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Introduction

In this chapter we explore the finite element techniques utilized in the description of
deformation problems in solid mechanics. Beginning with the notational framework &
problem description discussedrormulation of Nonlinear Problems and utilizing the
nonlinear continuum mechanics and material modeling issues discus$adiimear
Continuum MechanicsandConstitutive Models, we discuss in this chapter how discret
approximations to the governing nonlinear field equations are generated and solved

The discussion will take place in three general stages. The first stage, consisting of tt
five sections of the report, emphasizesglodal formulation of the finite element
method and treats aspects best understood by considering the discretized system in
entirety. Topics to be discussed in this way include a brief presentation of weak form
appropriate for large deformation problemsWaak Form Revisited a general
discussion oDiscretization, time independent and dependent problems (i.e.,
QuasistaticsandDynamics), andNonlinear Equation Solving These sections will
emphasize the derivation of discrete system equations from the underlying variation.
principle, the form of these system equations in matrix form, and the iterative solutio
these equations that is required for nonlinear applications.

The next stage treatdement technologypresenting the fundamentals necessary to
formulate and implement the basic building block of the finite element method: the fi
element. Indeed, the most basic advantage of the finite element method over other r
classical variational methods is its modularity. That is to say that the method of
discretization is tailored to small systematically generated subdomains of the proble
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interest (i.e., elements) making the method applicable to a myriad of geometrical
situations. Importantly much of finite element technology is sufficiently generic so th:
many aspects of element formulation are virtually unchanged from application to
application. We will discuss these aspects in two sections. Thé&3asts of Element
Design will cover the most essential features of element design including requireme
for global convergence, shape function definition, and numerical integration to produ
local contributions to the global equations. The second seétitvanced Element
Design Issuesdeals with concerns more specific to large deformation solid mechanic
with the primary concern being near incompressibility of materials and the effect
numerical treatment of such phenomena.

The third stage of our presentation will consissdcific element examples
summarizing some formulations that are in particularly prevalent use in computation
solid mechanics. I&ight-Node Uniform Strain Element, we present some of the
implementational details associated with an element widely used for the description
three-dimensional continuous media, particularly in explicit dynamic and matrix-free
guasistatic applications. Four-Node Corotational Shell a common structural element
is discussed in some detail.

Theory Manuals (2/19/99) Finite Element Formulations - Introduction - Introduction
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Weak Form Revisited

We begin by providing a brief review of the field equations to be considered. The pro
to be solved is as shown schematicall¥igure 1.7, where the finite deformation

response of a body, denot@d in its reference configuration, is to be computed. Ass
that this time-dependent configuration mapping is denotej by , the following prob

IS to be solved for each time, |, in the time interval of interest:
Oar+f = paong¢,(Q), (3.1)
o, = ¢, ond, (I,), (3.2)
and
t =t ond,(l,), (3.3)

where all notations are as discussebatational Framework. In particulara is the
material acceleration expressed in spatial coordinhtes, is the body force per unit
(spatial) volume, and is the Cauchy stress tensor. The vtector is the Cauchy trac
vector, obtained via =Tn , where is the outward unit normal to the spatial surfa

¢, (Mg).

The problem is also subject to initial conditions of the form
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(X, 0) = ¢o(X) onQ, (3.4)

and

g—(tl)(x, 0) = Vy(x) onQ. (3.5)

Recall that although EqE3.1)(3.3) are written in the so-called spatial configuration, wi
still consider ourselves to be working in a Lagrangian framework, where all quantitie:

ultimately indexed to material points through the mapping ¢, (X) l[(ageangian
and Eulerian Descriptions.
A prerequisite of the finite element method is that a weak, or variational, form of the a

field equations be available for discretization. This can be obtained, following the ge
procedure outlined for linear problemsWeak Forms, by considering weighting

functionsp U , defined ove® , which satisfy the following condition:
¢U=0onr, (3.6)

(cf. (1.82), where we also assume thatd@ll  are sufficiently smooth so that any des
partial derivatives can be computed. In treating large deformation problems, it is use

consider spatial forms of the functiohs , obtained by composition with the (unkno\

mappingci)t_1 . We denote these spatial variations in the sequel by , and note that tl
may be obtained via

Theory Manuals (2/19/99) Finite Element Formulations - Weak Form Revisited - Weak Form Revisited
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w(x) = ¢, (x)) (3.7)

for anyx O ¢, (X) . This causes the condition

w = 0on¢,(l,) (3.8)

to be satisfied, and provided the configuration mapging Is smooth (which we assu

be the case), all required partial derivativesvof can be computed.

With these definitions in hand, the developmeweak Formscan be reproduced in the
current context to provide the following spatial representation of the variational form
large deformations:

Giventhe boundary conditionts  ap (I ;) q)_t on(l,) . theinitial conditipgs
andV, onQ , and the distributed body fofcen ¢, (Q) , find¢, U S; for each time
t (0, T) such that:

pw adv + I (Ow):Tdv
0, (Q) 0, (Q)
7 (3.9)
= J’ wf dv + ([ w [t da[]
(@) 0, (T g) :

100

for all admissiblev , wher&, is as defined as
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S, = {9, \q)t =¢(t)onl,, ¢, is smooth (3.10)

and where admissible are related in a one-to-one mann@. ¥j&o the material
variationsp IO W with the definition divbeing

W= {¢Jo=0 onT,, ¢Uis smooth. (3.11)

Note that in contrast to previous development, the constitutive relation govérning i
unspecified: it can, in general, be subject to both geometric and material nonlineariti

The notatioma for the acceleration is to be understood as the material acceleration,
defined by(2.27)in Material and Spatial Velocity and Acceleration

In addition, the solutiolp is subject to the following conditionts at 0
I¢DE(¢|t :O—q)o)dQ =0 (3.12)
Q

and

i

both of which must hold for ap IO W .

O
~V{1dQ = 0, (3.13)
=0 @
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N o o O
3
[] Q

Figure 3.1 General notation for finite element discretization of the reference domain.
As referred to in Figure 3.1, the reference donfain  is subdivided into a number of

element subdomain€® , where the superseriptan index to the specific element in
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question, running between 1 ang.  , whege Is the total number of elements rec
for the discretization. We assume in the figure and throughout the ensuing discussio

Q is a subset of1° , with the two-dimensional case readily obtained as a special ca:
the theory we will discuss.

Note also fronfigure 3.1that a number of nodal points are indicated by the dots. We
shall assume that all degrees of freedom in the discrete system to be proposed will |
associated with these nodes. As one might also notice, these nodes may lay at corn
edges, and in interiors of the elements with which they are associated. A key feature
finite element method will be that a specific element can be completely characterize
the coordinates and degrees of freedom associated with the nodes attached to it. In
following we will index the nodes with uppercase let#&r8, C, etc., with such indices

running between 1 armllnIO , the total number of nodal points in the problem.

Theory Manuals (2/19/99) Finite Element Formulations - Discretization - Introduction
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Galerkin Finite Element Methods

The essence of any finite element method lies in the discretization of a weak or varia
form. This discretization process involves two important approximations: approximat

of a typical member of the solution spage , and approximation of the weighting sy

W These approximations are typically expressed as an expansion in terms of presci
shape or interpolation functions, usually associated with specific nodal points in the r
Since the number of nodal points is obviously finite, the expansion is likewise finite,
giving rise to the concept of a finite-dimensional approximation of a space.

Roughly speaking, the idea of discretization is as follows. We know from earlier chay
that if the variational equation is enforced consideringalll S, dand W as

mandated by its definition, then the solution of the weak form is completely equivale
that of the strong form (i.e., the governing partial differential equation with boundary;

initial conditions). This fact results because of the arbitrary nature df.the and bec
of the very general definitions f&  akd . If we restrict our attention only to some

subset of the above spaces, we now make an error with the solution of our approxin
weak form no longer being identical to the solution of the strong form. If our choice f
the type of shape functions to be used is reasonable, however, we can represent the
solution and weighting spaces with arbitrarily closeness by increasing the number of
points and/or the degree of polynomial approximation utilized in the interpolation
functions. In the limit of such refinement, we should expect recovery of the exact sol
(i.e., convergence).

Theory Manuals (2/19/99) Finite Element Formulations - Discretization - Galerkin Finite Element Methods
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Let us represent the shape function associated withAadél, , and assume it to be as
follows:

N, Q - O (3.14)

Given a timet , the finite-dimensional counterparppf  will be denot@{i‘ as and
expressed in terms of the shape functions as

n

np
dr= 3 Ngdg(t), (3.15)
B=1

wheredg(t ) is a 3-vector containing the (in general unknown) coordinates of nodal |

B at timet . Given a prescribed set of nodal shape funct{dg B =, 1,...,n, s
finite dimensional solution spa@h is defined as the collection of alklx{]uch
h_ O h [
S, = Hl)t = > Ngdg(t)|¢; =9 (X) for all X LI I_UH (3.16)
B=1

In other words, we require members of the discrete solution space to (approximately
satisfy the displacement boundary conditiofgn . The approximation comes abou

because, in general, we only foxb:% to interpolate the nodal valpgs of | on  wit

Theory Manuals (2/19/99) Finite Element Formulations - Discretization - Galerkin Finite Element Methods
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Ng serving as the interpolation functions. We might also notelthat itself is typicall

geometrically approximated by the finite element discretization, contributing also to t
approximation.

This defines the discretization procedurequr , at least notationally. It still remains,

however, to approximate the weighting space. The (Bubnov-) Galerkin finite element
method is characterized by utilizing the same shape functions to appro¥imate as\

used to approximat8, . Accordingly, we define a member of this srt»a?:e, , via
Nhp

o= 3 Nyca, (3.17)
A=1

where thec , are 3-vectors of nodal constants. We can then express the finite dimer
weighting spacéa/\? via

|:rl:I’]

A

p
0
W= Nac a|6C" = 0 for all X O st (3.18)

1

D%_I:I

n

Analogous to the situation f(Sth , EQ. (3.18) features a discrete version of the bounc

condition onl", . In other WordS/,\V consists of all functions of the form (3.17) result

in satisfaction of this condition. Note that the only restriction orcthe IS that they re
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L In satisfaction of the homogeneous boundary condition pn ; they are otherwise
m arbitrary.

these ideas in hand, the approximate Galerkin solution to the initial/boundary v
lem takes the form described below.

