
A hybrid approach for state estimation: combining
moving horizon estimation and particle filtering

James B. Rawlings and Murali R. Rajamani

Department of Chemical and Biological Engineering
University of Wisconsin–Madison

Sandia CSRI Workshop
Large-Scale Inverse Problems and Quantification of Uncertainty

Santa Fe, New Mexico
September 10–12, 2007

Rawlings and Rajamani (UW) Hybrid MHEPF Sandia CSRI 1 / 35



Outline

1 State Estimation of Linear Systems
Limitations

2 Moving Horizon Estimation (MHE)

3 Particle Filtering

4 Combining Particle Filtering and MHE

5 Conclusions

Rawlings and Rajamani (UW) Hybrid MHEPF Sandia CSRI 2 / 35



The conditional density function

For the linear, time invariant model with Gaussian noise,

x(k + 1) = Ax + Bu + Gw

y = Cx + v

w ∼ N(0,Q) v ∼ N(0,R) x(0) ∼ N(x0,Q0)

We can compute the conditional density function exactly

px |Y (x |Y (k − 1)) = N(x̂−,P−) (before y(k))

px |Y (x |Y (k)) = N(x̂ ,P) (after y(k))
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Mean and covariance before and after measurement

Forecast

x̂−(k + 1) = Ax̂ + Bu (estimate)

P−(k + 1) = APA′ + GQG ′ (covariance)

x̂−(0) = x0 P−(0) = Q0 (initial condition)

Correction

x̂ = x̂− + L(y − Cx̂−) (estimate)

L = P−C ′(R + CP−C ′)−1 (gain)

P = P− − LCP− (covariance)
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Large R , ignore the measurement, trust the forecast
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Medium R , blend the measurement and the forecast
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Small R , trust the measurement, override the forecast
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Large R , y measures x1 only
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Medium R , y measures x1 only
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Small R , y measures x1 only
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Limitations of the Kalman filter

What about constraints?

I Concentrations, particle size distributions, pressures, temperatures are
positive.

I Using this extra information provides more accurate estimates.
I Projecting the unconstrained KF estimates to the feasible region is an

ad hoc solution that does not satisfy the model.

What about nonlinear models?
I Almost all physical models in chemical and biological applications are

nonlinear differential equations or nonlinear Markov processes.
I Linearizing the nonlinear model and using the standard update

formulas (extended Kalman filter) is the standard industrial approach.
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Extended Kalman filter — assessment

The extended Kalman filter is probably the most widely used
estimation algorithm for nonlinear systems.

However, more than 35 years of experience in the estimation
community has shown that it is difficult to implement, difficult to
tune, and only reliable for systems that are almost linear on the
time scale of the updates.

Many of these difficulties arise from its use of linearization.

Julier and Uhlmann (2004).
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Alternative approaches

Options for handling constraints and nonlinearity in state estimation

1 Optimization (moving horizon estimation (MHE))

2 Sampling (particle filtering)
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Full information estimation

Nonlinear model, Gaussian noise,

x(k + 1) = F (x , u) + G (x , u)w

y = h(x) + v

The trajectory of states

X (T ) := {x(0), . . . x(T )}

Maximizing the conditional density function

max
X (T )

pX |Y (X (T )|Y (T ))
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Equivalent optimization problem

Using the model and taking logarithms

min
X (T )

V0(x0) +
T−1∑
j=1

Lw (wj) +
T∑

j=0

Lv (yj − h(xj))

subject to x(j + 1) = F (x , u) + w (G (x , u) = I )

V0(x) := − log(px0(x))

Lw (w) := − log(pw (w)) Lv (v) := − log(pv (v))
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Arrival cost and moving horizon estimation

Most recent N states X (T − N : T ) := {xT−N . . . xT}

Optimization problem

min
X (T−N:T )

VT−N(xT−N)︸ ︷︷ ︸
arrival cost

+
T−1∑

j=T−N

Lw (wj) +
T∑

j=T−N

Lv (yj − h(xj))

subject to x(j + 1) = F (x , u) + w .
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Arrival cost approximation

The statistically correct choice for the arrival cost is the conditional
density of xT−N |Y (T − N − 1)

VT−N(x) = − log pxT−N |Y (x |Y (T − N − 1))

Arrival cost approximations (Rao et al., 2003)

uniform prior (and large N)

EKF covariance formula

MHE smoothing
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The challenge of nonlinear estimation

Linear Estimation

Estimation Possibilities:

1 one state is the optimal estimate

2 infinitely many states are optimal
estimates (unobservable)

Nonlinear Estimation

Estimation Possibilities:

1 one state is the optimal estimate

2 infinitely many states are optimal
estimates (unobservable)

3 finitely many states are locally
optimal estimates
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Particle filtering — sampled densities

ps(x) =
s∑

i=1

wiδ(x − xi ) xi samples (particles) wi weights
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Exact density p(x) and a sampled density ps(x) with five samples for
ξ ∼ N(0, 1)
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Convergence — cumulative distributions
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Importance sampling

In state estimation, p of interest is easy to evaluate but difficult to sample.

