COMPUTER PROGRAM FOR THE REDUCTION AND PRELIMINARY ANALYSES OF RUNOFF DATA

CONTENTS

Page

Introduction 3
Program features 4
Input: 4
Basic constants 6
Station information 7
Rating table7
Pondage correction table 8
Watershed area table 8
Data cards 8
Codes 9
Special notes 9
Order of input cards 10
Methods of calculation 10
Flow rates and volumes 10
Flow.durations and volumes 11
Máxinum volumes 12
Output 15
Appendix 1. Flow chart of the runoff program 17
Appendix 2. Division of the progiam by functions 22
Appendix 3, FORTRAN program listing 23
Appendix 4. Definition of program symbols 28
PLEASE MAKE THE FOLLOWING CORRECTIONS
Page Correction
7 The last six lines of table 1 should carry the heading "Station Information. Card"; they pertain to the section entitled "Station Information."
12. In the first line of the last paragraph, change "indeed" to "indexed."
13 Title the figure "Figure 5.--Maximum Volume Search with no Interpolation."
27 Please note the changes to be made in the program 1isting, Appendix 3.
28 \& 29 Change "fig. 5 " to "fig. 3 " in the definitions of DELT1, DELT2, HCO, HC1, HC2.

31 Change "table 3 " to "table 1 " in the definition of $P(J)$.

COMPUTER PROGRAM FOR THE REDUCTION AND PRELIMINARY ANALYSES
 OF RUNOFF DATA ${ }^{1}$

D. A. Woolhiser ${ }^{2}$ and K. E. Saxton ${ }^{3}$

INTRODUCTION

Electronic digital computers have been used for the reduction and analyses of runoff data for several years. Their speed and accuracy have made them extremely valuable for this purpose.

Most of the available programs have been written for computers having smaller storage capacities than those currently available. Because of their limited storage capacity, two runs are usually required with the output of the basic data-reduction program serving as input for the analyses program. In many cases, the input-output operations require more time than the computations.

This program performs the reduction and preliminary analyses of runoff data with a single pass of the data. From the time-stage data of the flow events and the station's rating information, the program computes flow rates, flow volumes, flow durations and volumes above selected rates, and maximum amounts of flow for selected time intervals.

The program was written to compute runoff from agricultural watersheds as measured by weirs and pond outlet structures. However, it is sufficiently general that it may be applied to nearly all types of flow-measuring devices having a known stage-discharge relation. Many constants within the analyses portion of the program may be easily modified to allow for specific applications.

The program was written in FORTRAN for use on a Control Data Corporation 1604 computer ${ }^{4}$; however, it is adaptable to most other computers. The authors have successfully adapted it, without major programming changes, to an IBM 1620 having 60,000 units of storage. This version of the program may be obtained from the authors.

Since the program is generally adaptable, its description will be useful to those engaged in hydrologic research involving field measurement of runoff. Additional clarification of the program can be obtained from either of the authors.

[^0]
PROGRAM FEATURES

This program computes instantaneous rates of discharge from simultaneous stage and time readings and numerically integrates these rates with respect to time to obtain runoff volumes. These volumes are summed by storms, days, months, and years. Flow volumes and durations at discharges equal to or greater than twenty specified rates are computed, and annual maximum volumes are determined for nine specified time intervals. All calculations and summaries for reduction and analyses are accomplished with a single pass of the input data.

Four optional methods of computing discharge rates are provided:

1. As a function of stage alone.
2. As a function of stage and ponding.
3. As a function of stage and ponding with the rate 0 : ponding corrected for rain falling on the pond.
4. As a function of stage, ponding, rainfall-on-the-pond, and a variable drainage area caused by changes in the surface area of the pond as the stage changes.
A detailed description of the computer program is presented in the appendixes. A complete flow chart is shown in appendix 1. The flow chart has been separated into 14 divisions according to various functions. Some overlap is inevitable, particularly in indexing. The primary function of each division is given in appendix 2.

To complete the program's description, the FORTRAN statements are given in appendix 3 and the symbol definitions are given in appendix 4. The program statements are listed exactly as they are used in the program. Punching and stacking a deck containing these statements will produce a functional program.

INPUT

The input to the program is read from standard data processing cards. It consists principally of the following:

1. Several cards of basic time units and constants used in computing.
2. A "station card" containing codes and information for the particular type of calculations to be used for the station's data.
3. Tabular values defining the station's stage-discharge relation, stage-pondage relation, and stage-area relation. The latter two may be used optionally.
4. Data of either time-stage or time-stage-precipitation readings from recorder charts.
5. Code cards for designating specific functions.

An example of input to the program is shown to aid in understanding the program. Figure 1 shows the instrument chart of time-stage relation, and figure 2 is a list of the complete input to the program. This represents the input for a typical isolated runoff event over a weir on an intermittent stream having a small pond created by flow. Pondage is considered; however, rainfall-on-the-pond and a variable drainage area are not considered since the pond is small in relation to the drainage area. Twolines of input data, the first and fifth, have been left unfilled to illustrate that the input cards do not have to be full; two time increments, those underscored, have intentionally been made negative to illustrate the elimination of the values in error.

To adequately present each portion of the input, a detailed description foliows.

Figure 2.--Computer input of the example event.

Basic Constants

The basic constants used in the computations are listed on five cards as shown in table 1.
Cards Nos. 1 and 2 contain the accumulated days of the year at the beginning of each month. LDAY(M) is for a non-leap year and LEAP(M) is for a leap year.

Cards Nos. 3 and 4 contain the rates, CLASS(J), in inches per hour, used as limiting rates in the flow-duration computations. Volumes and durations of flow occurring at rates equal to or greater than CLASS(J) are computed. These rates may be varied as desired by changing the CLASS(J) values.

Card No. 5 contains the time periods, $P(J)$, in hours, used when searching for maximum amounts of runoff for specified time periods. These values may also be varied as desired.

TABLE 1.--Basic constants used in computations
Accumulated days of the year (format 4) ${ }^{1}$

LDAY (M)	0	31	59	90	120	151	181	212	243	273	304	334
LEAP (M)	0	31	60	91	121	152	182	213	244	274	305	335

Flow-duration class rates, inches per hour (format 151)

CLASS (J) ${ }^{2}$. 0010	. 0016	. 0025	. 0040	. 0063	. 010	. 016	. 025	. 040	. 063
	. 100	. 16	. 25	. 40	. 63	1.00	1.60	2.50	6.30	10.00

Time lengths for maximum amount search, hours (format 3)

[^1]
Station Information

The following is the format and definition of the constants provided on the station information card. The first line indicates the spacing across a data card; the second line represents the signs, numbers, and decimals as they would be used; and the third lists the symbol for each station constant (See appendix 4 for symbol definitions.)

Rating Table

Values of the station's discharge, in units of cubic feet per second, are read into and stored in the computer. These values are to be taken at uniform intervals of stage from the stage discharge relation, with the first value being at the station's gage datum elevation, GDE. They are punched in eight-column fields and ten fields per card (l0F8.3). The decimal may be punched, or the machine will establish it as three places from the right side of the field if unpunched. All cards must be filled except the last.

The program applies a linear interpolation between tabulated values of discharge to compute the discharge rate for stages between two tabulated values. Therefore, the stage interval, QI, between the discharge rates stored should be selected so a linear interpolation will give the desired accuracy.

The amount of storage set aside in the computer for the rating table values, Q , is specified in the DIMENSION statement. This amount should be large enough to allow for the maximum number of entries expected but not excessive. The same is true for storing the pondage table values, PC, and the watershed area table values, AREA.

