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ABSTRACT
Evolutionary methods are powerful tools in discovering so-
lutions for difficult continuous tasks. When such a solution
is encoded over multiple genes, a genetic algorithm faces
the difficult credit assignment problem of evaluating how
a single gene in a chromosome contributes to the full so-
lution. Typically a single evaluation function is used for
the entire chromosome, implicitly giving each gene in the
chromosome the same evaluation. This method is ineffi-
cient because a gene will get credit for the contribution of
all the other genes as well. Accurately measuring the fit-
ness of individual genes in such a large search space requires
many trials. This paper instead proposes turning this single
complex search problem into a multi-agent search problem,
where each agent has the simpler task of discovering a suit-
able gene. Gene-specific evaluation functions can then be
created that have better theoretical properties than a single
evaluation function over all genes. This method is tested
in the difficult double-pole balancing problem, showing that
agents using gene-specific evaluation functions can create a
successful control policy in 20% fewer trials than the best ex-
isting genetic algorithms. The method is extended to more
distributed problems, achieving 95% performance gains over
tradition methods in the multi-rover domain.

1. INTRODUCTION
A critical step in a genetic algorithm’s (GA) discovery pro-
cess is the fitness evaluation of a chromosome. As an exam-
ple consider how to evaluate a chromosome used to control
a planetary rover. This evaluation can be done by measur-
ing the performance of the rover over a series of trials. For
example, suppose a chromosome, C1, was used 100 times to
control the rover, and the rover crashed 50 times. Then a
chromosome, C2, was used 100 times to control the rover,
and the rover crashed 30 times. We can say from these tests

that chromosome C2 has a higher fitness than chromosome
C1. However, how can a single gene be evaluated? Suppose
a gene, G1, was part of 100 different chromosomes that were
tested, and the rover crashed 50 times. In addition a gene,
G2, was part of a new set of 100 different chromosomes that
were tested, and the rover crashed 30 times. Can we say
that gene G2 has a higher fitness than G1? Not with the
same confidence as saying C2 has higher fitness than C1,
particularly if the chromosome consists of many genes. This
is because on average, the choice of gene G1 or G2 will likely
have an impact of 1

n
on the evaluation where n is the number

of genes. When there are many genes, there is a significant
chance that gene G1 was just unlucky and had been tested
with chromosomes consisting of many highly unfit genes. To
find out the impact of G1 requires many more evaluations
than to find out the impact of an entire chromosome. The
difficulty here arises from using rover crashing, which is in-
herently a function of an entire chromosome, as evaluation
for a single gene.

This paper shows that it is often possible to evaluate genes
individually by using evaluation functions designed for self-
organizing multi-agent systems: The task of each agent is to
discover a highly fit gene, and these genes are put together
to form a chromosome. These agents can be evolved more
simply than a full genetic algorithm since they are finding
only a single gene and can often use simple evolutionary
algorithms without crossover. While each agent makes in-
dependent choices on how to choose a gene to best maximize
its evaluation function, the choices of the genes are strongly
coupled through the evaluation function. Implicitly, each
agent’s choice depends the gene choices of the other agents.

For these gene evaluation functions to be most effective, a
system needs to have a certain amount of stability so that
the fitness of an agent’s choice of gene is unlikely to be com-
pletely different from trial to trial. A simple example where
this is true is a resource summation problem, where each
gene defines a bit and the goal of the problem is to have the
bits sum to a value within a fixed range. At the beginning
of the evolutionary process, each gene evaluation function
is not very accurate, since it does not know the bit-choices
of all the other agents. However, once the bit choices of the
agents begin to stabilize, the gene evaluation function can
give a good signal to the agent for its choice of bit.



Note that when this problem is changed to a parity problem,
then this process is not possible since any change in any bit
affects the evaluation of all the other bits and the system can
never converge. However, parity problems (including XOR
problem) are not representative of most real-world control
domains which have more in common with the summation
problem [2]. This paper presents two such problems, where
even though the effects of each gene are coupled, the multi-
agent system can effectively produce a set of genes that lead
to high evaluation without diverging or falling into local
minimum.