Giventhe boundary conditions ar{‘(ro) q)_t ¢r[?(ru) , the initial condition:
¢, andV, onQ , and the distributed body fofcen ¢ (Q) , find¢{ O'S; for each
timet [J(0, T) such that:

I pWhEahdv+ I (th):Thdv

h h

Q Q
61(Q) h 6M(Q) h 61
= J’ w [T dv + J’ w [ da

61(Q) oM )

for all admissiblew” , wher&, s as defined3nl6)and where admissible”  are

related to the material variationrbﬂ1 oW via

W) = o' (6" " (x)). (3.20)

Finite Element Formulations - Discretization - Galerkin Finite Element Methods



-ﬁ-— In EQ. (3.19)Th refers to the Cauchy stress field computed from the discrete mb{bpir
SEACAS through the constitutive relations, whereds Is the discrete material acceleration.
Library
The initial conditions are ordinarily simplified in the discrete case to simply read:
1] _
dg(0) = §o(Xp) (3.21)
Theory
Manuals
and
i i\, : _
B dg(0) = Vy(Xp), (3.22)

Finite Element
Formulations | hyath of which must hold for all nod& = 1, ..., n

coordinates of the node in question.

np »Whetg  are the reference

Discretization
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Generation of Matrix Equations

We are now in a position to summarize the discrete equations that will result from Ec
(3.19) Before doing so, let us develop one more notational necessity. We can reexpre

nodal vectore , andg interms of their components via:

Ca={Cin}t, 1 =1,23 (3.23)
and

dg = {djg}.j =123 (3.24)

Note that indices and are spatial indices, in general. It is useful in generating m
equations to have indices referring not to nollendB or spatial directions andj , but
rather to degree of freedom numbers in the problem. Toward this end we define for
notational convenience the concept of an ID array that is set up as follows:

ID(i A) = P (global degree of freedom number) (3.25)

In other words, the ID array takes the spatial direction index and nodal number as
arguments and assigns a global degree of freedom number to the corresponding unl

In general, the number of degrees of freedom,is , given by

Ngot = 3%XN, (3.26)

P

With this notation in hand, the equation numideendQ are defined as follows:

Theory Manuals (2/19/99) Finite Element Formulations - Discretization - Generation of Matrix Equations
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P=ID{A) (3.27)
and

Q=1ID(j B). (3.28)

We now generate the discrete equations by substitution of{E#S)and(3.17)into
(3.19) causing the variational equation to read:

n, n
j pDZ Na(dy (X))C%EDX Ng(d¢ H(x))dg(t )de
o) A=1
n,
+ f DZ ONL(0, Yx) O g dv
ey 2 AH | (3.29)
e e
j O Na(dp Y(x))c O dv + [ OY NA(¢t Y(x))c Orf da
ol(0) A=1 % of(ry) A=1 %
Tnp
where we note in particular thaf  isa functlonl)pt z Ngdg(t ) through the
B=1

strain-displacement relations (nonlinear, in general) and the constitutive law (as yet
unspecified and perhaps likewise nonlinear).

Proceeding now to examine (3.29) term-by-term, the inertial term can be expanded
follows

Finite Element Formulations - Discretization - Generation of Matrix Equations
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Mhp Mhp

T POy Naltr (x))c,%mz Ng(07 () dg(t )de
pl(Q) A=1
np 3 0 0 np
= z z I HDNA((I)t (X))C|ADZ NB(q)t (X))dlBDdVD
A=1i —l¢ (Q)D

: (3.30)
nnp 3 np 3 -1 ..
=2 2%l 2 2 I PNA(D, (X))5i,- Ng(¢, (x))dvdg
A=1i =1 B= 1]—1¢(Q)
Ngof  {"dof
= Col]
DENY Mot
whereM,, is defined as follows:
j PNA(DT (X)) Ng(dy (x))dv . (3.31)

¢t (Q)

The second term @¢B.29)can be simplified via

Theory Manuals (2/19/99) Finite Element Formulations - Discretization - Generation of Matrix Equations
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I O %p DNA(cl)t (x))Dc%T dv
¢ (Q)

. 0
S Naj (07 0 Ty "o, (3-32)

where

Fnt = | { S Naj (0 (x))TIJ h} v. (3.33)
or (@4 =1

Finally, the last two terms @8.29)can be treated as

n n ndof
t
I Dz N(dy Lox))e O dv + | DZ N(dy Lx))e Ot da = Y cpFp (3.34)
by (Q)QA AE q>t(r0)QA AE P=1
where
Fet = | NA(d () ; dv + T N (07 (x)) [T, da. (3.35)
0. (Q) 0. (M)

We now define the following vectors and matrices of global variables, all with dimen:
of Ny -
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M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

- -

Discretization

< Go Back

C = {cp}
d(t) = {dt)}

F™ d(t)) = {Fi'} (3.36)
Fext — {FEXt}
M = [Mbd

The results of Eqg3.30)(3.35)can now be summarized as follows:

cTIMAt )+ F™ (d(t ) -F™'] = o, (3.37)

which must hold for alh ;s -vectors that result in satisfaction of the homogeneou
boundary condition imposed & (i.e., E8.18)).

Finally, we make the observation that not all of the membeuigtof are unknown; f
those nodes lying oh, , these degrees of freedom are prescribed. Furthermore, the

corresponding entries of at these nodes are typically taken to be zero, so that the

aforementioned condition o' s obeyed. Since the remainder of the gector is
arbitrary, it must be the case that the elements of the bracketed {&®i/in
corresponding to unprescribed degrees of freedom must be identically zero,(3@ih)at

will hold for arbitrary combinations of the, . Thus we can write the following nonline
equation that expresses the discrete equations of motion:

Theory Manuals (2/19/99) Finite Element Formulations - Discretization - Generation of Matrix Equations



ﬁ-— Mdt )+ F™ (d(t)) = F* (3.38)
———- Here we employ a slight abuse of notation because we have ass¢Bi&é)that all
HlarEy vectors and matrices have dimensoy); , and yet we only enforce Eq. (3.38) for
Iiiii unprescribed degrees of freedom. Denoting the number of unprescribed degrees of
freedom a: eq @ ONE can account for this difference in practice by calculating the ve

JQﬁS;L and matrix entries for all degrees of freedom and then by merely disregarding the

3 Ndor —Neq equations corresponding to the prescribed degrees of freedom. The mer
| ll : of d(t ) that are prescribed do need to be retained in its definition, however, since tr

FFinite Elletr_nent enter into both terms on the left-hand side of (3.38). It should simply be rememberec
ormuilations
only Neg members ofl(t ) are, in fact, unknown.

Discretization
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Localization and Assembly

The development to this point is mostly a matter of mathematical manipulation with |
insight gained into the character of the interpolation functidps, . In fact, the basic n

of these interpolation functions distinguishes the finite element method from other
variational solution techniques.

The details of shape function construction will be discuss@asncs of Element Design
in the context of element programming. However, it is useful to discuss now the basi
character of finite element approximation functions to give general insight into the

structure of the method. We refer therirtgure 3.2, which depicts a node, A, @ and
some generic elements attached to it. A basic starting point for the development of a

element method is as follows: the shape function associated with Noje A, , is onl

nonzero in that subportion & encompassed by the elements associated with Node
IS zero everywhere else (

This property of the shape functions is crucial to the modular character of the finite
element method. Shape functiddg having this property are said to possess local

support.

Theory Manuals (2/19/99) Finite Element Formulations - Discretization - Localization and Assembly
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Figure 3.2 Local support of finite element interpolation functions. Region of support foNA
shown as shaded.

To gain insight into the effect of this property, let us examine the expression given in
(3.31)for an element of the mass math_(,Q . We note in particular that the integranc

(3.31)will only be nonzero if both Nodes A and B share a common element in the m
otherwise,l\/|DQ must be zero. If we fix our attention on a given Node A in the mesh,"

can, therefore, conclude that very few Nodes B will produce nonzero enthies in . Tt
matrix is, therefore, sparse; and it would be a tremendous waste of time to try to cor

M by looping over all the possible combinations of node numbers and spatial indices
without regard to elements and the node numbers attached to them.

Instead the global matrices and vectors needed in the soluii@r38fare more typically
computed using two important concepts: localization and assembly. Still considering
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matrix M as an example, we note that by the elementary properties of integration, w
write:

Moo= [ PNa(d (x))8; Ng(d (x))dv
by (Q)

Ne|
S [ PNaldr ()8 Ng(oy (x))dv (3.39)

e=14"(Q%

r'el

> Mo
e=1
where

-1 -1
Moo= [ PNa(d; ())8; Ng(dy (x))dv. (3.40)
0y (Q°)
Thus, the global mass matrix can be computed as the sum of a number of element r

matrices. This fact in itself is not especially useful because each wf the IS extrem

sparse, even more so thieih . In fact, the only entridd of  that will be nonzero will
those for which botl? an@ are degrees of freedom associated with element
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This fact can be exploited by defining another local element nmatrix containing on
degrees of freedom associated with that element. We introduce element degree of fr

indicesp and) , as indicated generically in Figure 3.3. Assumingthat g and can

on values between 1 amq s , whergy is the number of degrees of freedom
associated with the element, ag; * N4 mainx IS constructed as follows:
m =[] (3.41)
p:7 a:4 a:3 p:5
a=1 a=2
p:ZT p:4T
p=1 p=3

Figure 3.3 Element (local) degrees of freedom for a sample finite element.

The nﬁq can be specified by introducing the concept of a local node nambdr or
also shown in Figure 3.3. With these definitions we can write
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e

Mg = PN, (97 (x))3; Np(dp (x))dv, (3.42)

0y (Q°)
where a sample relationship between indicea , pand appropriate for the eleme
hand might be
p=(@a-1)x2+i (3.43)

(similarly forj b and ). The notatihin, simply refers to the shape function associ

with local Nodea . By definition it is the restriction of the global interpolation functior
N, to the element domain.

Calculation of local element entities, suchd@s ~, turns out to be a highly modular
procedure whose form remains essentially unchanged for any element in a mesh. Di
discussion of this calculation is deferred uBtisics of Element DesignlLet us suppose
for a moment, however, that we have a procedure in hand for calculating this matrix.

might then propose the following procedure for calculating the global mass Matrix
internal force vectoF"
Step 1: Zero oum Fm

Step 2: For each elemeste ,= 1, ...,n
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. e
-a) Prepare local data necessary for element calculations Xe.qu 4 ( -vector (

element nodal coordinates), nJ;;  -vector of element nodal configuration
mappings), etc.

. i [ | [
b) Calculate element internal force vedtor \e = ! ‘SD and element mass
[ [
] e _ e :
matrix m = [”'qu] via
int |€ ° 1 h
In =
£ ] = [ |3 Naj (67 GOy |dv (3.44)

ol@%H =1

and Eq(3.42)

c) Assemble the element internal force vector and element mass matrix into their ¢
counterparts by performing the following calculations for all local degrees of freed

p andq :

_ e
MDQ = MDQ"' Mhq (3.45)

and
Filgt — FIFI;“ +f int S’ (346)
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where local degrees of freedom are related to global degrees of freedom via the
array, defined so that

P=LM(p,e) (3.47)

and
Q= LM(q,e). (3.48)

Step 2a) above is referred to as localization; given a particular eleament, , it extract:
local information from the global arrays necessary for element level calculations. Ste
consists of element level calculations; these computations will be discussed in detall
Basics of Element DesignStep 2c) is the process known as assembly and takes the
produced by the element level calculations and places them in the proper locations «
global arrays.

