk in the center of NGC 7052, and what keeps it spinning? Although the disk might appear as a relatively tame "hubcap in space", the unusual center of elliptical galaxy NGC 7052 is probably the remnant of a titanic collision between galaxies. What's more, the disk's spin indicates the tremendous gravity of a massive central black hole. Analysis of this recently released photo by the Hubble Space Telescope indicates that the disk is thousands of light-years across, rotates faster than 100 kilometers per second, at a distance of 150 light-years from the center, and contains more mass than a million Suns. The theorized central black hole is thought to be yet 100 times more massive, and may swallow the entire disk in the next few million years.

Thumbnail image of picture found for this day. APOD: April 9, 1998 - Quasar in an Elliptical Galaxy
Explanation: Where do quasars live? Quasars are the brightest objects in the universe, so bright they can be seen from across the universe. Observations continue to show that most quasars are surrounded by a relatively faint nebulous patch. Astronomers are trying to identify the nature of these patches. The above false-color picture shows a central quasar embedded in an unusual elliptical galaxy. The galaxy is being gravitationally distorted by a neighboring galaxy. Recent evidence indicates that most quasars live near the centers of large, elliptical galaxies - even those quasars where no host galaxy could be found before. Quasars themselves are thought to result from matter falling toward supermassive black-holes.

Thumbnail image of picture found for this day. APOD: March 26, 1998 - Galaxies Away
Explanation: This striking pair of galaxies is far, far away ... about 350 million light-years from Earth. Cataloged as AM0500-620, the pair is located in the southern constellation Dorado. The background elliptical and foreground spiral galaxy are representative of two of the three major classes of galaxies which inhabit our Universe. Within the disks of spiral galaxies, like our own Milky Way, gas, dust, and young blue star clusters trace out grand spiral "arms". The dust lanes along the arms of this particular spiral stand out dramatically in this Hubble Space Telescope image as they obligingly sweep in front of the background elliptical. Like the central bulges of spiral galaxies, elliptical galaxies tend toward spherical shapes resulting from more random motions of their stars. But while spirals produce new stars, star formation in ellipticals which lack gas and dust seems to have stopped. How do galaxies evolve with cosmic time? Evidence is growing that graceful galaxy shapes can hide a violent history.

Thumbnail image of picture found for this day. APOD: January 16, 1998 - Dusting Spiral Galaxies
Explanation: How much dust is in spiral galaxies? Does it block out much of the starlight? Because astronomers rely on an accurate knowledge of galaxy properties to investigate a wide range of problems, like galaxy and quasar evolution and the nature of dark matter, answers to simple questions like this are key. This striking, detailed Hubble Space Telescope image of dust in the outer reaches of a foreground spiral galaxy (left) back lit by an elliptical galaxy offers an elegant approach to providing the answers. As expected, dust lanes in the foreground galaxy seem to be associated with spiral arms. But surprisingly, many dust regions are not completely opaque and the dust is more smoothly distributed than anticipated. This "overlapping" pair of galaxies is cataloged as AM1316-241 and is about 400 million light-years away in the constellation Hydra.

Thumbnail image of picture found for this day. APOD: January 10, 1998 - Disorder in Stephan's Quintet
Explanation: What are five closely grouped galaxies doing in this image? The grouping is commonly known as Stephan's Quintet. Four of the galaxies show essentially the same redshift suggesting that they are at the same distance from us. The large bluish spiral below and left of center actually has a smaller redshift than the others, indicating it is much closer. It is probably a foreground object which happens to lie along the line of sight to the more distant galaxies. Of the four distant galaxies, three seem to be colliding, showing serious distortions due to gravitational tidal forces. The fourth is a normal appearing elliptical galaxy (at the lower right edge of the field). Recent results suggest that collisions play an important role in the life cycles of galaxies.

Thumbnail image of picture found for this day. APOD: December 7, 1997 - A Distant Cluster of Galaxies
Explanation: In this 1994 Hubble Space Telescope photograph, every bright object is a galaxy. Oddly - most of them are spiral galaxies. This rich cluster of galaxies, named CL 0939+4713, is almost half way across the visible universe. Photos like this indicate that clusters in the past contained a higher fraction of spirals than do nearby clusters which are usually dominated by elliptical galaxies.