Pondage Correction Table

If a pondage correction is to be applied, the values are punched in the same format and under the same rules as the rating table. The unit to be used is cubic feet per second for a rate of change in stage of one foot per minute. The first value must correspond to the pond datum elevation, PDE, specified on the station information card.

Watershed Area Table

If the permeable area of a watershed varies significantly with changes in pond elevation, a variable drainage area table may be necessary. Values in acres of watershed are punched in the same format and under the same rules as the rating table. The first value must correspond to the pond datum elevation, PDE.

Data Cards

The time-stage data are punched in one of two formats depending on whether rainfall values are required.

The following shows the information required and the data card format if no rainfall values are needed; i.e., rainfall-on-the-pond correction is not applied:

All symbols are defined in appendix 4. Note that four time-stage readings may be placed on one card. The card does not need to be full; however, ail values must be in the farthest left field available. A new card is required if ID, M, KDAY, or KYR change.

The following is the information required and format to be used if rainfall values are needed; i.e., the rate of change in stage for computing the pondage rate is to be corrected for rainfail-on-the-pond.

1-5	$6-8$	9-11	12-14	15-18	19-22	23-28	29-33	34-37	38-41
$+\mathrm{XXXX}$	+ XX	+ XX	+ XX	+ XX.	+ XX.	$\begin{gathered} +X X . X X \\ H(1) \\ \hline \end{gathered}$	$\begin{gathered} +X . X X \\ D(1) \end{gathered}$	$\begin{aligned} & +\mathrm{XX} \\ & \mathrm{TH}(2) \\ & \hline \end{aligned}$	$\begin{gathered} +X X \\ \mathrm{TM}(2) \\ \hline \end{gathered}$
ID	M	KDAY	KYR	TH(1)	TM(1)				
		42-47	48-52	53-56	57-60	61-66	67-7		
		+ XX. XX	+X. XX	+ XX.	+XX .	+XX. ${ }^{\text {d }}$	X +X.		
		H(2)	$\mathrm{D}(2)$	TH(3)	TM(3)	H(3)) $\mathrm{D}(3$		

Note that only three time-stage-rainfaii readings per card are possible with this format.
It may be more convenient and efficient to change the input format from that shown if the user prefers a different time or stage representation. This change would only require modifications of the input format and of those statements that convert time into decimal hours of the year and stage into head.

Codes

The following code cards and tabulating details are used in connection with data input.

1. To signify the end of a station's data:

Use a data card containing only the station's identifying number, ID, and the code 99 in the spaces proyided for M. This card causes the maximum volume search to be made on the year's data just computed and transfers control to the beginning of the program for a new station card to be read.
2. To add or subtract a constant from the stage readings:

Insert a data card containing only the station:s ID , the code 55 in the spaces provided for M, and the correction to be made, SHIFT, in the spaces provided for $H(1)$. This correction value will be added algebraically to all subsequent gage height readings until another correction or a zero is inserted by a similar card. This value is set to zero at the beginning of the calculations for each station.
3. To set the storm total and rates to zero:

Place a negative sign on an hour reading, TH(I). This sets the storm volume to zero and the corrected discharge at this time and the previous time to zero. A large accumulation of flow may be calculated for a time of no flow in computations involving reservoirs because the pondage rate is not exactly zero. This occurs because the pondage rate is calculated from three consecutive stage values to arrive at a rate for the central value. The pondage rate will not be zero unless all of these values are equal or the rates of change in stage before and after the central value are equal and with opposite signs. Of course, this code should not be used unless the discharge rate, inflow to a reservoir, should in fact be zero.
4. To stop the program:

Insert a blank card.

Special Notes

Due to the method of calculation used in this program, the last time-stage reading of a station's date is not printed when changing stations or at the end of the data; i.e., when the code $M=99$ is used. To avoid losing this last reading, a dummy reading is added after the last actual reading. it should have a time a few minutes later and the same gage height as the last actual reading.

The first time increment of a new station year is artificial and has no significance.
No pxovision has been made for estimated readings, but a code such as a negative minute reading could easily be written into the routine if desired. A provision to handle estimated volumes could also be added.

If a time difference between two successive readings becomes negative because of a tabulating or punching error, the program will eliminate readings until the time increment again becomes positive. When this occurs, an error statement is printed and the computations are continued.

Order of Input Cards

The input cards must be arranged as follows:

1. Program cards (FORTRAN statements).
2. Cards that may be specified by the computer residence.
3. Basic data cards:

LDAY (M)	(one card)
LEAP (M)	(one card)
CLASS (J)	(two cards)
$P(J)$	(one card)

4. Station card.
5. Discharge rating table.
6. Pondage rating table (if required).
7. Variable drainage area table (if required).
8. Data (including code card $\mathrm{M}=55$ if required). This may include data for more than one year for the same station.
9. Code card $\mathrm{M}=99$.
10. The next station card or a blank card to stop the program.

Repeat card groups 4 through 9 for each station's data to be computed.

METHODS OF CALCUL.ATION

The program performs three principal calculations. They are: (l) computing flow rates and integrating them with respect to time to obtain runoff volumes; (2) determining duration and volume of flow above specified rates of flow, CLASS (J); and (3) searching for maximum volumes of flow occurring during specified lengths of time, $P(J)$. The following is a brief discussion of each of the calculations.

Flow Rates and Volumes

To determine flow volumes, V, the program first determines instantaneous flow rates for each stage reading by referring to the station's rating table. Incremental volumes are obtained by averaging two successive rates and multiplying by the increment of time between them, ${ }^{5}$ thus:

$$
\Delta V=\frac{Q O+Q O B}{2} \times \Delta t_{1}^{\prime}
$$

as shown in figure 3.
If ponding is considered, the rate of flow is adjusted to account for the amount ponded by computing the rate of change in stage at HCl by the relation:

$$
\operatorname{RATE}=\left[\frac{\mathrm{HC} 1-\mathrm{HC} 0}{\Delta \mathrm{t}_{1}}+\frac{\mathrm{HC} 2-\mathrm{HC1}}{\Delta \mathrm{t}_{2}}\right] \times 1 / 2
$$

This approximates the slope of the tangent on the time-stage curve at HCl by averaging the point-to-point slopes on either side of HC1. If rainfall-on-the-pond is considered, the stage readings are reduced by the amount of rainfall before RATE is calculated.

[^2]

TIME, †
Figure 3.--Calculation of flow volumes.

This rate of change in stage, RATE, is then multiplied by the value in the pondage table corresponding to stage HCl to obtain a pondage correction flow rate, QP. This value is added algebraically to the observed rate, QOB, to obtain a corrected rate, QCORR. Therefore:

$$
\mathrm{QCORR}=\mathrm{QOB}+\mathrm{QP}
$$

and

$$
\Delta \mathrm{V}=\frac{\mathrm{QCORR}+\mathrm{QO}}{2} \mathrm{x} \Delta \mathrm{t}_{1}
$$

These increments of volume are then accumulated to provide the storm, daily, monthly, and annual totals. The accumulated annual volumes and their corresponding times, in hours from the beginning of the year, are stored for the entire year to be used in the search for maximum volumes for specified time intervals.

Flow Durations and Volumes

After each incremental volume is computed, the portion of the volume $\triangle \mathrm{V}$ and its correspondIng time Δt_{1} that occur above a flow rate CLASS (J) are accumulated as VOLD (J) and DUR (J). Therefore, by using several flow rates, CLASS (J), as specified in the basic data cards, a flowduration series is computed.