We can thus now summarize the effect of localization and assembly in a finite eleme
architecture. They act as pre- and post-processors to the element-level calculations,
enabling the entities needed for global equilibrium calculations to be computed in a
modular manner as a summation of element contributions. Of course, the effectiven
this procedure, as well as the convergence behavior of the numerical method in gen
depends crucially on the interpolation functions chosen and their definitions in terms
elements. We defer this topic for now and concentrate in the coming sections on the
classes of problems and global equation-solving strategies to be utilized.
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Introduction

As discussed previously in the contextafear Elastic IBVP in The Quasistatic
Approximation, the quasistatic approximation is appropriate when inertial forces are
negligible compared to the internal and applied forces in a system. As discussed in
Discretization, the quasistatic system of equations is obtained by omission of the Ine
term in the discrete equations of motion. Thus in this section we discuss solution of
problems of the form:

F™ () = F¥ (1) (3.49)

subject to only one initial condition of the form
d(0) = d,. (3.50)

Note that the time variable  may correspond to real time (e.g., if rate-dependent me
response is considered) but need not have physical meaning for rate-independent be
For example, it is common fdor to be taken as a generic parameterization for the aj
loading on the system, as discussed belolwdremental Load Approach.

It could also be noted that if the initial condition were taken as the same as the refer
configuration of the body, then

do|, = Xa. (3.51)

Theory Manuals (2/19/99) Finite Element Formulations - Quasistatics - Introduction



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

Quasistatics

< Go Back

Internal Force Vector

The quantityFInt (d(t)) is known as the internal force vector and consists of that s
forces that are variationally consistent with the internal stresses in the body undergc
analysis. The generic expression for an element in this vector is

int 02 -1 h U
Fp = [ O Naj(@ (X)T; Edv, (3.52)

o)1 =1

as given irGeneration of Matrix Equations. This vector-valued operator is, in general,

nonlinear function of the unknown solution vectldt ) due to the poddidhierial
Nonlinearity and/orGeometric Nonlinearity inherent in the definition of the Cauchy

stressTirj‘ in (3.52). As implied by our notation, we assume the solution dector to

smoothly parameterized lty , which may represent time or some other loading para
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M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

- -

Quasistatics

< Go Back

External Force Vector

The external load vectdF™™" (t) must equilibrate the internal force vector, as is cle

from EQ.(3.49) As first presented i@eneration of Matrix Equations, the expression

ext

ext ,
for an elementg oF " (t) is as follows

[ Na( OO (t)dv ]

ext _ |0 (@)

Fo' = . , (3.53)
+ [ Na(6p (X)) I (t )da
LT ]

where the explicit dependencefqf ~ dnd upon has been indicated and where

P=1ID( a ), asgivenin3.27) In other words, we assume that the prescribed inter
force loadingd ; and prescribed surface tractions  are given functions of

Equation (3.53) as written implies no dependence of either f, or @0 (al

thusd ). Provided no such dependence exists, the external force vector is completel
parameterized by , and the sole dependence of the equilibrium equatiorts upon

through SU However, it is important to realize that some important loading cases
precluded by this assumption, with perhaps the most important being the case of pr

Theory Manuals (2/19/99) Finite Element Formulations - Quasistatics - External Force Vector



g loading, where the direction of applied traction is opposite to the outward surface no
M which in large deformation problems depends upp(x) . Such a load is sometime
SEQZSS called a follower forcg an.d will, in gengral, contribute additional nonlinearity to the
problem. Such complications are readily handled but are not encompassed by our c
Ii‘ii‘i notational framework for the sake of simplicity.
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Incremental Load Approach

We may now summarize the global solution strategy most commonly applied to
guasistatic nonlinear solid mechanics applications. We assume that we are intereste

solutiond(t ) over some interval of interest for
t O[O, T]. (3.54)
We subhdivide this interval of interest into a set of subintervals via

N-1
[0,T] = [ [t t,sq. (3.55)
n=0

wheren is an index on the time steps or intervalsNand is the total number of sucr
increments. We assume thigf = 0 andthat= T , but we do not, in general, as:

that all time interval$t ,t ., 4 have the same width.

With this notation in hand, the incremental load approach attempts to solve the folloy
problem successively in each time interMal , t 4]

Given the solutiod,, corresponding to time lewgl , fihd, ; corresponding

t .4 Satisfying:

F™ (d,,) = F (., ). (3.56)
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This governing equation is also often expressed by introducing the concept of a resi
vectorR(d, , ¢) :

t int
R(d,,q) = F (t e —F " (d,,q). (3.57)
Solution of(3.56) therefore, amounts to finding the root of the equation
R(d,,;) = 0. (3.58)

The physical meaning of this approach is depicted graphicdfgure 3.4. Starting with
an initial equilibrium state at, , sothdfd,) = 0 , we introduce a prescribed load

ext (t+1) _F (t ,) and attempt to find that displacement

incrementAF™' = F
incrementd ., —d, , that will restore equilibrium (i.e., result in satisfaction of (3.58

This will require a nonlinear equation solving technique for determinatidn of , @
topic that will be discussed furtheronlinear Equation Solving
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SEACAS
Library We now restore the inertial terms to the discrete equation system and examine prosj
= techniques for solution. To recap the key resubeheration of Matrix Equations, the
Illll problem we consider now takes the form
Theory . int ext
Manuals Md(t )+F  (d(t)) = F , (3.99)
111 i‘i : to be solved fot 1[0, T] , subject to the initial conditions
Finite EI —
oo 4(0) = do &)
and
ysp— d(0) = vy. (3.61)
< Go Back
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The Semidiscrete Approach

It might be noted from Ed3.59)that time remains continuous in our formulation at thi:
point, whereas the spatial discretization has already been achieved by the finite eler
interpolations summarized Discretization. This type of finite element approach to
transient problems is sometimes referred to as the semidiscrete finite element methi
since the approximation in space is performed first, leaving a set of equations discre
space but still continuous in time. To complete the approximation, a finite differencin
procedure is generally applied in time, as discussed below.
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Time-Stepping Procedures

As discussed iQuasistatics we subdivide the time interval of inter¢6t T] via

N-1
[O’ T] — |:| [t n;t n+1] (362)
n=20

and consider the following generic problem. Given algorithmic approximations for th
solution vectord, ), velocity,, ), and acceleratian ( ) attime , find approximatic

d,,1,V,,q1 anda for these quantities at timg, ; . Note that in contrast to the

n+1
guasistatic problem, the varialile here does have the interpretation of actual time.

Several time-stepping algorithms have been proposed for this incremental problem
have posed. So that we might have a template with which to work, we will consider
perhaps the most pervasive of these schemes: the Newmark family of temporal intec

([Newmark, N.M., 1959). This algorithm can be summarized in a time $tept , , 4]
as follows:

int

t
Ma, ,+F " (d,,q) = F(

tnso)

n+1

2
d dn+Atvn+%[(1—2[3)an+2[3an+1]’ (3.63)

Vn+1 = Vi + At [(1_V)an +Van+1]

Theory Manuals (2/19/99) Finite Element Formulations - Dynamics - Time-Stepping Procedures



e where3 andy are algorithmic parameters that define the stability and accuracy
MM characteristics of the method.
SEQZ@S Although, obviously, a wide range of algorithms exist corresponding to the different
|"" available choices d@ ang , two algorithms in particular are prevalent in common u
Theory 1. Central difference}(= 0 vy, = % )- This integrator is second order accurate an
Manuals
only conditionally stable, meaning that linearized stability is only retained When
11 i‘i : Is less than some critical value. This algorithm is an example of an explicit finite
L element integrator, to be discussedxplicit Finite Element Methods.
Finite Element
Formulations 1 1
2. Trapezoidal ruleff = 7 y = = ). This integrator is second-order accurate and

Dynamics

< Go Back
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2
unconditionally stable for linear problems, meaning that the spectral radii of the

integrator remain less than 1 in modulus for any time Atep (in linear problerr

This algorithm is an example of an implicit finite element integrator, to be discus
in Implicit Finite Element Methods.
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SEACAS
Librar
o Examining the central differences algorithm as an example, let uBtaké y = %
Illll substitute into Eq(3.63) Upon doing so, we obtain the following algorithm:
Theory —1 _ext int
anua Ay = MO(FT () =F" (dqyq)
oy 2
W _ At
ll dn+1 = dn+At vn+7an : (3.64)
Finite Element
Formulations At
Vh+1 = Vp +—é_[an +an+1]

where the first equation has been written as solved for,
Dynamics
Equation (3.64) can be used to explain why this formulation is termed explicit. Consi

< Go Back | the case wher®l is a diagonal matrix. This is not, in general, the case if we strictly f
the variational formulation; reference to E8.31)will verify that unless two shape

functionsN, andNg are mutually orthogonal, the mass matrix will not, in general, be

diagonal. However, it is common practice, as will be discussBdsits of Element
Design to diagonalize the mass matrix. In the event that this is done, Eq. (3.64) show

given the three vectofsa ,,v,,d} ,thedatdat ; {a,,,Va+dns can be
computed explicitly (i.e., without the need for solution of coupled equations).
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Although this form of the central difference formulation is readily obtained from the

-
M Newmark formulae, it does not give insight into the source of the “central difference”
SEACAS terminology and, in fact, does not represent the manner in which the integrator is
Hlerelsy ordinarily implemented. To see the usual form, let us define the following auxiliary
|““ algorithmic velocity vector:
Theory Vv =V, + 1-At a,, (3.65)
Manuals n+ % n-2 n
i3 i'i : which also implies a corresponding relation for the previous time step:
Finite Element 1
Formulations Vn_} — Vn—1+ éAt an—l' (3.66)

Subtracting Eg. (3.66) from (3.65) gives

Dynamics

1
Vv —V =V, .-V + =At (a.—a : 3.67
< Go Back n+% n_l ~1t 58t (@, —a, ) (3.67)

However, evaluation of3.64)during the time steft | _,,t ] reveals that

1
Vo—=V,_q = éAt (a,+a,_1), (3.68)

So that upon substitution into (3.67) we find
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V. oo17V 1= At a,. (3.69)
n é n—é

Furthermore, substitution ¢8.65)into the second equation (.64)gives

d ., =d +Atv . (3.70)

n
n+z
2

Thus by collecting these latest two results, together with the equilibrium equation
evaluated at , , we can reexpress the algorithm completely equivalently as

—1 t int
a = Ni (Fex (t n)_Fln (dn))
v ,=Vv ,t+Ata
n+3 n-3 " . (3.71)
dn+l:dn+Atvn+_
2