Thumbnail image of picture found for this day. APOD: December 5, 1997 - Seeing Through Galaxies
Explanation: In this dramatic picture, spiral galaxy NGC 5091 appears in the foreground. Tilted nearly edge-on, the dust lanes between its spiral arms are clearly visible. The large elliptical galaxy NGC 5090 lies just beyond it - both are about 100 million light years distant in the southern constellation Centaurus. Can you see through the spiral galaxy? The detailed answer to this question has important implications for determining the nature of dark matter and the measurement of star formation rates. Comparing the overlapping and non-overlapping parts of this and other pairs of galaxies offers a neat way to find the answer.

Thumbnail image of picture found for this day. APOD: October 19, 1997 - The Heart Of NGC 4261
Explanation: What evil lurks in the hearts of galaxies? This Hubble Space Telescope picture of the center of the nearby elliptical galaxy NGC 4261 tells one dramatic tale. The gas and dust in this disk are swirling into what is almost certainly a massive black hole. The disk is probably what remains of a smaller galaxy that fell in hundreds of millions of years ago. Collisions like this may be a common way of creating such active galactic nuclei as quasars. Strangely, the center of this fiery whirlpool is offset from the exact center of the galaxy - for a reason that for now remains an astronomical mystery.

Thumbnail image of picture found for this day. APOD: April 5, 1997 - A Black Hole in M87?
Explanation: The center of nearby giant galaxy M87 is a dense and violent place. In this 1994 photograph by the Hubble Space Telescope, a disk of hot gas was found to be orbiting at the center of this massive elliptical galaxy. The disk is evident at the lower left of the picture. The rotation speed of gas in this disk indicates the mass of the object the gas is orbiting, while the size of the disk indicates an approximate volume of the central object. These observations yield a central density so high that the only hypothesized object that could live there is a black hole. The picture also shows a highly energetic jet emanating from the central object like a cosmic blowtorch. The jet is composed of fast moving charged particles and has broken into knots as small as 10 light years across.

Thumbnail image of picture found for this day. APOD: December 13, 1996 - Disorder in Stephan's Quintet
Explanation: Five closely grouped galaxies are visible in this image made using the Kitt Peak National Observatory 2.1 meter telescope. The grouping is commonly known as Stephan's Quintet. Four of the galaxies show essentially the same redshift suggesting that they are at the same distance from us. The large bluish spiral below and left of center actually has a smaller redshift than the others, indicating it is much closer. It is probably a foreground object which happens to lie along the line of sight to the more distant galaxies. Of the four distant galaxies, three seem to be colliding, showing serious distortions due to gravitational tidal forces. The fourth is a normal appearing elliptical galaxy (at the lower right edge of the field). Recent results suggest that collisions play an important role in the life cycles of galaxies.

Thumbnail image of picture found for this day. APOD: November 25, 1996 - A Quasar Portrait Gallery
Explanation: QUASARs (QUASi-stellAR objects) lie near the edge of the observable Universe. Discovered in 1963, astronomers were astounded - to be visible at such extreme distances of billions of light-years they must emit prodigious amounts of energy. Where does the energy come from? Many believe the quasar's central engine is a giant black hole fueled by tremendous amounts of infalling gas, dust, and stars. This recently released gallery of quasar portraits from the Hubble Space Telescope offers a look at their local neighborhoods: the quasars themselves appear as the bright star-like objects with diffraction spikes. The images in the center and right hand columns reveal quasars associated with disrupted colliding and merging galaxies which should provide plenty of debris to feed a hungry black hole. Yet, in the left hand column a quasar is seen at the center of an otherwise normal looking spiral (above) and elliptical galaxy. Whatever the secret of the quasar's energy, all these sites must provide fuel for its central engine.

Thumbnail image of picture found for this day. APOD: November 6, 1996 - Elliptical Galaxy NGC 4881 in Coma
Explanation: Elliptical galaxies are unlike spiral galaxies and hence unlike our own Milky Way Galaxy. The giant elliptical galaxy named NGC 4881 on the upper left lies at the edge of the giant Coma Cluster of Galaxies. Elliptical galaxies are ellipsoidal in shape, contain no spiral arms, contain little interstellar gas or dust, and are found mostly in rich clusters of galaxies. Elliptical galaxies appear typically yellow-red, as opposed to spirals which have spiral arms that appear quite blue. Much speculation continues on how each type of galaxy can form, on whether ellipticals can evolve from colliding spirals, or spirals can be created from colliding ellipticals, or both. Besides the spiral galaxy on the right, all other images in this picture are of galaxies that lie well behind the Coma Cluster.