Section 2 explains this multi-agent system in more detail,
showing how it maps to a genome and how genes are gener-
ated. Section 3 summarizes principles of multi-agent evalu-
ation functions that can be used to evaluate genes. Sec-
tion 4 discusses issues with computing these multi-agent
evaluation functions in Markov Decision Processes. Sec-
tion 5 discusses what neural network controller works best
with gene-specific evaluations depending on how coupled
the inputs are. Section 6 shows how a multi-agent system
can be used in domains with highly coupled state variables
by discovering weights to a radial basis function network
that solves the difficult double-pole-balancing problem more
quickly than the best existing genetic algorithms. Then Sec-
tion 7 shows how a multi-agent system is effective in a do-
main with more loosely coupled state variables by discover-
ing a superior multi-layer perceptron used to control a set
of rovers.

2. MULTI-AGENT SYSTEM STRUCTURE
This paper proposes creating high-fitness chromosomes that
have n genes, using a multi-agent system with n agents.
Each agent is mapped to a single gene-position and is re-
sponsible for creating a gene for a single position on the
chromosome. Each agent stores a population of genes and
uses a simple evolutionary algorithm to improve the fitness
of the population over a series of trials, as shown in Figure
1.

At the beginning of every trial, each agent chooses a gene
from its population. All their genes are then concatenated to
form a chromosome, defining a phenotype such as a neural
network. The trial is conducted by using this neural net-
work as the controller for a Markov Decision Process, until
the process terminates. Information from the trial is then
used to evaluate each gene, using evaluation techniques from
multi-agent systems (Section 3). Each agent then uses its
evaluation to modify its population using an evolutionary
algorithm.

This paper will use a simple evolutionary algorithm that
removes the worst performing gene from the population at
the end of the trial and replaces it with a mutated version of
the best gene. While more advanced evolutionary methods
could be used, this method was found to perform well in
the test domains and allows this paper to focus on evalua-
tion functions instead of the sophistication of evolutionary
algorithms.

3. MULTI-AGENT SYSTEM EVALUATION
FUNCTIONS
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Figure 1: Multi-agent System Producing Chromo-
somes for a Control Problem. At the beginning of
a trial, each agent chooses a gene, which encodes
a part of the solution (i.e. the weights for a single
hidden node of a neural network). The choice of
all the agents forms a chromosome representing an
entire solution. This solution (i.e neural network)
is then used as a controller. Standard genetic algo-
rithms will evaluate entire chromosome after trial.
Agents instead evaluate only the contribution of
their gene, leveraging evaluation methods used in
self-organizing multi-agent systems. Gene evalua-
tion can be more efficient allowing a solution to be
found in fewer trials.

Finding a fitness evaluation function for a single gene that
can be used by the agents described in Section 2 is a dif-
ficult problem. Interestingly, this same credit assignment
problem is found in multi-agent systems: how to give credit
to an individual agent’s action when the multi-agent task
depends on the actions of all the agents. This section will
outline a solution to this problem coming from the theory
of collectives [15], in the specific context of the multi-agent
system in Section 2.

Mathematically, the goal of a genetic algorithm is to max-
imize a global fitness evaluation function G(z), which is a
function of a chromosome z. This chromosome is broken
down into n genes:

z = (z1, z2, ..., zn) . (1)

Maximizing G(z) is also the goal of the multi-agent system.
However each agent will not try to maximize G(z) directly.
Instead, each agents maximizes its gene evaluation function
gi(z), where i is the index specifying the agent. Note that
while gi(z) is used to evaluate a single gene it is still a func-
tion of all the genes. This property couples the gene agents,
enabling a global solution.



3.1 Factoredness and Learnability
For the multi-agent system to achieve high values of the
global evaluation function G, the gene evaluation functions
need to have two properties, called factoredness and learn-
ability [13]. First the gene evaluation functions of each
agent should be factored with respect to G, intuitively mean-
ing that when an agent choses a gene that improves its
gene evaluation function, this choice also improves the global
evaluation function (i.e. G and gi are aligned). Also when
an agent choses a gene that reduces G, it should also reduce
gi. Formally an evaluation function gi is factored when:

gi(z) ≥ gi(z
′) ⇔ G(z) ≥ G(z′) ∀z, z′ s.t. z−i = z′−i ,

where z−i and z′−i contain the genes not chosen by agent i.
In game theory language, the Nash equilibria of a factored
system are local maxima of G [13, 10]. In addition to this
desirable equilibrium behavior, factored systems also auto-
matically provide appropriate off-equilibrium incentives to
the agents.