Note that the velocity and displacement updates emanate from centered difference

approximations to the acceleratiap and veloeity ; , respectively, giving the
n+z
2
algorithm its name. The velocity measures that are utilized by the algorithm are shift
a half step from the time values at which the acceleration and configuration are mon

As mentioned above, explicit finite element schemes are only conditionally stable,
meaning that they only remain stable when the time increfitent IS less than some
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critical limit. This limit, sometimes called the Courant stability limit, can be shown to
as follows

At <2, (3.72)
W
wherew is the highest modal natural frequency in the mesh. It can also be shown th

frequency can be conservatively estimated via

w=280 3.73
T (3.73)

wherec andh are the sound speed and characteristic mesh size, respectively, ass
with the element in the mesh having the largest ratio of these two quantities. Combir
Egs. (3.72) and (3.73) we find that

< 00
At < 0 (3.74)
In other words, the time step may be no larger than the amount of time required for
sound wave to traverse the element in the mesh having the smallest transit time. Th
tells us immediately that explicit finite element methods are most appropriate for tho
problems featuring very high frequency response or wave-like phenomena. For prob
featuring low frequency response, literally thousands of time steps may be required
resolve even a single period of vibration due to the stringent stability limit posed by (3
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Implicit Finite Element Methods

To introduce the concept of an implicit finite element method, we examine the trapez

rule, which is simply that member of the Newmark family obtained by seﬁtingi a

y = % Substitution of these values into £8.63)yields
int t
M%+1+Fm (dn+1) = FGX (tn+1)
At 2
d,,q = dn+AtVn+T[an+an+1]- (3.75)
At
Vst = Vi +7[an+an+1]

Insight into this method can be obtained by combining the first two equations in (3.75
solving ford , , ; . Doing so gives

Theory Manuals (2/19/99) Finite Element Formulations - Dynamics - Implicit Finite Element Methods
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" E[—ZM% +1 F (t n+ 1)
SEACAS . + MBa. + At v, + —d [
lic +F™ () 0 %

I“-“ . (3.76)

4
IIII An+1 — ATZ(drH_l d )D_A_tv —a

m[m

Theory
Manuals

I i‘i

e Clearly solving the first equation in (3.76) is the most expensive procedure involved
Formulations | updating the solution froh,, to,,,; . This equation is not only fully coupled, but al

is highly nonlinear, in general, due to the internal force vector. In fact, we could write
first equation of (3.76) in terms of a dynamic incremental reskual, via

At
Vint+1 = Vn+7[an+an+1]

Dynamics

[ —ext (] 4 ]
F (thyq) t Mg, + At v, +—d 5

At

4 int
_EATZM%-FI'_F (dn+1)5

< Go Back

R{dy +1) = (3.77)

=0

This system has the same form(&%7), which suggests that the same sort of nonlinea
solution strategies are needed for implicit dynamic calculations@sanristatics Some
common equation-solving alternatives are discussébiminear Equation Solving
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Introduction

In this section we explore some of the alternatives available for solving the nonlineal
discrete equations associated with computation of an unknown state at , in eith

context of a quasistatic problem (i.e., E&57) or an implicit dynamic formulation (Eq.
(3.77). In either case, the equation to be solved takes the form

R(d,,q) =0, (3.78)
where the residud(d, , ;) Is considered to be a nonlinear function of the solution v

d ...
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Newton Raphson Framework

We now return to the general concept of a Newton-Raphson iterative solution techni
as discussed in the one-dimensional contektaterial Nonlinearity . To review, a

Newton-Raphson solution technique {8r78)is defined in iteration by

i oR
R(d, )+ [a—d]dimAd = 0, (3.79)
followed by the update
d 1 =d ., +Ad. (3.80)
Iterations on  typically continue until the Euclidean n#ﬁm din N 1)H IS less than sa
tolerance]|Ad| is smaller than some tolerance, the quaR(t'n& +1) [Ad is small,

some combination of these three conditions.

It is instructive to examine the form taken by Eq. (3.79) for the quasistatic and implic

dynamic cases. For the quasistatic dﬁ@d'n +1) takes the form

R(dh,,) = F&(t ) -F™ (d ), (3.81)

so that Eqg. (3.79) can be rewritten as
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K(d.,,)Ad = R(d!, ), (3.82)

where the incremental stiffness matlﬁ)gdin +1) IS given by

i _ [OR _ aF‘“t ,
Kdnﬂ_—[a_d] [a_d }dl . (3.83)

i =
dn+1 n+1

Thus application of the Newton-Raphson method to quasistatic problems amounts t
solution of successive linear problems, as defined by (3.82).

In the implicit dynamics case, let us consider the trapezoidal rule as a template. In tt
case, the residual is of the form

[ —ext 4 ]
| F (tn+1)+MEan+Atvn+A_t_2drH_
R(d ) = A o = 0. (3.84)
_BA?MC(H&"'F (dn+1)E
This cause$3.81)to take the form
4 . .
[FM+ K CL+1)}Ad = R(d" , ,), (3.85)

where the stiffness matri)’((din +1) Isasgivenin (3.83). In either case solution of th
global incremental equations will require the assembly of the coefficient matrix on th
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left-hand side. Following the same assembly procedures outlinextalization and

i
Assembly, this matrix is given as an assembly of element stiffness mallzr'i:’c%be1 N E

each of which can be expressed generally as

e ei e ei
keGhe, O = [kpqgjwrlg] (3.86)
where
int

kGoltn. §= 8 B G (387

wheref :Om IS as given in E(3.44)

We can, therefore, conclude that for a Newton-Raphson treatment of either a quasist
implicit dynamic system, an important function of the element subroutine is to return
element stiffness in addition to the internal force vector and mass matrix that may al
required. We will discuss in detail the mechanics of this operatiBasits of Element
Design
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Line Search

It is noteworthy that the Newton-Raphson method is only guaranteed to be converge
an asymptotic sense, subject also to some smoothness and differentiability conditior
This means that solution updates may not be effective if one is excessively far from
solution or if significant nonsmoothnesses are present in the equation system. Indee
many problems the early displacement updates in a given load increment g{@eB2bhy
or (3.85)may actually be counterproductive in that they take one farther from the solt
rather than closer. It is, therefore, imperative to have a technique that controls the m
in which the solution is sought such that bad displacement updates, as predicted by
linearized kernel, are not allowed to carry one too far from the desired solution.

The concept of line search, pervasive in nonlinear equation solving, is employed for
purpose. To motivate the concept, we consider the case of a so-called quadratic sys

where the total system enerby(d) can be expressed as a quadratic function of the
solution vectod via

T T
M(d) = ;QI Kd—F* d (3.88)

where for simplicity we assunie arg™" to be constant. We seek the minimizer «
M1(d), which, of course, can be equivalently expressed as the solution of

Kd = F¥" (3.89)
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In fact, this problem statement is a finite-dimensional analogue of that discu¥gealkin
Forms, where it was asserted that the linearly elastic boundary problem can be solv
finding the displacement field, minimizing the total potential energy of the system. W
could, therefore, think of the problem we have posed as a finite element discretizatic
such a system. Although the system we consider here is quasistatic, the technique v
motivate is utilized for solution of nonlinear dynamic systems as well.

Neglecting the fact that this problem could be solved via Gaussian elimination, we

consider a generic iterative procedure for solving it.Suppose we have a currentlitera

as well as a proposed displacement increAeint . In a Newton-Raphson hethod
would be computed in a given iteration by solvi@@g2) which would produce the exact

solution (to machine precision) after the displacement ugdai®) If Ad is not such a
good choice for the displacement increment, however, we would like a method for

detecting this fact and for controlling growth in the residual. In this discussion wa&dake
as a search direction 'rneq -space and look for solutions in this direction reducing («

least controlling growth in) the residual.

Givend' andAd , then, we introduce a search paramseter and consider an update
form:

d' "1(s) = d' +sAd. (3.90)

The line search parameter is chosen such that the update produced by (3.90) is in s
sense optimal. In this spirit we choase as the minimizer of:
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1, LI
2(_d +sAd) K(d +sAd)

A(s) = , (3.91)
i T
—~(d' +sAd) F*
d
which can be found by finding the solutionggfA(s) = 0 . If we assumekhat is

symmetric, positive definite, one finds in taking this derivativeghat is given as the
solution of
AdT(K(d' +sAd)—F®") = 0. (3.92)

Two forms of this equation are useful under various circumstances. First, in the linee
system we now consider, (3.92) is readily solved to explicitly yseld

Tl
5= U (3.93)
AdTKAd

whereR = F' _Kd' . This form of the line search is actually used in some
implementations but depends, strictly speaking, on linearity to be effective. Thus a n
generally used form is generated by reexpressing (3.92) as the following problem:

Find s such that

Ad'R(d +sAd) = 0. (3.94)
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In (3.94) R( d +sAd) = & —K(di +sAd) in the linear case. The advantage of E
(3.94) however, is that it admits more general representations of the residual; for a

nonlinear quasistatic problem, we can (&684)with R( d + sAd) given by

R(d +sad) = F® —F™ (d' +sAd). (3.95)

Similar generalizations for the dynamic case are, of course, also possible with the dyi
residual given for the trapezoidal rule(8184)

From (3.95) we conclude that a line search procedure looks for updated iterates whe
search direction is orthogonal to the residual. This is equivalent to an energy minimiz
in the linear case, whereas the interpretation in the nonlinear case is not quite so

straightforward. Furthermore, in the nonlinear case it is not efficient or even necesse
find the root 0{3.94)to machine precision. More commonly one uses some sort of ro

finder to find ars  between 0 and 1 that satigBe%4)to some tolerance. Making the
definition

G(s) = Ad'R(d +sAd), (3.96)
a typical algorithm to find could be outlined as:

Givendi andAd
*|IF (|G(1)| >TOLx|Q0)| or G(1) x G(0) <0) THEN

lterate fors [ (0, 1] such thatG( s)| < (TOL)|G(0)| (3.97)
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s = 1. (3.98)
SEACAS

Library  ENDIF

|iiii The check in the IF statement amounts to checking whether a full stes (witth ) |
e— to an unreasonably large increas&in  and whether a root might reasonably be expe
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Quasi-Newton Methods

One can establish that Newton-Raphson iteration is quadratically convergent
asymptotically, meaning that the error associated with a given iteration tends to the s
of the previous iteration’s error as iterations proceed. One can, in fact, roughly see ftl
reason for this fact from E@L.21) which states that the Newton-Raphson update is
motivated by a first order Taylor series expansion of the residual about the current so
vector iterate. We might, therefore, expect that the error incurred from this approxim:
update should tend toward the square of the displacement update as iterations proc
which is, indeed, the case. A much more rigorous derivation of this property can be f
in [Kelley, C.T., 1995] This quadratically convergent behavior is a highly desirable
property and makes the Newton-Raphson method much more rapidly convergent th
many other equation-solving alternatives.