Consider the hydrograph shown in figure 4 . The volume of flow at rates equal to or greater than the rate CLASS (J) is shaded. A straight-line variation of discharge between tabulated points

Figure 4.--Hydrograph for determining flow-duration values.
is assumed and the incremental volumes and durations are computed on this basis. For example, the equation for the incremental duration in triangle (1) is:

$$
\text { Length }(\mathrm{ac})=\frac{[\mathrm{Q} 3-\operatorname{CLASS}(\mathrm{J})] \times\left(\mathrm{t} 3-\mathrm{t}_{2}\right)}{\mathrm{Q}_{3}-\mathrm{Q}_{2}}
$$

and the incremental volume is:

$$
\operatorname{Area}(1)=\frac{\left[Q_{3}-\operatorname{CLASS}(J)\right]^{2} \times\left(\tau_{3}-t_{2}\right)}{2\left(\mathrm{Q}_{3}-\mathrm{Q}_{2}\right)}
$$

Maximum Volumes

Annual maximum volumes of runoff occurring within the selected time intervals $\mathrm{P}(\mathrm{J})$ are determined by a search of the previously calculated data. Two indexed variables, $\mathrm{V}(\mathrm{L})$ and $\mathrm{T}(\mathrm{L})$, are utilized. $V(\mathrm{~L})$ is the accumulated runoff in inches, and $T(L)$ is its corresponding time in hours from the beginning of the calendar year.

The limit of storage in the computer available for storing these values is set in the DIMENSION statement. Since one unit of storage for each variable is required for each input reading, an estimate can be made of the maximum number needed. This represents a sizable amount of storage on the smailer computers; therefore, it may be necessary to store fewer values, search more often, and combine the results.

A mesh of time length $P(J)$ is set up to make this search. The mesh is indeed at $J=1$, which sets its length equal to the first value specified in the basic constants. This mesh is then shifted through the stored data to obtain the maximum volume accumulated during this length of time and the time of the beginning of this maximum amount. The mesh is reindexed and the procedure repeated for each successive length of time.

For making this search, LL indexes the leading edge of this mesh and LT the trailing edge. These indices are assigned values equal to the index of a time value. The time value used is the one at which the mesh edge occurs if the mesh edge is coincidental with a time value, or the one immediately following if the mesh edge occurs between two time values. This substitution was made in the following three equations when incorporating them into the program.

There are three possible positions of the search mesh with respect to the stored values of time as it is shifted through the data:

Case A.-- The leading and trailing edges exactly coincide with the stored time values T_{L} as shown in figure 5 . Thus no interpolation is required and the volume V_{J} in the time period P (J) is given by:

$$
\mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{L}+\mathrm{N}}-\mathrm{V}_{\mathrm{L}}
$$

Case B.--The leading edge falls between two time values as shown in figure 6. An interpolation is required at the leading edge of the mesh and the volume V_{J} is given by:

$$
V_{J}=V_{L+N-1}+\frac{P(J)-T_{L+N-1}+T_{L}}{T_{L+N}-T_{L+N-1}} x\left(v_{L+N}-v_{L+N-1}\right)-V_{L}
$$

Case C.--The trailing edge falls between two time values, as shown in figure 7. Here an interpolation is required at the trailing edge of the mesh; thus, the volume V_{J} is given by:

$$
v_{J}=v_{L+N}-v_{L}+\frac{T_{L+N}-T_{L}-P(J)}{T_{L+N}-T_{L}} x\left(v_{L+1}-v_{L}\right)
$$

TIME, T

Figure 6.--Maximum volume search with leading edge interpolation.

Figure 7.--Maximum volume search with trailing edge interpolation.

OUTPUT

The output of the program includes a line of data for each time-stage reading. Figure 8 shows an example of output obtained from the input example shown in figure 2.

Included in each line are:

1. An identifying number.
2. The month, day, year, and time of the reading.
3. The time increment between readings--hours.
4. The corrected stage--feet.
5. The rate of change in stage--feet per minute.
6. The pondage correction--cubic feet per second.
7. The observed discharge--cubic feet per second.
8. The observed discharge corrected for pondage--cubic feet per second and inches per hour.
9. Accumulated storm, daily, monthly, and annual flow volumes--inches.

The error statements indicate where the difference between two time readings became negative and the latter reading was omitted.

At the end of the year's data or when the code card $\mathrm{M}=99$ is inserted to signify the end of a station's data, the maximum volumes occurring within the selected time intervals P(J) are printed as inches of runoff. The time intervals used in the example shown were arbitrarily selected.

Flow-duration information is printed after the maximum volumes. This includes the times, in hours, and the volumes, in inches, that the flow was equal to or greater than the twenty selected discharge rates.

ID M0		DAY	YR	HOUR MLN	DELTMTME	HEAD	DHDT	PONDCOR	(CFS)	CFS	Q(IPH)	STORM	DAILY	MONTHLY	ANNUAL
152	7	2	60	9. 34.	. 0167	1.32	. 0000	. 00	. 00	. 00	. 0000	. 0000	. 0000	. 0000	. 0000
152	7	2	60	9. 37.	. 0500	1.36	. 0167	. 23	. 00	. 23	. 0099	. 0002	. 0002	. 0002	. 0002
152	7	2	60	9. 39.	. 0333	1.40	. 0250	. 36	. 00	. 36	. 0158	. 0007	. 0007	. 0007	. 0007
152	7	2	60	9.41.	. 0333	1.46	. 0350	. 55	. 00	. 55	. 0241	. 0013	. 0013	. 0013	. 0013
152	7	2	60	9. 42.	. 0167	1.50	. 0550	, 92	. 00	. 92	. 0400	. 0019	. 0019	. 0019	. 0019
152	7	2	60	9. 44.	. 0333	1.64	. 0600	1.20	. 06	1.26	. 0547	. 0034	. 0034	. 0034	. 0034
152	7	2	60	9.46.	. 0333	1.74	. 0450	1.04	. 22	1.26	. 0546	. 0053	. 0053	. 0053	. 0053
152	7	2	60	9. 48.	. 0333	1.82	. 0375	. 99	. 44	1.43	. 0624	. 0072	. 0072	. 0072	. 0072
152	7	2	60	9. 50.	. 0333	1.89	. 0262	. 80	. 72	1.52	. 0662	. 0094	. 0094	. 0094	. 0094
152	7	2	60	9. 54.	. 0667	1.96	. 0104	. 36	1.10	1.46	. 0637	. 0137	. 0137	. 0137	. 0137
152	7	2	60	9. 57.	. 0500	1.97	-. 0000	-. 00	1.16	1.16	. 0505	. 0165	. 0165	. 0165	. 0165
152	7	2	60	10. 0	. 0500	1.96	-. 0057	-. 20	1.10	. 90	. 0392	. 0188	. 0188	. 0188	. 0188
152	7	2	60	10. 5.	. 0833	1.92	-. 0103	-. 33	. 87	. 53	. 0233	. 0214	. 0214	. 0214	. 0214
NEGATIVE DELT TIME LNCURRED AFTER NEXT READING															
152	7	2	60	10. 9.	. 0667	1.87	-. 0120	-. 35	. 63	. 28	. 0120	. 0226	. 0226	. 0226	. 0226
152	7	2	60	10. 22.	. 2167	1.72	-. 0095	-. 21	. 17	. 00	. 0000	. 0239	. 0239	. 0239	. 0239
Negative delt time incurred after next reading															
152	7	2	60	10. 30.	. 1333	1.66	-. 0059	-. 12	. 08	. 00	. 0000	. 0239	. 0239	. 0239	. 0239
152	7	2	60	11. 0.	. 5000	1.53	-. 0032	-. 06	. 00	. 00	. 0000	. 0239	. 0239	. 0239	. 0239
152	7	2	60	11. 14.	. 2333	1.50	-. 0011	-. 02	. 00	. 00	. 0000	. 0239	. 0239	. 0239	. 0239
152	7	2	60	11. 16.	. 0333	1.50	. 0000	. 00	. 00	. 00	. 0000	. 0239	. 0239	. 0239	. 0239