In addition to being factored, the agents’ gene evaluation
functions should be highly learnable, intuitively meaning
that they should be sensitive to the agent’s own choice of
gene and insensitive to the choices of other agents. For a
given chromosome z, the higher the learnability, the more
gi(z) depends on the gene choice of agent i, i.e., the better
the associated signal-to-noise ratio for agent i.

When the same global evaluation G is used for all the gene
evaluations, each gene evaluation is by definition factored.
This use of the global evaluation is common in many multi-
agent systems [13]. In addition most genetic algorithms ei-
ther explicitly or implicitly use this global evaluation to eval-
uate genes. However in a large system, an agent will have a
difficult time discerning the effects of its choice of gene on
G. As a consequence, each agent i has difficulty achieving
high gi (i.e. G has low learnability).

3.2 Difference Evaluation Functions
It is desirable for an agent’s gene evaluation function to be
factored and to have high learnability. Factoredness assures
that an agent will try to produce genes that maximize the
fitness of the chromosome. Having a highly learnable eval-
uation function will reduce the number of trials that are
needed for an agent to achieve this high level of fitness. One
evaluation function that is factored, yet still highly learn-
able (unlike G) is the difference evaluation function, defined
as follows:

Di(z) = G(z)−G(z−i + ci) , (2)

where z−i contains all the genes chosen by agents other than
agent i. The gene zi chosen by agent i is replaced with the
fixed constant ci. Such difference evaluation functions are
factored no matter what the choice of ci because the sec-
ond term does not depend on agent i’s choice of a gene [13,
14]. Furthermore, they usually have far better learnabil-
ity than does G(z) because the second term of Di removes
a lot of the effect of other agents (i.e., noise) from agent
i’s evaluation function. This evaluation function has proven
effective in many multi-agent system domains including net-
work routing, job scheduling and control [15, 13]. Because
it is effective, this paper will focus on using the difference
evaluation,Di, as the gene evaluation gi.

While this paper focuses on finding chromosomes that en-
codes neural networks as an example, a multi-agent system
using the difference gene evaluation can be used to find al-
most any type of chromosome that is separated into genes.
However, in many domains where the functionality is less
distributed among the genes, Di can be difficult to evaluate
and great care has to be given to approximate Di in such
away that it retains its high learnability. Section 4 discusses
the issues with computing Di, when the chromosome de-
scribes a controller used in a Markov Decision Process where
there can be stronger coupling between genes. Addressing
these issues are needed to apply Di to such domains as pole
balancing.

4. DIFFERENCE EVALUATION FOR MDPS
A Markov Decision Process (MDP) represents an important
class of control problems, where a decision maker bases its
action on its current state without a need to know its pre-
vious actions or states [8]. The problems of pole balancing,
robot navigation and rover control all can be represented as
MDPs. In this paper the decision maker in the domain is
called an MDP-agent (not to be confused with an agent in
the multi-agent system that selects genes) and uses a neu-
ral network to map states into actions. A neural network is
used as genetic algorithms combined with neural networks
have been shown be effective in finding solutions to continu-
ous control tasks, such as pole balancing, robot navigation,
rocket control and rover control [12, 9, 5, 3, 4].

At every time step in an MDP control problem, the state of
the MDP-agent is fed into the input of its neural network,
and the action of the agent is determined from the output of
the neural network. After the MDP-agent takes an action it
receives a reward and moves to a different state. Both the
reward and the new state are functions of the action and the
previous state.

At the beginning of a trial, the MDP-agent starts in a start-
state and over the course of the trial takes T actions, receives
T rewards and enter T states. The goal of the system is to
maximize the sum of rewards received during a trial. Given
the agent’s start-state, this sum of rewards completely de-
pends on the neural network it uses. The remainder of this
section will show how a multi-agent system can be used to
produce a neural network that performs well in an MDP.