However, it is also true to say that a full Newton-Raphson method can be tremendot
expensive due to the necessity of solving the successive fully coupled linear system
implied by(3.82)and(3.85) If we choose to use a direct equation-solving technique fi
solving these systems, such as Gaussian elimination, the cost of solving each linear

problem will vary as the cube of the number of equat(mré%) . For very large probl
this cost can become prohibitive.

In response to this situation, a number of methods, known collectively as quasi-New
(alternatively, secant) methods, have been developed. These methods replace most
Newton-Raphson iterations with a cheaper update to the solution vector, sacrificing
convergence performance but making the average equilibrium iteration much less
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expensive. The interested reader should cofisatltnis, J.E. and Schnabel, R.B., 1996]
or [Kelley, C.T., 1995]for excellent overviews of these methods from a generic, nonlin
equation-solving viewpoint.

Before discussing specific quasi-Newton methods, let us motivate them through
consideration of the term “secant method”. Suppose we have a scalar-valued, nonlir
equation

R(d) = 0 (3.99)

and wish to employ an iterative method to obtain the root. If we are currently perforn
iterationi and wish to obtain the next iterate 1 , a secant method will do this by

replacing the tangent to the curke, = —% [R(d: )] , With the secant

.= R(d ) —R(G o) in the Newton-Raphson updating scheme [sgere 3.5
| o—d; _, -
Thus, the next iterate is obtained via
R(d ) —R(d
di ,,=d — { '.)_ (G _1)R(di ). (3.100)
Gf —lg —a
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Figure 3.5 One-dimensional illustration of quasi-Newton (secant) iteration.

In generalizing this concept to multiple directions, we seek to approximate so-called
consistent tangents needed by Newton-Raphson updat€8.&&ewith stiffnesses that
will be cheaper to compute and invert. In a secant method, using the one-dimension
example as motivation, we demand that these approximate tangents obey the so-ca
qguasi-Newton equation:

Ki(d; —=d, _;) = R(d,)-R(d; _,), (3.101)

or in terms of the inverse:

d —d, _, = K "(R(d)=R(d; _,)). (3.102)

—d.

In the one-dimensional case either expression implies uniquely the secant method a
discussed but with multiple unknowns, expressions (3.101) or (3.102) place a less

stringent restriction. There are, therefore, a multitude of such methods, collectively te
guasi-Newton or secant methods, whose defining feature is the satisfaction of (3.10:
(3.102). Here we concentrate on one particular method, the BFGS (Broyden-Fletche
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Goldfarb-Shanno) method, proposed originally and most coherently for specific use
finite element calculations Batthies, H. and Strang, G., 1979].

In the BFGS method, one typically starts with an assembled Newton-Raphson tange
given, for example, b{3.87) One performs one iteration with this tangent (probably
including a line search). Rather than repeating this procedure for subsequent iteratiol
BFGS method takes the tangent from the Newton-Raphson iteration and updates it |
manner consistent wif8.102)and uses this tangent to compute the next iterate for th
solution (also probably including a line search in the update).

The BFGS method is effective in many circumstances because the update to the tar
matrix is inexpensive and is actually done to a previously determined inverse so that
maitrix inversion is necessary in most equilibrium iterations. To be more specific, we

suppose that the last tangent utilized in an iteration proc&ss is . The BFGS upc
defined as
K" = (1 +v i W Y o( HW | viT), (3.103)
where
Ad; - (3.104)
V. = ’ .
| Ao AR(d ) —R(d; _p))
w, = —(R(d;)-R(d, _y)) +a; R(d, _,), (3.105)
where
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1
o - [—si _((R(d:)-R(d. _,)) I1d, _qz
T [T Rtd— ) d; 4 -

Throughout the above equations we have indexed the search directions and line se:
parameters such that

(3.106)

L*+s, _,Ad . (3.107)

i —

The next search directiahd;  Is then computed via
-1

Ad; = Ki"R(d,)

) _ . : (3.108)
= (I v, w)K; _.(I +w,; v. )R(d:)

One may discern from (3.108) why a BFGS iteration is so much cheaper than a Nev

Raphson iteration. Keeping in mind th?a_tl_l IS typically stored in practice as a

factorized stiffness matrix, one can compditg efficiently by proceeding right to le

the second line of (3.108). Thinking in this manner, the update consists only of dot
products, scalar vector multiplies, and a backsolve procedure.

The BFGS method is, like other quasi-Newton methods, superlinear in convergence
meaning that the error decreases in a manner faster than linear but not as fast as th
guadratic rate displayed by Newton-Raphson. Thus it is most effectively used in larg
problems, where this disadvantage in convergence behavior is offset by its great savi
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the iteration process. It should also be noted that the success of BFGS depends crit
upon the incorporation of line search. Since the iterations are based less directly on
underlying mechanics of the system than they would be in Newton-Raphson, it is
particularly important that the line search prevent excessive excursions away from tt
solution in the case of bad search directions. Typically, BFGS solvers also contain

provisions to compute new Newton-Raphson tangents to restart the iteration process
event the BFGS iterations are ineffective.
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SEACAS
Library The desire to solve very large problems has recently led researchers to consider so-
. indirect iterative, or matrix-free strategies, where the set of nonlinear equations is
||||| iteratively solved without any need to compute, store, or invert a tangent matrix at ar
Theory stage of the iteration process. Perhaps the most celebrated iterative technique for sc
Manuals linear equations in the last two to three decades has been the conjugate gradient me
Y this section we briefly consider its extension to matrix-free, nonlinear equation solvin
i | .| ' do so, however, it is useful to examine the linear case first, from which the nonlinear

Finite Element | @lgorithms are readily derived.
Formulations

We begin then by considering the same linear system and potential energy flinction

A given in(3.88)and consider that this potential energy is to be minimized. We note the
any prospective solution poidt , the steepest descent direction of the objective func
Nonlinear . . . .
Equation [1 is given by the negative of the gradient:
< Go Back
0 _ —ext _
—a—d(l‘l) = F7 —Kd = R(d). (3.109)

In other words, the steepest descent direction at any prospective sdlution is merely

by the residuaR(d) . One of the most elementary methods from nonlinear equation
solving/optimization, the steepest descent method, utilizes at each iteration the curre
steepest descent direction as the search direction, with a subsequent line search de
the update to the solution vector. This method, while intuitive, is not as effective as o
alternatives including, in particular, the conjugate gradient strategy we now discuss.
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The difficulty with steepest descent is that in many cases, successive search directic
“zig-zag,” meaning that a given search direction will contain significant components ir
direction of previous steps. It is readily imagined that such repetition is wasteful, sinc
presumably these earlier iterations have already eliminated, or at least markedly red
the error in their respective search directions.

This discussion is made more quantitative by recalling the formula for a generic line
search, Eq(3.94) In the case of a linear problem, this condition takes the form

Ad'R(d +sAd) = AdT(FF' —K(d' +sAd))

- i (3.110)
= Ad'K(d—(d' +sAd)) =0

In (3.110) the ternd — (di +sAd) isrecognized as the error associated with the ne

iterated' +sAd . Thus we can see from (3.110) that the line search criterion causes
error associated with the next iterate for the solution vector kedsthogonal to the
search direction. Thus if we consider the solution space to be described by a sequel
vector spaces of increasing dimension, where search directions form the basis and
stiffness matrix< serves as a metric, then each iteration with line search removes al
In that direction. It is, therefore, wasteful to have subsequent search directions that |
non-zero components in previous directions. The aim of the conjugate gradient metl
to orthogonalize this direction as iterations proceed.

To begin derivation of the method, let us use the notapons for a search directoon a
for a line search parameter, as opposed tddthe sand used previously (in large p
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conform to usage in the literature). The restriction we will place on the search directic
that they will be K-orthogonal:

p/Kp, =0, (3.111)

wherei and are indices for two different iterations. In each iteration a line search
be performed eliminating all error in the current search direction via

d.

wherea; is given by (c{3.93):

.

_ PiR(d;)

= (3.113)
P; Kp;

Since the method operates by eliminating all error in each successive search directi
which is orthogonal to all previous directions, this method will yield the exact solutior

Neg iterations in perfect arithmetic. In this sense conjugate gradients can be viewed

direct method, although in practice iterations are terminated far before this point, ma
the method approximate.

Yet to be discussed is the generation of the orthogonal search directions. This is dor
applying a Gram-Schmidt orthogonalization procedure to a set of linearly independe
vectors, taken in the case of conjugate gradients as residual vectors. The process is
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by taking the original search direction as the residual, which would be the same dire
taken by steepest descent:

Po = R(dy). (3.114)
Subsequent search directions are defined via

-1
pi = R(d)+ Y By Py (3.115)
k=0

where the coefficient8,,  must be found to ensuogthogonality ofp;  with previous

search directions. This calculation can be done by takin-theer product of (3.115)
with p;

T
0 =p, Kpj
1

i —
T T
= R(d,)'Kp; + 3 By PKp; - (3.116)
k=0

T T
= R(d,) Kpj "'Bij P; Kpj

Eqg. (3.116) then allows us to write a formula ﬁar
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T
_R( d.) Kpj

Bij - N (3.117)
P; Kpj
At first glance it would appear that to find search diregbipn B”all would need to

calculated fof 4 . However, we can apply further reasoning to see that, in fact, onl
of the coefficients required [{$.115)is nonzero. To begin, since the error in a given
iteration is K-orthogonal to earlier search directions, we can write

p/Ke; =0,j =0, ..,i -1, (3.118)
wheree; = d;, —d . Sinc&Ke;, = —-R(d,) , it follows that
p/R(ci) = 0,j =0, .., -1, (3.119)

We can further conclude that since the search direction in a given iteration is a linea
combination of all the residuals that preceded it,

R(d)'R(d) = 0,j =0,..,i —1. (3.120)
We can write the residual at thet 1 iteration as

R(d ) = —Ke. = —K(e. + Q. p)
j +1 j+1 PR (3.121)
= (R(dj )—Gj Kpj )
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Taking the inner product of this equation wRlfd, ) , we find

o; R(d;) 'Kp; = R(d;)'R(d)~R(d;)'R(d, , ,). (3.122)

Using now the orthogonality propert$.120) we find

1 T -
G R(4), j 5 -1 _ (3.123)

0, i =0, ..,i -2

R(d;)'Kp; =

N O |

Thus examining3.115)and(3.117) we find that only one of the needed coefficients is
non-zero —namelys; ; _;, . Naming this quanfty  subsequently we can rewrite

(3.115)as
pi = R(d)+Bp; _q, (3.124)

where

1 R(d)'R(d;)

B = (3.125)

Ti-1p; _Kp; _y

Eqg (3.125) can be written even more simply by noting that
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L5 LN = p|T_]_R(d| _1) . (3126)
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= R(d. _,)'R(d; _,)

1 i‘i ::- Thus,
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Formulations
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B = R(a )TR(d‘) . (3.127)
ey R(d; _;) R(d; _y)