Thumbnail image of picture found for this day. APOD: August 18, 1996 - A Milestone Quasar
Explanation: Here is a rather typical quasar. But since quasars are so unusual it is quite atypical of most familiar objects. Of the two bright objects in the center of this photo, the quasar is on the left. The bright image to quasar's right is a star, the faint object just above the quasar is an elliptical galaxy, with an apparently interacting pair of spiral galaxies near the top. Quasars appear as unresolved points of light, as do stars, and hence quasars were thought to be a type of star until the 1960s. We now know that the brightest quasars lie far across the visible universe from us, and include the most distant objects known. Quasars may occupy the centers of galaxies and may even be much brighter than their host galaxies. In fact, the centers of many nearby galaxies have similarities to quasars - including the center of our own Milky Way Galaxy. The exact mechanism responsible for a quasar's extreme brightness is unknown, but thought to involve supermassive black holes. This picture represents a milestone for the six-year-old Hubble Space Telescope as it was picture number 100,000, taken on June 22, 1996.

Thumbnail image of picture found for this day. APOD: June 28, 1996 - A Distant Galaxy in the Deep Field
Explanation: Researchers believe that the faint reddish smudge indicated by the arrow in the image above is a candidate for the most distant known galaxy which may have existed only a few hundred million years after the Big Bang. The image is part of the Hubble Deep Field, the Hubble Space Telescope's deepest yet picture of the Universe. Made in December 1995 by staring for ten consecutive days with the Hubble, astronomers have been intently studying the resulting deep field image filled with remote galaxies for clues to what galaxies and the Universe looked like in the distant past. While nearby galaxies are easily detected in the image - some seen here have visible elliptical and even spiral structures - the most distant (and therefore oldest) galaxies must be identified by examining their appearance in different wavelengths of light. Based on this technique, six of the most distant galaxies in the Deep Field appear to be farther away than even quasars.

Thumbnail image of picture found for this day. APOD: April 19, 1996 - The Virgo Cluster: Hot Plasma and Dark Matter
Explanation: This ROSAT image of the Virgo cluster of galaxies reveals a hot X-ray emitting plasma or gas with a temperature of 10-100 million degrees pervading the cluster. False colors have been used to represent the intensity of X-ray emission. The large area of X-ray emission, just below and left of center, is about 1 million light-years across. The giant elliptical galaxy M87, the biggest member of the cluster, is centered in that area while other cluster members are scattered around it. By adding up the amount of X-ray emitting gas astronomers have found that its total mass is up to 5 times the total mass of the cluster galaxies themselves - yet all this matter still does not produce nearly enough gravity to keep the cluster from flying apart! Where is the unseen mass? Because galaxy clusters are the largest structures in the Universe, this mysterious Dark Matter must dominate the cosmos but its nature is still an open question.

Thumbnail image of picture found for this day. APOD: March 5, 1996 - A Black Hole in M87's Center?
Explanation: The center of nearby giant galaxy M87 is a dense and violent place. In this 1994 photograph by the Hubble Space Telescope, a disk of hot gas was found to be orbiting at the center of this massive elliptical galaxy. The disk is evident on the lower left of the above photograph. The rotation speed of gas in this disk indicates the mass of the object the gas is orbiting, while the size of the disk indicates an approximate volume of the central object. These observations yield a central density so high that the only hypothesized object that could live there is a black hole. The picture also shows a highly energetic jet emanating from the central object. The jet is composed of fast moving charged particles and has broken into knots as small as 10 light years across.

Thumbnail image of picture found for this day. APOD: January 14, 1996 - A Distant Cluster of Galaxies
Explanation: Every bright object in this 1994 photograph by the Hubble Space Telescope is a galaxy. Oddly - most of the objects are spiral galaxies. This rich cluster of galaxies, named CL 0939+4713, is almost half way across the visible universe. Photos like this indicate that clusters in the past contained a higher fraction of spirals than do nearby clusters, which are usually dominated by elliptical galaxies.

Thumbnail image of picture found for this day. APOD: January 8, 1996 - Local Group Galaxy NGC 205
Explanation: The Milky Way Galaxy is not alone. It is part of a gathering of about 25 galaxies known as the Local Group. Members include the Great Andromeda Galaxy (M31), M32, M33, the Large Magellanic Clouds, the Small Magellanic Clouds, Dwingeloo 1, several small irregular galaxies, and many dwarf elliptical galaxies. Pictured is one of the many dwarf ellipticals: NGC 205. Like M32, NGC 205 is a companion to the large M31, and can sometimes be seen to the south of M31's center in photographs. The above image shows this galaxy to be unusual for an elliptical galaxy in that it contains at least two dust clouds (at 7 and 11 o'clock - they are visible but hard to spot) and signs of recent star formation. This galaxy is sometimes known as M110, although it was actually not part of Messier's original catalog.