Since the goal of the MDP is to maximize the sum of rewards
received during a trial, this sum is used as the global fitness
evaluation function for the multi-agent system:

G(z) =
X

t

Rt(z) , (3)

where Rt(z) is the reward received at time step t, and z is the
chromosome defining the neural network used by the MDP-
agent. Note that this equation assumes a fixed start-state,
which enables each reward to be represented as a function
of a chromosome. Given the global fitness function, the
difference gene evaluation function is:

Di(z) = G(z)−G(z−i + ci)

=
X

t

Rt(z)−
X

t

Rt(z−i + ci) . (4)



This is the function that each agent uses to evaluate the
gene it chose at the beginning of the trial.

When there is a closed form mathematical formula repre-
senting the global evaluation as a function of genes, then
computing the difference evaluation can the simple. In fact
computing the difference evaluation is often easier than com-
puting the global evaluation since many of the terms in the
global evaluation can cancel out with the substraction. How-
ever, in most complex domains there is no explicit formula
for G(z) as a function of the chromosome. In these cases
the global evaluation is typically computed as a function of
states (e.g. the rover is in a crashed state therefore give it
low evaluation) or measured directly from the environment.
With no explicit formula for G(z), computing the second
term of the difference gene evaluation, G(z−i + ci), may be
difficult. Recall from Section 3 that G(z−i+ci) returns what
the global evaluation would be if agent i’s choice of gene
were changed to an arbitrary gene ci. Without knowing the
function form of G(z), in general, computing G(z−i + ci)
would necessitate running an entire trial using the chromo-
some z−i + ci. This computation would have to be done
for every agent i. While computationally difficult in simu-
lated environments, the computation of G(z−i + ci) would
often be completely impractical in real environments. For
example consider the rover-control domain where a rover is
controlled by a neural network defined by 100 genes. After
a single rover test, the rover would have to be tested 100
more times just to compute the gene evaluation functions
for the initial test.

To overcome the difficulties in computing G(z−i +ci), an es-
timate can be made by determining which rewards received
during a trial were affected by agent i’s choice of gene. Re-
call that G(z−i + ci) is a sum of rewards:

P
t Rt(z−i + ci).

Also the reward for time step t is a function of the action at
time step t and all the previous actions. Since the actions
are the output of the neural network, they are functions
of the chromosome. Therefore a reward Rt(z−i, ci) can be
represented as:

Rt(z−i + ci) = Rt(a1(z−i + ci), · · · , at(z−i + ci)) , (5)

where at(z−i, ci) is the action taken at time t. Therefore
if agent i’s choice of gene does not significantly affect any
action before time t, it should not significantly affect any
reward before time t. Let the level of how much a gene
affects an action be formally defined as the action sensitivity
at time t :

Li,t(z) =
δat(z−i + zi)

δzi
, (6)

In addition define Ti as the first time step in which Li,t(z) is
greater than a threshold τ . For all t < Ti, the choice of zi has
little influence on the MDP-agent’s moves and therefore the
MDP-agent’s rewards. The values of Rt(z−i, ci) can then
be approximated as Rt(z) for all t < Ti. For time steps
after Ti, the value of Rt(z−i, ci) is unknown. As a first
approximation, these unknown reward values can be set to
zero. An agents difference gene evaluation function Di(z)

can then be computed as follows:

Di(z) =
X

t

Rt(z)−
X
t<Ti

Rt(z) (7)

=
X
t≥Ti

Rt(z) . (8)

Figure 2 shows how action sensitivity can be used. In this
figure only certain genes influence a rover’s action at any
given state. Therefore genes that do not influence the ac-
tions of the rover at or before that state do not need to be
given credit for rewards received at that state. This reward
structure can be used to improve the learnability of gene
evaluations. Note that the setting of the threshold τ moves
the tradeoff between factoredness and learnability. When
τ is very small, the difference evaluation function is almost
always factored since it includes all the rewards an agent
influences by even the smallest amount. However it has low
learnability since Ti is close to zero making the difference
evaluation almost the same as the global evaluation. For
example in 2 if τ were set to 0.0005 instead of 0.1 than all
of the genes would get credit for most of the rewards. In
contrast, when τ is large, the difference evaluation is very
learnable since many of the rewards are be removed from
the evaluation, but it can be very far from being factored
since the agent could have a significant influence over many
of the removed rewards. For example in 2 if τ were set to
0.9 instead of 0.1 only Gene 2 would get credit for any of
the rewards even though Genes 1 and 4 had significant con-
trabutions. In addition to the setting of τ , the value of Tη is
also highly dependent on the type of neural network used.
This issue is explored in the next section.
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Figure 2: Action Sensitivity. A rover with a policy
defined by 5 genes moves through different states to
a reach a goal. Action sensitivities of the final three
states shown in the table. Only Gene 2 influences
rover’s action in state Sa above the threshold τ so
it is the only gene that gets credit for reward Ra.
Genes 1 and 2 influence rover’s action in state Sb