ANNUAL ELOW SUMMARY ID $=152 \quad$ YEAR $=60$

MAXIMNM ELOWS	ID	INTER MO	DAY HOUR	VOLUME
	152	1.7	29.57	. 024
	152	2. 0	0.00	. 000
	152	6. 0	0.00	. 000
	152	12. 0	0.00	. 000
	152	24. 0	0.00	. 000
	152	48. 0	0.00	. 000
	152	72. 0	0.00	. 000
	152	120. 0	0.00	. 000
	152	192. 0	0.00	. 000
DURATION OF FLOW	RATES	RATE	HOURS	VOLUME
		. 0010	. 78	. 023
		. 0016	. 76	. 023
		. 0025	. 74	. 022
		. 0040	. 71	. 021.
		. 0063	. 65	. 019
		. 0100	. 57	. 017
		. 0160	. 48	.014
		. 0250	. 39	. 010
		. 0400	. 30	. 005
		. 0630	. 10	. 000
		. 1000	. 00	. 000
		. 1600	. 00	. 000
		. 2500	. 00	. 000
		. 4000	. 00	. 000
		. 6300	. 00	. 000
		1.0000	. 00	. 000
		1.6000	. 00	. 000
		2.5000	. 00	. 000
		6.3000	. 00	. 000
		10.0000	. 00	. 000

Figure 8.--Example of output obtained from the input shown in figure 2 。

APPENDIX 1

FLOW CHART OF THE RUNOFF PROGRAM

APPENDIX 1--CONTINUED

APPENDIX 1--CONTINUED

APPENDIX 1--CONTINUED

APPENDIX 1--CONTINUED

APPENDIX 2

DIVISION OF THE PROGRAM BY FUNCTIONS

Division number ${ }^{6}$	Program functions
1.	Initializing and input.
2.	Converting time and making preliminary decisions.
3.	Determining whether year is leap year.
4.	Computing time increments and indexing stage readings.
5.	Computing pondage rate.
6.	Computing observed discharge.
7.	Combining pondage and observed rates.
8.	Correcting for variable drainage area.
9.	Computing flow volume.
10.	Determining flow durations and volumes.
11.	Accumulating volumes.
12.	Printing answers.
13.	Re-indexing and returning to:
	1) read a new card, 2) next value on last card read, or 3) maximum volume search.
14.	Maximum volume search.

14. Maximum volume search.
[^3]
APPENDIX 3

FORTRAN PROGRAM LISTING

RดGRAM RUNดFF
IDIMENSIดN Q(200), $P C(200)$, LDAY(12), LEAP(12), TH(4), TM(4), H(4), D(4), $1 T(1200), \quad \operatorname{SUMV}(1200), \mathrm{V}(9), \mathrm{T} \varnothing(9)$, $\mathrm{KTD}(9), \operatorname{TD}(9), \operatorname{TAD}(9), \mathrm{P}(12)$,
$2 \mathrm{CLASS}(20), \quad \operatorname{DUR}(20), \quad V \emptyset \mathrm{LD}(20)$, AREA(50)
3 FดRMAT(9F5.0)
4 FดRMAT (12I4)
5 F \emptyset RMAT (I5, 3I2, 3I4, 2F4.2, F4.1, 2F7.2, F7.0)
6 FดRMAT (10F8.3)
8 FดRMAT (I5, 313, 3(2F4.0, F6.2, F5.2))
7 FQRMAT (49H NEGATIVE DELT TIME INCURRED AFTER NEXT READING)
30 FดRMAT (F9.3, F8.4)
9 FQRMAT (I5, 3I3, 4 ($2 \mathrm{~F} 4.0, \mathrm{~F} 6.2$))
153 F $\emptyset \mathrm{RMAT}$ (23X, F8.4, F10.2, F10.3)
15 FดRMAT (20X, I5, F5.0, 2I3, F6.2, F7.3)
173 F \emptyset RMAT $(27 \mathrm{H}=$ ANNUAL FL $\emptyset W$ SUMMARY ID $=14,8 \mathrm{H}$ YEAR $=\mathrm{I} 3, / / /)$
163 F $\emptyset R M A T$ (53H DURATIดN $\emptyset F$ FL $\emptyset W$ RATES RATE HQURS VQLUME)
162 FดRMAT (51H MAXIMUM FLøWS ID INTER M \varnothing DAY H \varnothing UR V $\emptyset L U M E$)
1670 F \varnothing RMAT ($113 \mathrm{H}=\mathrm{ID}$ M \varnothing DAY YR HดUR MIN DELTTIME HEAD DHDT PONDCQR QQ 1B(CFS) CFS Q(IPH) ST \varnothing RM DAILY M φ NTHLY ANNUAL)
151 FQRMAT (10F8.4)
$M A=1$
11 FGRMAT (I5, 3I3, 2F4.0, F9.4, F6.2, F7.4, 3F8.2, 5F9.4)
READ 4, (LDAY(M), $M=1,12$)
READ 4, (LEAP(M), $M=1,12$)
READ 151, (CLASS(J), $J=1,20)$
READ 3, (P(J), J = 1,9)
14 READ 5, ID, NA, NB, NC, NQ, NP, NAF, QI, PI, AI, GDE, PDE, ACRE
IF (ID) $160,22,160$
160 READ 6, (Q(N), $\mathrm{N}=1, \mathrm{NQ})$
PRINT 167

LINE $=0$
$\mathrm{MF}=1$
SHIFT=0。
DELV $=0$.
SUM $=0$.
SUMVD $=0$.
SUMVM $=0$ 。
ISW = 1
$\mathrm{D} \varnothing 154 \mathrm{~J}=1,20$
$V \not \subset L D(J)=0$.
154 DUR $(\mathrm{J})=0$.
KYRT $=0$.
$\mathrm{QP}=0$.
RATE $=0$.
$G \emptyset T \emptyset(18,41)$, NA
18 READ 6, (PC(N), $\mathrm{N}=1, \mathrm{NP})$
Gด Tด (200, 41), NB
$200 \mathrm{G} \varnothing \mathrm{T} \varnothing(201,20)$, NC
201 READ 6, (AREA(N), $N=1$, NAF)
GØ Tด 20
41 READ 9, ID, M, KDAY KYR, (TH(I), TM(I), H(I), $\mathrm{I}=1,4$)
IF (M-55) 215, 216, 215
$215 \mathrm{D} \varnothing 217 \mathrm{I}=1,4$
$217 \mathrm{H}(\mathrm{I})=\mathrm{H}(\mathrm{I})+$ SHIFT
$\mathrm{G} \varnothing \mathrm{T} \varnothing \mathbf{2 1}$
216 SHIFT $=\mathrm{H}(1)$
G \emptyset Tด 41
20 READ 8, ID, M, KDAY, KYR, (TH(I), $\operatorname{TM}(\mathrm{I}), \mathrm{H}(\mathrm{I}), \mathrm{D}(\mathrm{I}), \mathrm{I}=1,3)$
IF (M-5S) 212, 213, 212
$212 \mathrm{D} \varnothing 214 \mathrm{I}=1,3$
$214 \mathrm{H}(\mathrm{I})=\mathrm{H}(\mathrm{I})+\mathrm{SHIF} \mathrm{T}$
G Т $\varnothing 21$
213 SHIFT = H(1)
G \emptyset Tด 20
21 IF (ID) 23, 22, 23
22 ST ¢P
23 IF (M-99) 25, 27, 25
$27 \mathrm{MA}=1$
$\mathrm{NL}=\mathrm{L}-2$
$\mathrm{MR}=1$
$M G=M F$
$G \emptyset T \emptyset 140$
$25 \mathrm{I}=1$
$48 \mathrm{IF}(\mathrm{TH}(\mathrm{I})) 303,26,26$