We choose an importance function, q, instead.
When we can sample p, the sampled density is

ps =

{
xi , wi =

1

s

}
psa(xi ) = p(xi )

When we cannot sample p, the importance sampled density ps(x) is

ps =

{
xi , wi =

1

s

p(xi )

q(xi )

}
pis(xi ) = q(xi )

Both ps(x) and ps(x) are unbiased and converge to p(x) as sample size
increases (Smith and Gelfand, 1992).
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Importance sampled particle filter (Arulampalam et al.,
2002)

p(x(k + 1)|Y (k + 1)) = {xi (k + 1),w i (k + 1)}

xi (k + 1) is a sample of q(x(k + 1)|xi (k), y(k + 1))

wi (k + 1) = wi (k)
p(y(k + 1)|xi (k + 1))p(xi (k + 1)|xi (k))

q(xi (k + 1)|xi (k), y(k + 1))

The importance sampled particle filter converges to the conditional density
with increasing sample size. It is biased for finite sample size.

Rawlings and Rajamani (UW) Hybrid MHEPF Sandia CSRI 22 / 35



Importance sampled particle filter (Arulampalam et al.,
2002)

p(x(k + 1)|Y (k + 1)) = {xi (k + 1),w i (k + 1)}

xi (k + 1) is a sample of q(x(k + 1)|xi (k), y(k + 1))

wi (k + 1) = wi (k)
p(y(k + 1)|xi (k + 1))p(xi (k + 1)|xi (k))

q(xi (k + 1)|xi (k), y(k + 1))

The importance sampled particle filter converges to the conditional density
with increasing sample size. It is biased for finite sample size.

Rawlings and Rajamani (UW) Hybrid MHEPF Sandia CSRI 22 / 35



Importance sampled particle filter (Arulampalam et al.,
2002)

p(x(k + 1)|Y (k + 1)) = {xi (k + 1),w i (k + 1)}

xi (k + 1) is a sample of q(x(k + 1)|xi (k), y(k + 1))

wi (k + 1) = wi (k)
p(y(k + 1)|xi (k + 1))p(xi (k + 1)|xi (k))

q(xi (k + 1)|xi (k), y(k + 1))

The importance sampled particle filter converges to the conditional density
with increasing sample size. It is biased for finite sample size.

Rawlings and Rajamani (UW) Hybrid MHEPF Sandia CSRI 22 / 35



Importance sampled particle filter (Arulampalam et al.,
2002)

p(x(k + 1)|Y (k + 1)) = {xi (k + 1),w i (k + 1)}

xi (k + 1) is a sample of q(x(k + 1)|xi (k), y(k + 1))

wi (k + 1) = wi (k)
p(y(k + 1)|xi (k + 1))p(xi (k + 1)|xi (k))

q(xi (k + 1)|xi (k), y(k + 1))

The importance sampled particle filter converges to the conditional density
with increasing sample size. It is biased for finite sample size.

Rawlings and Rajamani (UW) Hybrid MHEPF Sandia CSRI 22 / 35



Research challenge — placing the particles

Optimal importance function (Doucet et al., 2000). Restricted to
linear measurement y = Cx + v .

Resampling

Curse of dimesionality
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Optimal importance function
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Particles’ locations versus time using the optimal importance function; 250
particles.
Ellipses show the 95% contour of the true conditional densities before and
after measurement.
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Resampling
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The MHE and particle filtering hybrid approach

Hybrid implementation

Use the MHE optimization to locate/relocate the samples

Use the PF to obtain fast state estimates between MHE optimizations
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Application: Semi-Batch Reactor

Reaction: 2A → B

k = 0.16

Measurement is CA + CB

x0 =
[
3 1

]T

V

A, B

Fi , CA0
, CB0

dCA

dt
= −2kC 2

A +
Fi

V
CA0 ∆t = 0.1

dCB

dt
= kC 2

A +
Fi

V
CB0

Noise covariances Qw = diag (0.012, 0.012) and Rv = 0.012

Bad Prior: x̄0 =
[
0.1 4.5

]T
with a large P0

Unmodelled Disturbance: CA0 ,CB0 is pulsed at tk = 5

Rawlings and Rajamani (UW) Hybrid MHEPF Sandia CSRI 27 / 35



Using only MHE

MHE implemented with N = 15(t = 1.5) and a smoothed prior

MHE recovers robustly from bad priors and unmodelled disturbances
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Using only particle filter

Particle filter implemented with the Optimal importance function:
p(xk |xk−1, yk), 50 samples, Resampling
The PF samples never recover from a bad x̄0 and is unreliable
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MHE/PF hybrid with a simple importance function

Importance function for PF: p(xk |xk−1), 50 samples
The PF samples recover from a bad x̄0 and the unmodelled
disturbance only after the MHE relocates the samples
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MHE/PF hybrid with an optimal importance function

The optimal importance function: p(xk |xk−1, yk), 50 samples
MHE relocates the samples after a bad x̄0, but samples recover from
the unmodelled disturbance without needing the MHE
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Conclusions

Optimal state estimation of the linear dynamic system is the gold
standard of state estimation.

MHE is a good option for linear, constrained systems.

The classic solution for nonlinear systems, the EKF, has been
superseded.

MHE and particle filtering are higher-quality solutions for nonlinear
models. MHE is robust to modeling errors but requires an online
optimization. PF is simple to program and fast to execute but may be
sensitive to model errors.

Hybrid MHE/PF methods can combine these complementary
strengths.
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Future challenges

Process systems are typically unobservable or ill-conditioned, i.e.
nearby measurements do not imply nearby states.

We must decide on the subset of states to reconstruct from the data
– an additional part to the modeling question.

Nonlinear systems produce multi-modal densities. We need better
solutions for handling these multi-modal densities in real time.
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