so both get credit for Rb. Gene 4 influences rover’s
action in state Sc so it gets credit for Rc. Since
the actions taken at states Sa and Sb are responsible
for the rover entering state Sc, the reward Rc must
also be propagated back to Gene 1 and 2 for their
contributions.

5. NEURAL NETS FOR MDP CONTROL



In the discussion so far, the controller has been assumed to
be a neural network, but its type has not been specified.
However, the type of network influences the value of Tη, the
first time step that an agent’s choice of gene significantly
affects the output of the neural network. The value of Tη

is important because it is used to estimate Dη(z). If Tη

tends to be close to the first time step for most agents, then
the value the second term of Dη(z) will be close to zero
and Dη(z) will essentially be the global evaluation function.
While Dη(z) would still be factored, none of the learnability
advantages of gene evaluation functions will be achieved.
This section compares Multi-Layer Perceptrons and Radial
Basis Function Networks with respect to their affect on the
value of T (η).

5.1 Multi-Layer Perceptron
Consider a two-layer Multi-Layer Perceptron (MLP) [6] where
each gene, zη, determines one of the network weights. At
each time step the current state is fed into the input layer of
the MLP, and the action for the agent in that state is taken
from the output layer. For MLPs with sigmoid activation
functions, the output of the network is:

a(s) = g(
X

i

wiφi(s)) , (9)

where φi(s) is the evaluation for hidden unit i and g(x) is
the sigmoid function, 1

1+e−x . The action sensitivity for a
time t is therefore:

Lη,t(z) =
δat(z−η, zη)

δzη

= g(
X

i

wiφi(st))(1− g(
X

i

wiφi(st)))
δ

P
i wiφi(st)

δwη

= g(
X

i

wiφi(st))(1− g(
X

i

wiφi(st)))φη(st) .

Note that the action sensitivity will be low either when the
network is saturated or the activation of the hidden unit is
low. If the network is saturated, little information is going
to be gained from the trial, and some external mechanism
will have to be applied to get the system out of saturation.
If the input layer is fully connected to the hidden layer, the
output of a hidden unit will rarely be very low, so that the
first time an agent’s action has significant impact on the
output of the network is likely to be very early in the trial.
Therefore the value of Tη is likely to be close to zero for
most agents and Dη(z) will have nearly as low learnability as
the global evaluation function. However, in many domains
such as distributed rover exploration, a loosely connected
MLP can be used where the action sensitivity of a hidden
unit is high in only a few states. In these domains the gene
evaluation function, Dη(z), is likely to have high learnability
when used these MLPs.

5.2 Radial Basis Function Networks
In domains with highly coupled state variables, such as pole
balancing, it is difficult to construct and MLP where hidden
nodes only react to small regions of the state space. In such
domains radial basis function network (RBFN) can be used
as an alternative, since they naturally have hidden nodes
that react to small portions of the state space [2]. Like
the MLP, the state is fed into the input layer of the RBFN
and the action is determined by the output of the RBFN.

Consider a standard RBFN with n bases with fixed width
d. The output of the RBFN is a linear sum of the basis
activations:

a(s) =
X

η

wiφη(s) , (10)

where φη(s) is the basis function and weight wη is the action
of agent η. For RBFNs, the action sensitivity at time t is
simply equal to φη(st), the activation of the basis function.
RBFNs typically use gaussian activation functions of the
form:

φη(s) = e
1
2 (s−cη)2/d2

, (11)

where cη is the centroid of the basis function. Due to the
localized nature of this type of activation function, one can
expect that the value of Lη,t will be very low for most states.
Only states that are close to the centroid will produce signif-
icant activation. Therefore Tη will be equal to the time step
that the MDP entered a state that was close to the centroid
φη. In many cases Tη will not be close to zero and the value
of Dη(z) will be significantly more learnable than the global
evaluation function. This increased learnability arises from
the rewards that were not influence by agent η’s choice of
gene being removed from Dη(z).