303 ISW $=2$
$\mathrm{TH}(\mathrm{I})=-\mathrm{TH}(\mathrm{I})$
$26 \mathrm{HRS}=\mathrm{TH}(\mathrm{I})+(\mathrm{TM}(\mathrm{I}) / 60$.
IF (HRS) 31, 28, 31
$28 \mathrm{I}=1$
$G \emptyset T \not \subset(20,41), N B$
31 IF (I-1) 91, 32, 91
32 IF (KYR-KYRT) 85, 33, 85
$33 \mathrm{ME}=2$
$G \emptyset T \emptyset(35,36), M F$
$35 \mathrm{DAY}=\mathrm{KDAY}+\mathrm{LDAY}(\mathrm{M})$ Gด Tด 37
$36 \mathrm{DAY}=\mathrm{KDAY}+\mathrm{LEAP}(\mathrm{M})$
$37 \mathrm{G} \emptyset \mathrm{T}$ (38,91$), \mathrm{MA}$
38 KYRT = KYR
$\mathrm{M} \emptyset \mathrm{T}=\mathrm{M}$
KDAYT $=\mathrm{KDAY}$
$\mathrm{L}=1$
$91 \mathrm{~T}(\mathrm{~L})=\left(\mathrm{DAY}^{*} 24.\right)+\mathrm{HRS}$
39 Gด Tด (89, 90), NB
$89 \mathrm{DF}=\mathrm{D}(\mathrm{I}) / 12.0$
$90 \mathrm{HC}=\mathrm{H}(\mathrm{I})$
Gด Tด (43, 49), ME
$43 \mathrm{G} \emptyset \mathrm{T}$ (209, 210), MA
209 DELT1 $=0.01667$
$\mathrm{MA}=2$
ISW $=3$
GС Tด 47
$210 \mathrm{G} \emptyset \mathrm{T}$ (44, 45), MG
44 DELT2 $=\mathrm{T}(\mathrm{L})+8760 .-\mathrm{T}(\mathrm{L}-1)$
G \emptyset T 47
$45 \mathrm{DELT} 2=\mathrm{T}(\mathrm{L})+8784 .-\mathrm{T}(\mathrm{L}-1)$
$47 \mathrm{IF}(\mathrm{KYR}-\mathrm{KYRT}) 50,46,50$
$46 \mathrm{ME}=2$
$D E L D=0$.
$D E T=D F$
$\mathrm{HCi}=\mathrm{HC}$
$\mathrm{HCO}=\mathrm{HC}$
$K D A Y T=K D A Y$
$M \not \subset T=M$
$Q \not Q=0$.
$\mathrm{TMIN}=\mathrm{TM}(\mathrm{I})$
HRT $=\mathrm{TH}(\mathrm{I})$
$I=I+1$
$\mathrm{L}=\mathrm{L}+1$
$G \not \subset T \not \subset 26$
$49 \mathrm{DELT} 2=\mathrm{T}(\mathrm{L})-\mathrm{T}(\mathrm{L}-1)$
IF (DELT2) 400, 400, 50
400 PRINT 7
$G \emptyset T \emptyset(401,402), N B$

401 IF (I-3) 403, 20, 20
$402 \mathrm{IF}(\mathrm{I}-4) 403,41,41$
$403 \mathrm{I}=\mathrm{I}+1$
GO TO 48
$50 \mathrm{HC} 2=\mathrm{HC}$
$G \not \subset \mathrm{~T} \emptyset(52,57), \mathrm{NA}$
52 DELD2 = DF-DFT
IF (DELD2) 54, 220, 220
$54 \mathrm{DELD} 2=0$.
$220 \mathrm{G} \emptyset \mathrm{T} \varnothing(184,203,204)$, ISW
203 ISW = 3
$Q \emptyset B=0$.
$Q P=0$.
RATE $=0$.
Gø Tด 63
$204 \mathrm{QP}=0$.
$\mathrm{ISW}=1$
$S T \not Q R M=0.0$
Gด Tด 94
184 RATE $=((\mathrm{HCl}-\mathrm{DELD}-\mathrm{HCO}) / \mathrm{DELT}+$
(HC2-DELD2oHC1)/DELT2)/120。
$\mathrm{HN}=(\mathrm{HCl}-\mathrm{PDE}) / \mathrm{PI}+1.0$
$\mathrm{N}=\mathrm{HN}$
$\mathrm{HCN}=\mathrm{N}$
IF (HCN-HN) 55, 56, 55
$55 \mathrm{NI}=\mathrm{N}+1$
$Q P=(P C(N)+(H N-H C N) *(P C(N I)-P C(N)))$
*RATE
Gด TØ 57
$56 \mathrm{QP}=\mathrm{PC}(\mathrm{N}) * \mathrm{RATE}$
$57 \mathrm{HN}=(\mathrm{HCl}-\mathrm{GDE}) / \mathrm{QI}+1.0$
IF (HN) 94, 94, 93
$93 \mathrm{~N}=\mathrm{HN}$
$\mathrm{HCN}=\mathrm{N}$
$58 \mathrm{IF}(\mathrm{HCN}-\mathrm{HN}) 59,60,59$
$94 \mathrm{Q} \emptyset \mathrm{B}=0$.
$G \emptyset T \varnothing$ 6:
$59 \mathrm{NI}=\mathrm{N}+2$
$\mathrm{Q} \varnothing \mathrm{B}=\mathrm{Q}(\mathrm{N})+(\mathrm{HN}-\mathrm{HCN})^{*}(\mathrm{Q}(\mathrm{NT})-\mathrm{Q}(\mathrm{N}))$
$G \emptyset T \emptyset 61$
$60 \mathrm{Q} Q \mathrm{~B}=\mathrm{Q}(\mathrm{N})$
$61 \mathrm{QCQRR}=\mathrm{Q} Q B+Q P$
IF (QCপRR) $03,64,64$
$63 \mathrm{QC} \not \mathrm{RR}=0$.
64 G \emptyset T \varnothing (206, 205), NC
$206 \mathrm{HN}=(\mathrm{HCI}-\mathrm{PDE}) / \mathrm{AI}+1.0$
$\mathrm{N}=\mathrm{HN}$
$\mathrm{HCN}=\mathrm{N}$
IF (HCN-HN) 208, 207, 208
207 ACRE $=\operatorname{AREA}(\mathrm{N})$
GØ Tด 205