Nonlinear Eq. (3.127) is the Fletcher-Reeves version of the orthogonalif&tetaher, R. and
Equation Reeves, C.M., 1964Another commonly used form, due to Polak and Ribiere, is trivia
< Go Back | obtained from the orthogonality property as

3 o RO (R()=R(d )

; (3.128)
R(d. _,) R(d; _,)

Collecting all of these results, the conjugate gradient algorithm for linear problems c:
summarized as
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Po = R(d,)

piR(d) _ R(d)'R(d))

a. = _ _
PR, p; Kp,
di 41 = d; +a;p;
R(di +1) = R(di )—Gi Kp,
(3.129)
0 R(d 1) R(G; )
- T (Fletcher-Reeves) _
: - R(d,) R(d, )
i +1 — U
R(d . ) (R(d —~R(d;
. A (T' +1) R '))(Polak-Ribiere)
O R(d, ) R(d;)
Pi +1 = R(d 4 9) +B; +1P;

With our derivation of the linear conjugate gradient method now complete, we return
the actual problem of interest here, which is nonlinear conjugate gradients. At this p
we should distinguish between two alternatives. One could still adopt a Newton-Rap
nonlinear equation-solving strategy and employ a conjugate gradient-type algorithm
solve the linear system of equations. This type of algorithm is sometimes termed a
Newton-iterative method (s¢€elley, C.T., 1995). One should note, however, that use ¢
this method still requires formation of the stiffness matrix, so that even if equation-sol
savings are realized by using CG over a direct solver, the memory requirements of t
method will tend to be extensive. Also if determination of the global Jacobian matrix
difficult, expensive, or impossible, then this method will be limited just as its more
traditional ancestors are.
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Thus one is led to consider the possibility of using conjugate gradient iterations
themselves as the nonlinear solution iterates. The algorithms of this type commonly
look remarkably like the linear algorithm summarized®y29) We summarize here
perhaps the most successful of these, termed the Polak-Ribiere algorithm after the fi

B, used in the (now approximate) orthogonalization:

po _ R(do) _ |:ext _Fint (do)
a; obtained from nonlinear line search

di ;1 = d; +0;p;

R(d ,,) = F' —F™ (d, ,,) . (3.130)
_R(d; 4 )" (R(d, ;1) -R(d,))
Bi +1 — T -
R(d ) R(d,)

pi +1 R(di +1)+Bi +1pi

Really only one difference from the linear algorithm is obvious. The line search in (3.
must now be given by an expression appropriate for nonlinear problems. Although se
alternatives might be devised, one of the simplest (attributghttels, R. and Daniel,

J.W., 1973) is generated by considering only the first Newton-Raphson iterate (with

initial guessa; = 0 ) to the line search equation

piT(R(di +a;p;)) =0, (3.131)
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Preconditioning

It is widely recognized that conjugate gradient methods are best behaved when the

condition number of the underlying stiffness matrix is small (i.e., when the eigenvalue
clustered together). Due to this fact conjugate gradient algorithms are almost never a
without preconditioning, a term referring to the act of converting an equation system
one having the same solution while possessing a tighter clustering of eigenvalues.

Thinking somewhat simplistically about this idea, we might conceive that the ultimate
well-conditioned coefficient matrix would be the identity matrix, which has all
eigenvalues equal to one. Relying once more on a linear system to motivate our ide:
us consider that our generic linear system

Kd = F® (3.133)

is ill-conditioned and that we wish to employ a well-behaved CG algorithm to solve i

we devise a matriXyl , that we feel to be a good approximation to the invekse of , v
might choose to iteratively solve the equation

MKd= ME®, (3.134)

since the matriMK should have a tight cluster of eigenvalues about dhe (if is, inde

good approximation oK ).
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However, CG is only applicable to symmetric systems,MHKd IS not necessarily
symmetric. If theM we select is symmetric positive-definite, we can find a matrix, | ¢
that

EE = M~ (3.135)

and consider solution of the system

E'KE'd = EF, (3.136)
whered = E'd . Itis to be noted that this system also will be satisfied by the solutic
(3.133) while remaining symmetric and positive-definite. If we straightforwardly appl
the linear CG algorithn(B.129)to (3.135), assuming the Polak-Ribiere form, we obtair
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Pi +1

supplementary vectol® 7

(3.137)

_ R(di 1) (R(Ti +1)-R(T))

— 7 TA"\
R(di) R(di)

= ﬁ(d:l)"‘ﬁi +1f’;i

Algorithm (3.137) can be written in a form not explicitly involving the maliix or the

,amd by noting fRH{d;) = E_lR( d; ) ,

M= E'E ', and by takingp'; = ETpi . We therefore write the Preconditioned
Conjugate Gradient algorithm for linear systems as:
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& R(d,) = F™ —Kd,
SEACAS Po = MR q)
Library T
q = R(d;) MR q)
i =% :
s d; .1 = dj +a;p, . (3.138)

R(d; . ;) = R(d)—a; Kp,

R(d; ,,)'M R d,,)-R(d))

I i‘i

Finite Element Bi 41 =

Formulations T
R(d;) MR d)
g Pi +1 = MR 4 ,1) +Bj +1P;
Se—— Finally, we are in a position to discuss a preconditioned matrix-free conjugate gradie
Equation structure for a fully nonlinear system. We might summarize such an algorithm as
< Go Back
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R(d;) =

Po

R(d; 1)

Bi +1 =

Pi +1

|:ext _Fint (do)
= MR q)

. obtained from nonlinear line search
= d;j +a;p;

_ |:ext Fint (d ) (3-139)
- B I +1

T
R(d; +1) MR 4 1) =R(d;))
T
R(di) MR q)

= MR q +1)+Bi +1pi

Following the lead of the last section, one alternative for the line search would be the
iteration for a Newton-Raphson strategy to find

T 1
= PR (3.140)

—
P; Kp;

To conclude, it should be remarked that the simplest choice for preconditioning, Jac:
preconditioning, is accomplished when the matlix is chosen as diagonal. One cho
might be to takéVl to be the inverse of the diagonal of the stiffness matrix.
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Introduction

In this section we explore the basic issues associated with the design of finite eleme
which are the building blocks of the methods we have discussed. In particular we wi
discuss how definitions and manipulations are done at the local level to produce the

elemental quantities liken® f,int ° cahd  that are needed for assembly of the glo

equations of motion. We concentrate in this section on one field problems (i.e., where
the deformation mapping),  is discretized). It will turn out that many nonlinear solid

mechanics applications of interest, including nearly incompressible elasticity and me
plasticity, require more sophisticated approximations in which other variables (like
pressure) must be explicitly included in the formulation. Discussion of such advance
methods is deferred #ddvanced Element Design Issues
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Convergence

Before introducing in detail the manipulations necessary at the element level, it is
worthwhile to discuss in general terms the general requirements usually placed upol
shape function definitions. It should be noted that these conditions are sufficient but
necessary, so that many formulations exist that violate one or more of them. Howeve
also fair to say that most finite elements in wide use satisfy the conditions we will no
place. The discussion we give now is brief and rather qualitative; the interested read
should consulfHughes, T.J.R., 1987pr[Strang, G. and Fix, G.J., 1973for more
technical discussions of these points (notably within the context of linear problems).

We begin by definingn , which will denote the highest order of shape function spatia
derivative present in the expression for the stiffness matrix. For the class of problem
have considered in this text, we recall frblawton Raphson Frameworkthat the
element stiffness matrix takes the form

: int :
e e o_ 9p e
Kpa S+ 19 = e o+ 1 SRt
q

The internal force vector required in (3.141) was given genericallgaalization and
Assemblyas
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3
' e -1 h
(e s g {z N, (67 (x)T§ [dv. (3.142)
or(@%)H =1

Performing the differentiation indicated (8.141)will produce no higher than first-order
derivatives of the shape functions; therefones 1

The three general convergence requirements we wish to mention are as follows.

 The global shape functiom$,  should have global continuity of the oreldr . In

mathematical terms they should 68! oh

* The restriction of the global shape functions to individual elements (i.€.Ne )

should beC™ on element interiors.

* The elemental shape functiofhl,} should be complete.

The first two of these requirements are fairly simple to understand. The fir@f'f_tﬁe

continuity requirement, simply means that all derivatives up-td of the shape
functions should not undergo jumps as element boundaries are crossed. In the curre

this means that aN,  should @ . Since the approximation to the configuration

mappingq)ht Is a linear combination of these shape functions, we see that the phys
restriction placed by this condition amounts to no more than a requirement that the
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displacement be single-valued throughout the domain (i.e., gaps and interpenetratio
element boundaries may not occur).

The second requirement on element interiors simply states that the shape functions
be sufficiently smooth so that the element stiffness expression is integrable. Physice
speaking, the first derivatives of the configuration mapping produces strain measure
we simply require that the strains be well-behaved on element interiors by this restri
Note that global smoothness of the strains (and, therefore, stresses) is not required.
point is of some importance in the reporting of results.

The third requirement, the completeness requirement, is somewhat more involved tc
explain and yet corresponds fairly directly to physical ideas. We say that a given elem
complete when setting the element degrees of freedom according to a given low-orc

polynomial forces the solution (in this cais% ) to be interpolated according to the s

polynomial pointwise within the element. The degree of polynomials for which we pl:
this requirement is referred to as the degree of completeness for the element.

In the current case where we deal with solid continua, the usual degree of complete
demanded is 1. This means that all polynomials, up to and including order 1, should
exactly interpolated by the element. It is worthwhile to consider an example of this p
Suppose we are in three dimensions, and set the element degrees of freedom via

e _ e e e
d, =cptc X e, +c,yY,e +tCgZ e

(3.143)

Z ]
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. e e e .
wherec,—c5 are arbitrary constants angd Y,_, Z_ are the (reference) coordinates

local node numbea . The completeness condition requires that

b,"(X°) = 3 N(X)dg
a=1 (3.144)

_ e e e
= (cptcyXe,+tCcyY e tCyZ7e,)

hold for all X° 0 Q° and for all values of the arbitrary constants.

As mentioned above, this requirement has a physical interpretation as well. In solid
mechanics we have already pointed out that the first spatial derivatives of the
displacements produce strains. Since we require that an element be able to reprodu
arbitrary linear polynomials, this also implies that any state where the first derivatives
strains) are constant should be exactly representable. Thus a complete element shc
able to exactly represent any uniform strain state. A practical way to test for this conc
IS to impose a boundary value problem on an arbitrary patch of elements having a co
strain (and thus stress) solution and then to demand exactness of the numerical solt
Such atest is called a “patch test” and has become one of the standard benchmark:
which any new proposed element formulation is tested and evaluated.
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Parameterization

With the three criteria in hand for element definitions, we proceed to define a recipe
through which element definitions and manipulations can be systematically performe
The most basic definition to be made toward this end is the concept of the local (or p.
parameterization of an element. In effect we seek to define a local coordinate syster
will be the same for every element in a problem, contributing in great part to the
modularity we will desire for element level operations.