6. DOUBLE POLE BALANCING
This paper shows results for two very different domains:
double pole balancing and rover exploration. In the first
domain the state variables are highly coupled: the value of
a single state variable has little meaning out of the context of
the other state variable. Despite the coupled state variable,
this section shows how gene-specific evaluations are effective
when used with RBFNs. This method is then compared
against the best known evolutionary and genetic algorithms
that have been previously applied to this problem.

6.1 Problem Description
In this problem there is a cart that can move along one axis
(Figure 3). Two poles of different lengths are attached to the
cart, and can pivot at the attachment point. The controller
can apply a positive or negative force to the cart. The goal
of the controller is to keep the two poles from falling while
keeping the position of the cart within fixed bounds. The
state space consists of six values: the position and velocity
of the cart, and the angles and angular velocities of the two
poles. At each time step a reward of 1 is received. The trial
ends when either the angle of either pole or the cart position
goes outside of bounds. Note that these state variables are
highly coupled. For instance knowing the velocity of the
cart has little value if it is not known if the pole is falling to
the left or to the right.

The learning algorithms were evaluated based on the number
of trials that needed to be completed before a solution could
be found that balanced the poles for 50,000 time steps 1. In
this particular problem, the length of one of the poles was
one meter and the other was one tenth of a meter. The time
resolution was 20 milliseconds. For all five algorithms, the
same code base was used to simulate the pole.

1Experimental results show that if the poles can be balanced
for 50,000 time steps they can be balanced indefinitely. Re-
sults for any value above 10,000 time steps are similar.



Figure 3: The Double Pole Balancing Problem. A
cart with two poles can move with one degree of
freedom and each pole can rotate with one degree
of freedom. Since the poles have different lengths,
they respond differently to a force on the card and
both poles can be balanced indefinitely.

The controller was an RBFN with six input units and one
output unit. The basis functions were added dynamically to
cover the input space. When a state was entered where the
activation of all of the bases was less than 0.1, a new ba-
sis was added, centered in that state. In a typical problem
several hundred basis functions were created. At every time
step the six values of the state space were fed into the RBFN
and its output determined the force applied to the cart. The
controller RBFN was encoded by a chromosome produced
by a multi-agent system. In one set of experiments the dif-
ference evaluation function, Di, was used by the agents to
evaluate their choice of gene. The action sensitivity τ used
in computing Di was set to 0.1. In a second set of experi-
ments the global fitness evaluation was used by the agents
to evaluate their choice of gene.

Based on the evaluation function, the agents made their
choice of gene using a very simple evolutionary algorithm,
based on a population of ten weights. Each agent starts
with a random population based on identical distributions,
but through time each population converges to a different
distribution. At the beginning of a trial, an agent would
select the most fit weight 90% of the time and a random
weight 10% of the time. At the end of the trial, it would
evaluate its choice of weight based on its gene evaluation
function. It would then remove the worst performing weight
from its population and replace it with a mutated copy of
the best performing weight. The mutation was done using
the Cauchy Distribution (with scale parameter equal to 0.3).
With time each population tends to slowly converge to a set
of similar genes. This convergence allows self-organization
to take place: while the agents make diverse choices of genes
in early trials, they can later begin to refine their choices
based on the choices of the other agents.

6.2 Results

Algorithm Average Trials Deviation in Mean
SANE 12,600
ESP 3,800
NEAT 3,578 257
RBFN (G) 4,025 178
RBFN (Di) 2,815 91

Table 1: Effectiveness of Gene-evaluations in Double
Pole Balancing Problem. The multi-agent system
evolving RBFN controllers and using Di for gene
evaluations finds a solution in 20% fewer trials than
best previously existing algorithm. All differences
from RBFN (Di) are statistically significant assum-
ing unreported variances are similar (p < 0.005).