APPENDIX 3--CONTINUED

$208 \mathrm{NI}=\mathrm{N}+1$
$A C R E=A R E A(N)+(H N-H C N)^{*}(A R E A$ (NI)-AREA(N))
$205 \mathrm{QC} Q \mathrm{RR}=\mathrm{QC} Q \mathrm{RR} /\left(1.008^{*} \mathrm{ACRE}\right)$
$D E L V=(Q \emptyset+Q C \not Q R)^{*} D E L T 1 / 2$.
Dø $183 \mathrm{~J}=1,20$
175 IF(QCQRR-CLASS(J)) 177, 178, 179
177 IF!Qด-CLASS(J)) 75, 75, 180
$180 \operatorname{DUR}(\mathrm{~J})=\operatorname{DUR}(\mathrm{J})+(\mathrm{Q} \nmid-\operatorname{CLASS}(\mathrm{J})) * \operatorname{DELT} 1 /$
(Qด-QCดRR)
$\mathrm{V} \emptyset \mathrm{LD}(\mathrm{J})=\mathrm{V} \emptyset \mathrm{LD}(\mathrm{J})+(\mathrm{Q} \emptyset-\mathrm{CL} \mathrm{ASS}(\mathrm{J}))^{*}$
(Qดி-CLASS(J))*DELT1/((QดQCดRR)*2.)
Gด Tด 183
$178 \mathrm{JB}=1$
GØ Tø 176
$179 \mathrm{JB} \quad 2$
$176 \mathrm{IF}(\mathrm{Q} \emptyset-\mathrm{CLASS}(\mathrm{J})) \mathrm{I} 81,152,152$
$181 \mathrm{G} \emptyset \mathrm{T} \emptyset(75,185)$, JB
$185 \operatorname{DUR}(J)=\operatorname{DUR}(J)+(Q \subset \not \subset R R-C L A S S(J))$
*DELTI/(QCQRR-Qด)
$O V \emptyset L D(J)=V \emptyset L D(J)+(Q C \not Q R R-C L A S S$ $(J))^{*}(Q C \not Q R R-C L A S S(J))^{* D E L T I /}$ ((QCดRR-Qø1)*2。)
GดTO゙183
$152 \operatorname{DUR}(\mathrm{~J})=\operatorname{DUR}(\mathrm{J})+D E L T I$
$V \not \emptyset L D(J)=V \not \subset L D(J)+(Q \not \partial+Q C \not \emptyset R R)^{*}$ DELT1/2.-DELTI*CLASS(J)
183 CQNTINUE
$75 \mathrm{LV}=\mathrm{L}-1$
SUMV (LV $=$ SUM + DELV
SUM = SUMV(LV)
SUMVM = SUMVM + DELV
SUMVD $=$ SUMVD + DEI V
STดRM $=$ STดRM + DELV
QCQR2 = QCดRR * 1.008 * ACRE
760 PRINT 11, ID, MøT, KDAYT, KYRT, HRT, TMIN! DELT1, HC1, RATE, QP, QดB, QCดR 2, 1QCดRR, STQRM,
SUMVD, SUMVM, SUM
LINE = LINE +1
IF (56 m LINE) $168,168,169$
$169 \mathrm{GP} \mathrm{TQ}(69,66)$, ME
168 PRINT 167
LINE $=0$
$G \emptyset$ Tด 169
$69 \mathrm{NL}=\mathrm{L}-1$
$M R=2$
Gø Tø 140
$62 \mathrm{KYRT}=\mathrm{KYR}$
$\mathrm{ME}=2$
$\mathrm{L}=1$
$T(\mathrm{~L})=\mathrm{T}(\mathrm{NL}+2)$
SUM $=0$.
67 SUMVM $=0$.
M ดT $=\mathrm{M}$
$68 \mathrm{KDAYT}=\mathrm{KDAY}$
SUMVD $=0$.
$G \not \subset T \not \subset 74$
66 IF ($\mathrm{MOT}-\mathrm{M}) 67,71,67$
71 IF (KDAY-KDAYT) 68, 74, 68
74 DELT1 = DELT2
$D F T=D F$
DELD= DELD2
$\mathrm{HCO}=\mathrm{HCl}$
$\mathrm{HCl}=\mathrm{HC} 2$
$Q \not \subset=Q C \not Q R$
Gด Tด (79, 80), NE
79 IF (I-3) 81, 82, 81
80 IF (I-4) $81,83,81$
$81 \mathrm{JA}=1$
77 HRT $=$ TH(I)
$\mathrm{TMIN}=\mathrm{TM}(\mathrm{I})$
$L=L+1$
Gø Tด (17, 24, 92), JA
$82 \mathrm{JA}=2$
Gด Tด 77
$83 \mathrm{JA}=3$
Gด Tด 77
$17 \mathrm{I}=\mathrm{I}+1$
Gø Tด 48
24 I =1
$G \emptyset T \varnothing 20$
$92 \mathrm{I}=1$
$\mathrm{G} \varnothing \mathrm{T} \varnothing 41$
$85 \mathrm{ME}=1$
$\mathrm{MG}=\mathrm{MF}$
$\mathrm{YR}=\mathrm{KYR}$
TEST $=\mathrm{YR} / 4$.
KTEST=TEST
TESTA = KTEST
IF(TESTw TESTA) $88,87,88$
$87 \mathrm{MF}=2$
$D A Y=K D A Y+L E A P(M)$
$G \varnothing T \emptyset 37$
$88 \mathrm{MF}=1$
$D A Y=K D A Y+\operatorname{LDAY}(M)$
Gø TØ 37

APPENDIX 3--CONTINUED

```
\(140 \mathrm{~L}=1\)
    \(J=1\)
    \(96 \mathrm{~V}(\mathrm{~J})=0\).
    \(T \emptyset(J)=0\).
    LL= 2
    \(\mathrm{LT}=1\)
    \(\mathrm{KE}=1\)
```

 \(97 \mathrm{IF}((\mathrm{T}(\mathrm{LL})-\mathrm{T}(\mathrm{LT}))-\mathrm{P}(\mathrm{J})) 98\),99,122
 \(98 \mathrm{LL}=\mathrm{LL}+1\)
 IF (LL-NL-1) 97, 107, 107
 \(99 \mathrm{~V} \not \subset \mathrm{~L}=\mathrm{SUMV}(\mathrm{LL})-\mathrm{SUMV}(\mathrm{LT})\)
 100 IF (Vด̧L-V(J)) 106, 101, 101
$101 \mathrm{~V}(\mathrm{~J})=\mathrm{V} \emptyset \mathrm{L}$
$T \phi(\mathrm{~J})=\mathrm{T}(\mathrm{LT})$
106 IF (NL-LL) 107, 107, 102
$102 \mathrm{LL}=\mathrm{LL}+1$
$\mathrm{LT}=\mathrm{LT}+1$
$\mathrm{IF}(\mathrm{T}(\mathrm{L} \mathrm{L})-\mathrm{T}(\mathrm{L} \mathrm{L}-1)-\mathrm{T}(\mathrm{L} \mathrm{T})+\mathrm{T}(\mathrm{L} \mathrm{T}-1))$
105, 99, 104
$104 \mathrm{KE}=1$
$G \emptyset T \varnothing 122$
$105 \mathrm{KE}=2$
Gด Tด 130
$107 \operatorname{IF}(9-$ J $) 108,109,108$
$108 \mathrm{~J}=\mathrm{J}+1$
G甲 Tด 96
$109 \mathrm{D} \emptyset 110 \mathrm{~J}=1,9$
$\mathrm{TD}(\mathrm{J})=\mathrm{T} \varnothing(\mathrm{J}) / 24$.
$\mathrm{KTD}(\mathrm{J})=\mathrm{TD}(\mathrm{J})$
$110 \mathrm{TAD}(\mathrm{J})=\mathrm{KTD}(\mathrm{J})$
PRINT 173, ID, KYRT
$\mathrm{G} \emptyset \mathrm{T} \emptyset(118,112), \mathrm{MG}$
112 PRINT 162
Dด $115 \mathrm{~J}=1,9$
IF (TD(J)) 545, 545, 546
$545 \mathrm{M} \not \mathrm{NTH}=0$
MDAY $=0$
HRS $=0$.
Gด Tด 547
$546 \mathrm{DQ} 117 \mathrm{MH}=1,12$
IF (KTD(J)-LEAP(MH)) 114, 114, 117
117 C \emptyset NTINUE
$\mathrm{MH}=13$
$114 \mathrm{M} \emptyset \mathrm{NTH}=\mathrm{MH}-1$
MDAY=KTD $(\mathrm{J})-\operatorname{LEAP}(\mathrm{MH}-1)$
$150 \mathrm{HRS}=(\mathrm{TD}(\mathrm{J})-\mathrm{TAD}(\mathrm{J})) * 24$.
547 PRINT 15, ID, $P(J), ~ M \emptyset N T H, ~ M D A Y$,
HRS, V(J)
115 CดNTINUE
Gด Tด 171