We will denote a vector of these local variables by ,with being a 2-vector in two
dimensions and a 3-vector in three dimensions. Specifically we define as

(two dimensions)

(3.145)

s| (three dimensions)

1
I:II:IIIIDI:IHIIEII:II:I
- I

The local variables s, ,anhd are all assumed to range between -1 and 1, so that
domain definition is likewise standardized among all elements in a given problem. T
domain ofr is often referred to as the parent domain. In two dimensions it is a biuni
square, and in three dimensions it is a biunit cubeRgpge 3.6).
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170/
v S~

s L
s \%DO/

Figure 3.6 Local parameterizations and coordinate mappings in two and three dimensions.

Of course, for this alternative element coordinate system to be of any use, its relatio
with the global coordinate system must be defined. This is accomplished through a ¢
function expansion via

nen

XT(r) = 3 N(r)Xg, (3.146)
a=1

wherex® is the global (reference) coordinate mapping covering element and@ha

are the element nodal (reference) coordinates, as before. Note also that in (3.146) tl
shape functions have been written using the parent coordinates as the independent
variables. This is the reason for the superposed tilde on the shape function. One col

Theory Manuals (2/19/99) Finite Element Formulations - Basics of Element Design - Parameterization



M
SEACAS
Library

I“-"‘-

Theory
Manuals

Finite Element
Formulations

Basics of
Element Design

< Go Back

think of r as an material point label within the element, sothat rand are two
reference coordinate systems for the element that are related acco(@irig &)

The most important generic class of finite elements is comprised of so-called
iIsoparametric elements. Such elements are defined by utilizing the same shape fun

for definition ofq)?(xe) (see Ed3.144) as for the element coordinatss (asin

(3.146). One can show (and the reader should) that providing all element shape func
sum to one at any point in the element, an isoparametric element automatically satis
the completeness condition outlineddonvergence Thus provided we choose shape
functions that sum to one, are suitably smooth on element interiors, and match
neighboring element descriptions on element boundaries, the convergence criteria e
automatically satisfied. We will concentrate on the mechanics of shape function defir
in the next section.

In the meantime let us consider the implications of the isoparametric approach for tr
Lagrangian description of large deformation solid mechanics we now consider. So th

may distinguish carefully between mappings taking as an argument and between

taking X , we will use superposed tildes for the former (as ifEL46). If an element is
iIsoparametric, then by definition the configuration mapping over an element is given

Br(r) = Y Na(r)ds, (3.147)
a=1
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where the shape functiofg,(r )  are exactly the same(8sl4o) However, it should
also be the case that the functtp)[l]ir ) should be attainable from the composition «

¢ (X°) (defined according t8.144) with X°(r ) (defined according t8.146). Thus
we can write

nen nen

S Na(r)dS = 6(r) = S N, (X (r ))ds. (3.148)
a=1 a=1

Comparing the leftmost and rightmost expressions of (3.148) and realizing that the

equality must hold for any given combination of the element degrees of fr&‘é:dom

are led to conclude that the alternative shape function expre$§§jong Na(ahed
must be related by mere composition via

N, = N,oX°. (3.149)

Thus we have the option of defining the shape functions over whatever domain is
convenient, and since the parent domain is the one that is standardized, we typically

with an expression fal, and then derive the implied expressidd,for according t

1

N, = NoX® . (3.150)
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Equation(3.150)has important implications in practice for, in general, we have no

-1
guarantee that the inverse mapp}heg Xof is well behaved, which it must be for
shape function$l, to make sense. Fortunately, according to the implicit function

theorem, the inverse function {®.146)is smooth and one-to-one, provided the Jacobi:
of the indicated transformation is nonzero. This essentially amounts to a geometric
restriction on elements in the reference domain. In two dimensions, using a four-noc

element, the implication is that all interior angles in each element must be led8@han

(see Figure 3.7).
all interior angIeS 180

Figure 3.7 Geometric restrictions on a four-noded element to retain well-posedness of the
coordinate and configuration mappings.

Finally, let us introduce the notatidda  for shape functions that take the current

coordinate® = ¢P(Xe) as arguments. Such an expression is needed — for examg
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= 0
Eqg.(3.142)(note the abuse In notation) — where the spatial derivailyges = ﬁNa
i
must be computed. Following similar reasoning to the above, one can conclude that

functionsNa must obey

N, = Nact] . (3.151)
h—l
Again for the needed functiay to be well-behaved, the Jacobian of the transform

(3.147)must be nonzero. This restriction amounts to:

o6, 06,
de{a—r} = de {ax} el = ];co (3.152)

Provided the original element definitions are not overly distorted, the second term or
right-hand side of (3.152) will be nonzero. Thus the well-posedness of the spatial sh

h
o,

X"

approximated determinant of the deformation gradient , as defifdeasures of

Deformation. According to Eq(2.10)J must be positive pointwise for the concept of
volume change to have any physical meaning. Thus provided the approximated

functionsNa requires thaiet{ } be nonzero. The reader will recognize this as tt

Theory Manuals (2/19/99) Finite Element Formulations - Basics of Element Design - Parameterization



e deformation mapping remains kinematically admissible {.e.0 ), the spatially defi
MM shape functions are guaranteed to be well-behaved.
SLI?QZSS With these arguments as background, we now turn our attention to definition\yf the
e according to the parent domain. To keep notational complexity to a minimum, we wil
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I i‘i

Finite Element
Formulations

Basics of
Element Design

< Go Back

Theory Manuals (2/19/99) Finite Element Formulations - Basics of Element Design - Parameterization



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

- -

Basics of
Element Design

< Go Back

Shape Functions

Most continuum-based finite elements rely on Lagrange polynomials for their shape
function definitions. Beginning with expressions appropriate for one-dimensional

domains, let us suppose that we have a one-dimensional elemenewith nodes,
are equally spaced over thel, 1] domain. Useedi — 1 order Lagrange polynor
Lgen _1(r ) for definition of each of the element shape functips leads to

nen

r| (r =)

_ hen-1 _ b=1b#
N,(r) =L, (r) = a , (3.153)
|_| (r a —r b)
b=1b#a

where ther |, refer to the local (parent) coordinates of the individual element nodes.
reader may care to verify that these shape functions have two useful properties. Firs

N,(rp) = 044 (3.154)
and second, that

Z Ny(r) =1forallrOd[-1 1. (3.155)

a=1
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Equation(3.155)is noteworthy in that it provides an important ingredient of the
completeness argument ($e@rameterization), whereas Eqg. (3.154) ensures that the
nodal degrees of freedom have the actual interpretation that

h
d; = &, (X3) = xg (3.156)

(see EQ(3.144).

Before proceeding to the more interesting multidimensional case, some examples ir
useful. Fomen = 2 the element coordinates aje= —1 rnd- 1 . The

corresponding element shape functions are computed(&dm3)asN, (r ) = ;(1—r )

andN,(r) = 1(1 +r ) , thereby providing the basis for the one-dimensional linear fin
2 2

element. Fonen = 3 the local nodal coordinatesraye= -1 r, = 0 rand 1

2

with the shape functions turning out toldg(r ) = ;r_(r —1) Ny(r) =1-r , and

Ny(r) = ;r_(r + 1), thereby defining the one-dimensional quadratic element. These

shape functions are plottedfingure 3.8
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Figure 3.8 Low-order, one-dimensional Lagrange shape functions.

Next we turn to the generalization of these concepts to two and three dimensions. Tr
be accomplished by building up “products” of one-dimensional shape functions, as
indicated schematically for the four-noded quadrilateral element depidteglire 3.9. In

general, let us suppose that local Nade in a two-dimensional element has local
coordinategr .,s4) , whereindices anhd refer to the node numberrin thes and

directions, respectively. The two-dimensional shape function is given by

n -1 nen_-1

nen, S
N,(r.s) =L, (r)xLy (s), (3.157)
wherenen  andien. are the numbers of nodes irmrthe sand directions, respec

Taking the four-noded quadrilateral depictedrigure 3.9as an example, the shape

functionsN, are found to ¢, = i(l—r)(l—s) N, = ;Lr(_l+r)(1—s) :

N, = i(_1+r)(1+s), andN, = i(l—r)(1+s) |
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AS 45 3
< ?| _T:,
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1 2

Fe
N
=

Figure 3.9 Definition of element shape functions for two-dimensional, four-noded quadrilateral.

The three-dimensional case can be treated analogously, and in doing so we use the t
brick element depicted iRigure 3.10as a template. Here we consider that local Node
has local coordinates ., s 4.t ) and write the three-dimensional shape functions «

nen, — nen_ — nent—l

NJ(rs)=1L, ' 1(r)><LOI > 1(s)><Le (t). (3.158)

The appropriate shape functions for the trilinear brick turn out to be:

Ny = ;A-T)(1=8)(1=t), N, = ;A+1)(1=S)(A~t), Ny = (1 +r)(1+s)(1-t),

i(l—r)(1+s)(1—t), N = i(l—r)(l—s)(1+t), Ng = 111(_1+r)(1—s)(1+t),

bZ
1

Z
\‘
1

i(1+r)(1+s)(1+t), andn, = i(_l—r)(1+s)(1+t) .
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Quadrature

With the element parameterizations and shape functions now defined, we are in a pc

to discuss how element-level calculations are performed to evaluate such quamﬁies a

i e ; . .
fim ,andk® . Notably all these calculations involve integrals over the element don

as evidenced by the expression fior : give(Bin42) One can evaluate these
integrals analytically only for a few highly specialized cases, meaning that numerica
integration (i.e., quadrature) is required for any type of generality to be present in the
element formulation. Accordingly, we are led in this section to consider the generic

problem of integrating a functiofi, , over the element domain via

[ f (x°)dv, (3.159)
0 (Q°)
wheref could, in principle, be scalar, vector, or tensor-valued.
The first step in evaluation of (3.159) is generally to perform a change of variables,

converting the integral in the current element physical domh@(me) to one over tf

parent domain, which we shall denotelby . This is accomplished using the stande
change-of-variables formula from multivariate calculus,
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[ f(x%)dv = [f (x°(r )j (r)dO , (3.160)
00 (Q°) =

wherej (r ) is the Jacobian of the transformation from parent coordinates to spati
coordinatesc® :

ox

J (r) = det=— } (3.161)

wherex® is as given i(8.147)

The advantage of (3.160) oU&.159)is that the integration takes place over a
standardized domain, for which quadrature rules are readily tabulated. One typically
approximates the integral in (3.160) by applying quadrature via

nint
[FOEE)I(r)do = 5 £ )i ()W, (3.162)
O | =1
wherenint  is the number of integration (quadrature) points in the element, IS tl

parent coordinate of quadrature Pdint \&nd IS the weight associated with quad

Pointl . The choice of these quadrature point coordinates and weights effectively de
the numerical integration scheme and the accuracy associated with it.
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The most prevalent quadrature schemes in finite elements are based on Gaussian
quadrature rules, which may be derived in terms of Legendre polynomials. While thi:
derivation is unnecessary for our present purposes, its result is that in one dimensio
Gaussian quadrature rules are optimally accurate in that no greater accuracy can be
achieved for lesser cost. By cost we mean the number of integration points used, wi
by accuracy we mean the lowest order polynomial not integrated exactly by a given

quadrature rule. The Gaussian rules in one dimension have the property that gtven
integration points2 x nint  order accuracy is achieved, meaning thatant -1
order polynomial ir  will be integrated exactly. Below are listed the first few Gauss
integration rules over the domdirl, 1]

enint =1:r; = 0,W = 2 (second order accurate).

enint =2:r, = - L = _13 W =W, = 1 (fourth order accurate).