The results averaged over for 400 runs are shown in Table
1. The RBFN using a global evaluation function performs
almost as well as the two existing high performance algo-
rithms, ESP and NEAT [5, 12]. This is to be expected
since these algorithms have some features in common. Sim-
ilar to ESP, the multi-agent system evolves separate “sub-
populations.” It is also related to the speciation in NEAT,
since each agent evolves specialized populations.

However, the results for using Di are significantly better
than for G. This increased performance can be expected
since the Di for an agent eliminates the reward values that
the agent could not possibly influence, therefore giving it
a cleaner signal. When G is used, each basis function gets
credit for every single reward received during a trial. Even
if a basis function does not influence a single action in a
trial, using G will give it credit for all the rewards when
it should receive credit for none. In addition even when a
basis function does influence an action it should not receive
credit for rewards that happened before it had any influence.
This poor credit assignment of G adds noise to the system,
making it difficult to discern how a well a particular gene
choice is performing. The use of Di eliminates all of the
rewards that a gene choice could not influence, reducing the
noise in the evaluation, allowing the system to converge in
a fewer number of trials.

7. ROVER EXPLORATION PROBLEM
This section shows how gene-specific evaluations are also
effective in the rover exploration problem, a domain where
the state variables on not nearly as coupled as in the double-
pole balancing problem. Simple canonical evolutionary algo-
rithms are used to highlight the importance of the evaluation
function and to show that genes can be evaluated separately
without suffering from convergence to local minima.

7.1 Problem Description
This section summarizes the distributed rover exploration
problem described in detail in [1]. In this problem, a set
of ten rovers explores a finite two dimensional world, try-
ing to observe interesting rocks distributed throughout the
domain. The global evaluation function for a trial is given
by:

G =
X

t

X
i

Vi

minη δ(Li, Lη,t)
, (12)



where Vi is the value of rock i, Li is the location of rock
i and Lη,t is the location of rover η at time t, and δ(x, y)
is the euclidean distance2. To maximize the global evalua-
tion, rovers should tend to navigate towards rocks with high
values, but they should also avoid congestion, since having
multiple rovers observe the rock will not increase the global
evaluation.

Each rover has eight input sensors divided up into four quad-
rants. In each quadrant there is one sensor detecting other
rovers in that quadrant and one sensor detecting rocks in
that quadrant. Each rover is controlled through a two di-
mensional number determining the direction and magnitude
in which the rover will move during the current time step.
The set of rovers are controlled with a single one hundred
hidden-node multi-layer-perceptron with eighty inputs and
twenty outputs, corresponding to the inputs and outputs
of the ten rovers. This network is loosely connected, with
the two outputs for each rover being only dependent on the
eight inputs for the rover (the network has 10% the number
of connections as a fully connected network). A gene de-
termines the weights between the layers of the eight inputs,
ten hidden units and two outputs corresponding to a rover.
Here the output of the neural network is a linear combi-
nation of gene choices. However, the gene choices are still
coupled since in general the global evaluation will not be a
linear combination of the gene choices.

The performance of five different evolutionary and GA meth-
ods was tested in this domain. In all of the methods, a trial
starts with the best member of a population (of size ten)
being chosen with 90% probability and a random member
being chosen with 10% probability. This member of the pop-
ulation is then evaluated during the trial. Weight mutation
is performed by adding a value sampled from the Cauchy
Distribution (with scale parameter equal to 0.3). Specifics
of the methods are as follows:

1. EC : Traditional evolutionary computation without
crossover using the global evaluation. At the end of the
trial, the worst member of the population is replaced
with a mutated version of the best member.

2. GA: Traditional evolutionary computation with point
crossover using the global evaluation. At the end of the
trial the worst member of the population is replaced
with a combination of mutated versions of the best
member and second best member of the population.

3. G Agents: A ten-agent multi-agent system where
each agent is responsible for choosing a gene based on
the global evaluation. Each agent makes its choice of
gene using an evolutionary algorithm without crossover.

4. D Agents: A ten-agent multi-agent system where
each agent is responsible for choosing a gene based
on the difference evaluation. Each agent makes its
choice of gene using an evolutionary algorithm with-
out crossover.