118 PRINT 162
Dด $120 \mathrm{~J}=1,9$
IF (TD(J)) 542, 542, 543
542 M МNTH $=0$
MDAY $=0$
HRS $=0$.
$G \emptyset T \emptyset 544$
$543 \mathrm{D} \emptyset 119 \mathrm{MH}=1,12$
IF (KTD(J)-LDAY(MH)) 121, 121, 119
119 CดNTINUE
$\mathrm{MH}=13$
$121 \mathrm{M} \emptyset \mathrm{NTH}=\mathrm{MH}-1$
MDAY=KTD(J)-LDAY(MH-1)
HRS $=(\mathrm{TD}(\mathrm{J})-\mathrm{TAD}(\mathrm{J}))^{*} 24$.
544 PRINT 15, ID, P(J), MøNTH, MDAY, HRS, V(J)
120 CดNTINUE
171 PRINT 163
Dด $164 \mathrm{~J}=1,20$
PRINT 153, CLASS(J), DUR(J), VপLD(J)
$\mathrm{V} \emptyset \mathrm{LD}(\mathrm{J})=0$.
$\operatorname{DUR}(J)=0$.
164 CดNTINUE
$\mathrm{T}(1)=\mathrm{T}(\mathrm{NL})$
$\mathrm{G} \emptyset \mathrm{T} \varnothing(14,211), \mathrm{MR}$
211 PRINT 167
LINE $=0$
Gด Tด 62
$127 \mathrm{LT}=\mathrm{LT}+1$
$1220 \mathrm{~V} \emptyset \mathrm{~L}=\mathrm{SUMV}(\mathrm{LL}-1)+(\mathrm{P}(\mathrm{J})-\mathrm{T}(\mathrm{L} \mathrm{L}-1)+$ $T(L T))^{*}(S U M V(L L)-S U M V(L L-1)) /$ (T(LL)-1T(LL-1))-SUMV(LT)
123 IF (VGL-V(J)) 125, 124, 124
$124 \mathrm{~V}(\mathrm{~J})=\mathrm{V} \not \mathrm{L}$
$\mathrm{T} \varphi(\mathrm{J})=\mathrm{T}(\mathrm{LT})$
$125 \mathrm{G} \varnothing \mathrm{T} \emptyset(126,134)$, KE
126 REMANL=T(LL)-T(LT)-P(J)
IF (REMANL-T(LT+1)+T(LT)) 129, 128, 127
$128 \mathrm{LT}=\mathrm{LT}+1$
Gด Tด 99
$129 \mathrm{LT}=\mathrm{LT}+1$
KE 2
1300 V $\varnothing \mathrm{L}=$ SUMV(L L)-SUMV(LT-1)-(T(LL)-T(LT-1)-P(J) $)^{*}(S U M V(L T)-S U M V$ (LT-1))1/(T(LT)-T(LT-1))
$131 \mathrm{IF}(\mathrm{V} \nmid \mathrm{L}-\mathrm{V}(\mathrm{J})) 125,132,132$
$132 \mathrm{~V}(\mathrm{~J})=\mathrm{V} \not \mathrm{L} \mathrm{L}$
$T \not \subset(J)=T(L L)-P(J)$
$G \emptyset T \emptyset 125$

APPENDIX 3--CONTINUED

```
134 REMANT = P(J)-T(LL)+T(LT)
    IF (NL-LL) 136, 107, 136
136 IF (REMANT-T(LL+1)+T(LL)) 139,138,
        137
137 LL = LL+1
KE =2
    G\emptyset T\emptyset 130
```

```
138 LL=LL+1
    GQ T\emptyset 99
139 LL = LL +1
    KE =1
    G\varnothing T\emptyset }12
    END
    END
```

PLEASE MAKE THE FOLLOWING CHANGES IN THE FORTRAN PROGRAM LISTING, APPENDIX 3

Location

Comment
1st statement Begin in column 7
2nd statement Begin DIMENSI ${ }^{\prime}$ N in column 7 and put on 3 cards, the second card beginning with T(1200) and the third card with CLASS(20)
$162+2$ lines Should be statement 167; begin second card with B(CFS)
$154+1$ line Remove decimal from 0.
179 Should xead $J B=2$
$185+2$ lines Begin VOLD(J) in column 7 and put)*2.) on a second card
$75+1$ line Should read SUMV (LV)=SUM+DELV
$75+7$ lines Should be statement 76 ; begin second card with QCøRR
$74+6$ lines Change NE to NB
542 to 547 Statements associated with these numbers are not shown on flow chart
$127+1$ line Should be statement 122; put T(LL-1)-SUMV (LI) on a second card
$129+2$ lines Should be statement 130; begin second card with /(T)(LT)

DEFINITION OF PROGRAM SYMBOLS

Flow chart ${ }^{7}$ symbol	FORTRAN symbol	Definition
	ACRE	Drainage area in acres。
	AI	Stage: interval in feet between items in the variable drainage area correction table,
	AREA (N)	Area of the watershed in acres tabulated at: uniform stage increments AI, beginning at: PDE.
	CLASS (J)	Runoff rate in inches per hour. Defines 20 points on the duration curve. Suggested values are shown in table 1.
	DAY	Day of year.
$\triangle \mathrm{V}$	DELV	Differential volume of runoff in inches in time period Δt_{1}.
$\triangle \mathrm{d}$	DELD	Incremental depth of precipitation falling in time period Δt_{1}.
$\triangle \mathrm{d}_{2}$	DELD2	Incremental depth of precipitation falling in time increment Δt_{2}.
Δt_{1}	DELT1	Time increment in hours, (See fige 5.)
$\Delta \mathrm{t}_{2}$	DELT2	Time increment in hours. (See fig. 5.)
	DF	Accumulated depth of precipitation in feet. DF $=$ $D(\mathrm{I}) / 12$ 。
	DFT	The (i-1) ${ }^{\text {th }}$ depth of accumulated rainfall in feet.
	D(I)	Accumulated depth of precipitation recorded by a nearby raingage (inches).
	DUR (J)	The time in hours that the discharge rate is equal to or greater than the value specified by CLASS(J).
	GDE	Gage datum elevation. Elevation of zero discharge and first item in rating table.
	HRT	Time in hours of previous reading.