Thumbnail image of picture found for this day. APOD: January 6, 1996 - Dwarf Elliptical Galaxy M32
Explanation: Being the largest galaxy around can sometimes make you popular. Pictured is M31's companion galaxy M32. M31, the Andromeda galaxy, is the largest galaxy in our Local Group of galaxies - even our tremendous Milky Way Galaxy is smaller. Little M32 is visible in most pictures of M31 - it is the small circular spot north of M31's center. M32 is a dwarf elliptical galaxy. Elliptical galaxies have little or no measurable gas or dust - they are composed completely of stars and typically appear more red than spiral galaxies. Elliptical galaxies do not have disks - they generally have oblong shapes and therefore show elliptical profiles on the sky.

Thumbnail image of picture found for this day. APOD: December 5, 1995 - The Swirling Center of NGC 4261
Explanation: What evil lurks in the hearts of galaxies? The above picture by the Hubble Space Telescope of the center of the nearby galaxy NGC 4261 tells us one dramatic tale. Here gas and dust are seen swirling near this elliptical galaxy's center into what is almost certainly a massive black hole. The disk is probably what remains of a smaller galaxy that fell in hundreds of millions of years ago. Collisions like this may be a common way of creating such active galactic nuclei as quasars. Strangely, the center of this fiery whirlpool is offset from the exact center of the galaxy - for a reason that for now remains an astronomical mystery.

Thumbnail image of picture found for this day. APOD: November 15, 1995 - A Quintet of Galaxies
Explanation: Five closely grouped galaxies are visible in this image made using the Kitt Peak National Observatory 2.1 meter telescope. The grouping is commonly known as Stephan's Quintet. Four of the galaxies show essentially the same redshift suggesting that they are at the same distance from us. The large bluish spiral below and left of center actually has a smaller redshift than the others, indicating it is much closer. It is probably a foreground object which happens to lie along the line of sight to the more distant galaxies. Of the four distant galaxies, three seem to be colliding, showing serious distortions due to gravitational tidal forces. The fourth is a normal appearing elliptical galaxy (at the lower right edge of the field). Recent results suggest that collisions play an important role in the life cycles of galaxies.

Thumbnail image of picture found for this day. APOD: November 13, 1995 - Virgo Cluster Galaxies
Explanation: Pictured are several galaxies of the Virgo Cluster, the closest cluster of galaxies to the Milky Way. The Virgo Cluster spans more than 5 degrees on the sky - about 10 times the angle made by a full Moon. It contains over 100 galaxies of many types - including spirals, ellipticals, and irregular galaxies. The Virgo Cluster is so massive that it is noticeably pulling our Galaxy toward it. The above picture includes two galaxies that are also Messier objects: M84 and M86. M84 is the bright elliptical galaxy just above the center of the photograph, and M86 is the bright elliptical galaxy to its right.

Thumbnail image of picture found for this day. APOD: September 13, 1995 - Elliptical Galaxy M87
Explanation: Elliptical galaxy M87 is a type of galaxy that looks much different than our own Milky Way Galaxy. But even for an elliptical galaxy M87 is peculiar. M87 is much bigger than an average galaxy, appears at the center of a whole cluster of galaxies known as the Virgo Cluster, and shows a very high number of globular clusters. These globular clusters are visible as faint spots surrounding the bright center of M87. In general, elliptical galaxies contain similar numbers of stars as spiral galaxies, but are ellipsoidal in shape (spirals are mostly flat), have no spiral structure, and little gas and dust. This picture is number sixty on a publicly posted list of images from the Anglo-Australian Telescope (AAT).

Thumbnail image of picture found for this day. APOD: July 28, 1995 - M82: An Irregular Galaxy
Explanation: Not all galaxies have spiral structure like our Milky Way. Many have smooth elliptical shapes, but also many have irregular shapes such as the bright sky object M82, the 82nd object on Messier's list. The strange structure of this galaxy is thought to be caused by young stars ejecting gas in energetic bubbles, and by lanes of absorbing dust.


Return to Search Page
Today's Astronomy Picture of the Day