5. D Agents HC: Same as D Agents, but employs
strict monotonic hill-climbing to make its choice of

2When the distance become close, δ(x, y) is set to a constant
to avoid singularities

gene. This method is used to test if agents choosing
their genes through evolutionary methods can over-
come local minimum that cause monotonic hill-climbers
to perform poorly.

7.2 Results
Results averaged over 200 runs show that the three methods
using the global evaluation function all perform about the
same (see Figure 4). Traditional GAs with crossover, tradi-
tional GAs without crossover and agent based GAs using G,
all evolve very slowly. This result can be expected since the
global evaluation does a poor job in assigning credit to the
individual genes causing all evolutionary algorithms to suf-
fer. Even though each gene is contributing to only a small
portion of the global evaluation, it is receiving full credit for
the evaluation. If a gene has high fitness it may be given
a low evaluation if the other genes in the system have low
fitness. This is true even if the other genes have only slightly
lower fitness on average since the impact the single gene is
small. In contrast, when agents use the difference evalu-
ation, they evolve very quickly. Their evaluation function
provides a clean signal indicating how effective an agent’s
choice of gene is.

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 0  10  20  30  40  50  60  70  80  90  100

G
lo

ba
l E

va
lu

at
io

n 
A

ch
ie

ve
d

Number of Trials

D Agents
D Agents HC

G Agents
EC
GA

(Random)

Figure 4: Exploration Rover Problem. All methods
using global evaluation perform the same. The use
of the difference evaluation to evaluate individual
genes performs substantially better. Further, pop-
ulation based methods can break out of local min-
ima that simple hill-climbers cannot. Therefore, the
population based method using the difference eval-
uation performs 95% better (over random) than the
others in this taks. Difference is statistically signif-
icant with p < 0.001 (error bars present but smaller
than symbols).

While each agent is choosing genes for one part of the chro-
mosome, agents using factored evaluation functions still per-
form global search. They all attempt to maximize an eval-
uation that is a function of all the genes. In addition when
they use evolutionary algorithms with populations they can
break out of local minima and can find globally high perfor-
mance solutions. This conclusion is confirmed when compar-
ing their performance to that of the monotonic hill climbers.
The hill climbing agents cannot climb out of local minima
and Figure 4 shows that their performance is significantly



worse than for agents using evolutionary algorithms with
the same evaluation function.

8. DISCUSSION AND FUTURE WORK
Many single-agent problems that can be solved by genetic al-
gorithms, can also be solved by a multi-agent system, where
each agent focuses on the simpler problem of producing a
single gene. Instead of utilizing recombination to search for
a good chromosome, the multi-agent approach has a large
advantage in that each agent can use its own evaluation func-
tion to evaluate a single gene independently. Even though
each agent begins identically, through their gene evaluation
functions they self-organize to produce a set of compatible
genes that combine to form a global solution.

This paper shows how evaluation functions known to be ef-
fective in multi-agent problems can be used to evaluate genes
as well. In the difficult double-pole-balancing problem hav-
ing highly coupled state variables, the multi-agent system
can produce a solution using 20% fewer trials than the best
previously existing method. The multi-agent approach per-
forms even better in domains with loosely coupled state vari-
ables achieving a performance gain of 95% (as compared to
random rovers) over standard genetic and evolutionary al-
gorithms when using gene-specific difference evaluations.

The results show that a multi-agent system can discover
superior solution, especially for control problems in contin-
uous domains. Even though each agent is extremely simple,
the multi-agent system collectively converges on a complex
global solution. However, the multi-agent system can be
improved in several ways. For instance, in the experiments,
each agent used a very simple evolutionary algorithm to
choose a gene. Almost any evolutionary algorithm could be
used instead, including genetic algorithms with crossover.
Also the gene evaluation function, Di could be estimated
more accurately. In this paper many of the rewards in the
second term of Di are set to zero because their values are un-
known. With better estimation, the learnability of Di could
be improved even in domains with highly coupled variables
where MLPs are used as controllers. In addition to improved
fitness estimation, state estimations would allow this multi-
agent solution to be extended to POMDPs, where some of
the state variables used to estimate the evaluations are not
observable. These extension would allow this multi-agent
approach to be used in a much wider class of domains, even
including ones where the chromosome itself is physically dis-
tributed across the domain.
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