APPENDIX 4--CONTINUED

Flow chart symbol	FORTRAN symbol	Definition
	H(I)	Gage height reading.
	HRS	Hours of the day of the current gage height reading.
	HC	Equivalent to $\mathrm{H}(\mathrm{I})$.
HC_{0}	HCO	Gage height reading. (See fig. 5.)
HC_{1}	HCl	Gage height reading. (See fig. 5.)
HC_{2}	HC2	Gage height reading. (See fig. 5.)
	HCN	Decimal equivalent of N .
	HN	Position in discharge rating table, pondage correction table, or area correction table.
	I	Integer variable indexing $\mathrm{TH}(\mathrm{I}), \mathrm{TM}(\mathrm{I}), \mathrm{H}(\mathrm{I})$, and $D(I)$.
	ID	Identification number of station.
	IDT	Identification number of previous card.
	ISW	Code used in branching instructions. Normal value is 1 . At coded beginning of event ($\mathrm{TH}(\mathrm{I})$ is negative), ISW is set to 2 . Its value then progresses to 3 and is reset to 1 .
	J	Integer variable used as an index.
	JA	Code used in branching instruction, May have values of 1,2 , or 3 .
	JB	Code used in branching instruction. May have values of 1 or 2 .
	KDAY	A two-digit integer designating the day of reading.
	KDAYT	Day of previous card.
	KYR	Year of readings (last two digits).
	KYRT	The year of previous card.
	KE	Integer variable with possible values of 1 or 2 for branching.
		29

Flow chart symbol	FORTRAN symbol	Definition
	KTEST	Integer which equated to YR drops off the decimal portion of YR.
	$\mathrm{KTD}(\mathrm{J})$	The day of year associated with the beginning of a period of maximum volume, $V(J)$.
	L	Integer index for storing cumulative volumes and times.
	LDAY(M)	The day of the year of the first day of month, M, in a non-leap year.
	LEAP(M)	The day of the year of the first day of month, M, in a leap year.
	LINE	Count of lines of print on each output sheet.
	LL	Integer variable indicating the $\Delta \mathrm{t}_{\mathrm{L}}$ in which the leading edge of search mesh is located.
	LT	Integer variable indicating the $\Delta \mathrm{t}_{\mathrm{L}}$ in which the trailing edge of search mesh is located.
	LV	Index equal to $\mathrm{L}-1$.
	M	A two-digit integer designating the month of reading.
	MA	Integer variable having possible values of 1 or 2 . If 1 , card is first for a particular station.
	MDAY	Day of month of beginning of period of maximum volume, V(J).
	ME	Integer variable having possible values of 1 or 2 . If 1 , reading is first of new year.
	MF	Integer variable having possible values of 1 or 2 . If 2 , current year is a leap year.
	MG	Integer variable having possible values of 1 or 2 . If 2, previous year was a leap year.
	MH	Integer index; refers to month of year.
	M $¢$ NTH	Month of beginning of period of maximum volume, V(J).
	М甲Т	Month of previous card.

APPENDIX 4--CONTINUED

Flow chart symbol	FORTRAN symbol	Definition
	MR	Integer variable having possible values of 1 or 2 . Used in branching instruction.
	N	Integer equivalent of HN (truncates decimal portion of HN). Lower limit of interpolation interval in rating tables.
	NA	A one-digit integer having possible values of 1 or 2 . If 1 , pondage correction is to be applied.
	NAF	A three-digit integer designating the number of items in the variable drainage area correction table.
	NB	A one-digit integer having possible values of 1 or 2 . If 1 , correction is made for rainfall-on-the-pond,
	NC	A one-digit integer having possible values of 1 or 2 . If 1, correction is made for varying drainage area as pond stage changes.
	NI	Upper limit of interpolation interval in rating tables.
	NL	Terminating value of L.
	NP	A three-digit integer designating the number of items in the pondage correction table.
	NQ	A three-digit integer designating the number of items in the discharge rating table.
	PC(N)	Pondage correction in cfs for a rate of change in stage of one foot per minute.
	$\mathrm{PC}(\mathrm{NI})$	Same as PC(N), except that NI $=\mathrm{N}+1$.
	PDE	Pond datum elevation. Elevation of first item in pondage correction table.
	PI	Stage interval in feet between items in the pondage correction table.
	$\mathrm{P}(\mathrm{J})$	The time period in hours for which maximum volumes are computed. (See table 3.)
$Q \emptyset$	$Q Q$	Discharge rate in cfs corresponding to HCO .
QCQRR	QCQRR	Discharge rate corrected for pondage.

APPENDIX 4--CONTINUED

Flow chart symbol	FORTRAN symbol	Definition
	QCOR2	Discharge rate corrected for pondage, cubic feet per second
	QI	Stage interval in feet between items in the discharge rating table.
	Q(N)	Discharge values in cfs in rating table.
	$Q(\mathrm{NI})$	Same as $\mathrm{Q}(\mathrm{N})$ except that $\mathrm{NI}=\mathrm{N}+1$.
	$Q \emptyset B$	Discharge rate in cfs for a specified head reading. Not corrected for pondage.
	QP	Pondage correction in cfs for a computed rate of change in stage.
	RATE	Rate of change in stage, feet per minute
	REMANL	$\begin{aligned} & \text { Defined as: } \\ & \text { REMANL }=T(L L)-T(L T)-P(J) . \end{aligned}$
	REMANT	Defined as: REMANT $=P(J)-T(L L)+T(L T)$.
	SHIFT	A correction to be added algebraically to all head readings.
v_{S}	STQRM	Accumulated storm flow in inches.
	SUM	Accumulated annual flow volume in inches.
V_{D}	SUMVD	Accumulated daily flow volume in inches.
V_{L}	SUMV(L)	Accumulated flow in inches, indexed and stored for maximum volume search.
V_{M}	SUMVM	Accumulated monthly flow volume in inches.
	TAD(J)	Decimal equivalent of $\mathrm{KTD}(\mathrm{J})$.
	TD(J)	Defined as: $\mathrm{TD}(\mathrm{~J})=\mathrm{TO}(\mathrm{~J}) / 24 .$
	TEST	YR divided by 4 (used in test for leap year).
	TESTA	Decimal variable corresponding to KTEST.
	TH(I)	Military time in hours of $i^{\text {th }}$ reading.

APPENDIX 4--CONTINUED

Flow chart symbol	FORTRAN symbol	Definition
	T(L)	Time, in hours of the year, associated with accumulative flow values.
	T(LL)	Time, in hours of year, associated with the leading edge of the search mesh.
	T(LT)	Time, in hours of year, associated with the trailing edge of the search mesh.
	TM(I)	Time in minutes of $\mathrm{t}^{\text {th }}$ reading.
	TMIN	Time in minutes of previous reading.
	T(NL)	Same as $T(L) . N L$ is the terminating value of L.
	$T \not \subset(J)$	Time in hours of year of beginning of period of maximum volume, V(J).
	$\mathrm{V}(\mathrm{J})$	Maximum flow volume occurring in time interval $P(J)$:
	VOL	A flow volume occurring in time interval $P(\mathrm{~J})$.
	VOLD(J)	Volume of flow in inches occurring at rates $=$ CLASS (J).
	YR	Decimal variable corresponding to KYR.

UNITED STATES DEPARTMENT OF AGRICULTURE Agricultural Research Service Beltsville, Maryland 20705

Postage and Fees Paid U. S. Department of Agriculture

Official Business

[^0]: ${ }^{1}$ Soil and Water Conservation Research Division, Agricultural Research Service, in cooperation with the Wisconsin Agricultural Experiment Station.
 ${ }^{2}$ Formerly with Soil and Water Conservation Research Division at Columbia, Mo.; now at Cornell University, Ithaca, N,Y.

 3 Soil and Water Conservation Research Division at Columbia, Mo.
 ${ }^{4}$ Trade names are used in this publication solely to provide specific information. Mention of a trade name does not constitute a guarantee or warranty and does not signify that the product is approved to the exclusion of other comparable products.

[^1]: ${ }^{1}$ For format statements, see FORTRAN program listing, appendix 3.
 ${ }^{2}$ CLASS (J) intervals may be modified by changing the values in this table. Those shown plot evenly on a logarithmic scale.
 ${ }^{3}$ The time lengths may be set at any selected value.

[^2]: 5 A more detailed description of this method of computing flow volumes may be found on page 153 of USDA Agriculture Handbook No. 224, "Field Manual for Research in Agricultural Hydrology."

[^3]: ${ }^{6}$ Corresponding to divisions on the flow chart, appendix 1 .