7B 2T

3 3 5 3
enint =3:r; = —\5,r,=0,r3=\5g,W =W = 9,V\é: g (sixth order

accurate).

Now returning to the problem of interest, multidimensional quadrature, we can use Vv
similar reasoning to that used to define multidimensional shape functions in the last
section. Since integration in a multidimensional domain involves integrating with res;
to each variable separately while holding the others constant, we might expect that

numerical integration in successive directions is done in just the same way. The rest
this fact is that we can define multidimensional quadrature rules as products of one-
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dimensional ones, just as was done for shape function definitions. It turns out the
optimality property present in the one-dimensional formulation is lost but that a highl
systematic and effective integration procedure results.

Beginning in two dimensions we refer to Figure 3.11, which depicts a four-point
guadrature scheme in two dimensions that we will use as a template. Let us conside

quadrature Poirit , having local coordinates ,s, )  ,whereindices | and r
r S

to the appropriate quadrature point number inrthe sand directions, respectively. |
two-dimensional weight is given by the product of the appropriate weights from the c
dimensional rules, i.e.:

W o= WoxW (3.163)
AS [S
X X X
_.ﬁ.>r X = -
| r ’(SI X X '
® S #
(r| S| )
r S

Figure 3.11  Quadrature rule definition in two dimensions: four-point Gaussian quadrature.

Taking the two-dimensional, four-point quadrature rule depicted in Figure 3.11 as an
example, the appropriate parameters are found tdpes W, = W, = W, =1 :
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_ g1 01 0l 10 ,ng

(rsq) = DT 7§3 (rss,) = Q7= :J,H (r3S3) = %,jéﬂ’

01 14

(r 4 S4) = D_j@’ 7?)3

Three-dimensional quadrature rules are similarly conceived; the reader should cons
Figure 3.12 for a template of the procedure. We consider quadratureé Point , having

coordinateqr | , s, ’t't) , where indicés |, ,dnd  refer to the appropriate
r S

guadrature point number inthes , ,&nd directions, respectively. The three-
dimensional weight is given by the product of the appropriate weights from the one-
dimensional rules, i.e.:

W= W xW xW (3.164)

, /14
S Aix |/
\

Figure 3.12  Quadrature rule definition in three dimensions: eight-point Gaussian quadrature.
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Considering the case kigure 3.12as a specific example, we find the following

1 1 1 1 1
parameters{ —W, = 1 (r,s..t,) = Dﬁ — 75!3 (F 2 St ) D3 - 7@5 :
1 1 1 1 1 1 1
(r 31831t3) Eb= 7§ 7@]1 (r4is41 4) = T ﬁ 7%]1 (r 51551 5) = E_ﬁ,_ﬁ’vﬁg1

1 1 1 1 1 1 1 1 1
(F'e Sqt 6)—%@ ﬁ,vﬂ%(r?,s?,tﬁ:afffﬁ and(r g sg. tg) = Tﬁfﬁ
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Local Arrays

The final task in the section is to give brief prescriptions for how element-level

: . int € .
calculations are done to find® f :nt , alndl for a given elengent, . These quan

are needed by the global assembly algorithm to fidrm Ald (as discussed in
Localization and Assembly andK (as discussed Newton Raphson FrameworR.

Beginning first withm®  we recall the general expression for the element mass matrix
. il
My = [ PN (b (x)); Np(dp (x))dv. (3.165)
b (Q°)
One can apply a change of variables to the reference configuration to find that

e

by = [ PNaOX)8; Ny (XD)JaV

< ) o (3.166)
= IpONa(X )6”- Ny (X7)dV
Qe
where the second line of (3.166) holds becase Jp (conservation of mass, set

(2.74). Looking at the second line of (3.166), we see that the element mass matrix i
independent of the deformation. It is straightforwardly calculated using quadrature v
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nint

nﬁq = Z Po(r | ING(r )Bij Ny (i )) o(r )W, (3.167)
| =1
where
i o(r)) = de g—f } (3.168)

According to the discussion of the last section, the ordinary strategy in applying
quadrature would be to use a sufficiently accurate rule so that (3.167) is evaluated €

(at least if the reference densfiy  Is constant). This would lead one to employ a fol

point Gauss quadrature rule for a four-noded quadrilateral in two dimensions and an
point Gauss rule for an eight noded brick in three dimensions. Following this proced

11 A N 'e
produces a “consistent” mass matmx

The difficulty with a consistent mass matrix, however, is twofold. First, it is, in genere
banded but not diagonal (as would be preferable for an explicit dynamics applicatior
example), and second, experience shows that better accuracy is often exhibited in
dynamics problems with “lumped mass”, where the rows of (3.168) are actually sum
and the result placed on the diagonal of the mass matrix. Use of this row sum techn
produces the following alternative, more widely used expression for element mass:

nint
”ﬁq‘lumped =0 5abI glpo(r NG (r )i o(r W (3.169)
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int €

Turning attention now td , we begin by applying the change of variab{8sl#?)

nint
int |€ h.
F o= 3 N )Ty ol W (3.170)
| =1
Two requirements of (3.170) are notable: the determination of the §ﬁess (deper

as indicated on the current element deformation field through the constitutive law), ar
need for the spatial derivativés j of the shape functions. In fact, derivatives of this

are also needed for the stress calculation, which will ordinarily involve the approxime
deformation gradient:

h
a nen aN
F" = {ite} = { 3 _ng] (3.171)
aX a-= 1aX
- aNa aNa : : int €
Thus calculation of both—e anel—e IS typically necessary to olhtain .These
o0X 0X
derivatives are usually produced by a shape function subroutine, called by the eleme
. . . . ON
subroutine for each quadrature point. Taking the spatial denva%%e as an exampl
0X

chain rule can be invoked to obtain the appropriate expressions via:
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SEACAS D—eD:Da_aD—e :Da_aDar— : (3.172)
Library E XJE E rk%axj % rk% K
Illll where(r ) = (r,s ) intwo dimensions, afd,) = (r,s t ) inthree dimensions. T
Theory
Manuals . . 5Na . . ..
reader will recognize th%tr— can be computed through simple differentiation of the |

Y \

I : ax.e

Finite Element | Shape functions, wheregsrjﬁ Is found by differentiatiof8df47) Calculation of the
k

Formulations

required inverse is rather simple and is readily done in closed form, since the matrix
T involved is 2x2 in two dimensions and 3x3 in three dimensions.

o Basics of Completing our discussion of element-level calculations, the element stiffness knatri
ement Design

< Go Back IS given generically by

. Int ;
e [Le'n _ of D e'n
kpagl® | = e #° 5 (3.173)
q

where the internal force vector is as giveifdari42) Some manipulation ¢B.142)is
useful at this point:
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" £ Jp = [ [Ny, (X)F5 Ty 130V
e

SEACAS = J (3 174)

p— = [ [N,y (X)P}; 1AV
e

i ;

Theor)ll where in the second line of (3.174), the Piola stR%ss has been introduced in
Manuals
accordance witl2.54) There are many ways in which the derivative indicatd@8.in/3)
11 i\ ; can be expressed; here we do it by computing the derivative of the Piola stress with
I to the deformation gradient (E@.171) and invoking the chain rule:

Finite Element
Formulations

i 0
i h
kpgRI® H = aOlgj[ntaﬁ](xe)PiJ ]dV
S e
B i (3.175)
Basics of e aP.J aFkL
Element Design — J- Na J(X ) |h — dv
< Go Back o° oF, 0d,
Simplification of the second line ¢3.175)results in the following expression:
! h
kgq%je% = [ Ny 3 (XO)Cigie (0N, | (XD)dV, (3.176)
e

Q

where the material modul;;; are defined as
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Cor = T (3.177)

Application of the quadrature rule to (3.176) gives

nint

kSqBje g: S Na g (r)Caie (r)INg L(r )i o(r W (3.178)
| =1
The required reference coordinate shape function derivatives can be calculated as
discussed above for each quadrature point, as can the Jacgbian . The material m

CUJ-,_ are, typically, the most difficult to compute, as they require linearization of the

tensor-valued constitutive relation with respect to a tensor-valued strain measure (in
case the deformation gradient). It should be noted that (3.178) is given for illustrative
purposes only; the stress and strain measures conveniently utilized in the linearizatio
widely, depending on the constitutive relation used. It should be noted, however, tha
provided the moduli are symmetric (in the major sense), then the element stiffness r

e .
k™~ will be as well.
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Introduction

In this section we discuss some advanced element design issues having particular
relevance to large deformation problems featuring inelastic response. We begin the
discussion with a specific example of how the standard element formulations discus:
Basics of Element Desigican have difficulty in problems featuring near or complete
incompressibility, as is common, for example, in computational plasticity. Some basi
remedies for this situation are then discussed.
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& | |Constrained Media and Locking
SEACAS . . ags . . . . . . .
Library The incompressibility dilemma can be motivated fairly simply by considering linear
= elastic, isotropic behavior. Returning once more to the discussiomsiar Elastic IBVP,
||||| we consider a stress strain relation of the form
Th
Maﬁl?;)lls Tij = Cijkl Ey (3.179)
1 i‘i ] where the material modul;;, are of the form

Finite El

I:Ir(;lrtriulzit?;?]rs]t Cijkl = )\6” 6k| + “[éik 6” + 6” 5]k ]. (3.180)

Plugging (3.180) into (3.179), one obtains

- -

T. = Zuu(ij )+)‘5ij U - (3.181)

Advanced '

Element Design . . . . . .
We are most interested in the volumetric response of this material; accordingly, let u

< Go Back define the hydrostatic pressyre as
p = %Tk,k (3.182)
and the dilitation (volume chang®) as
© = Uy (3.183)
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Computing according t(8.181) we find that for an isotropic material,
p = %(2p +30)0. (3.184)

The coefficient relatingp an@ is ordinarily called the bulk modKlus
K= 2u+3A (3.185)

and corresponds physically to the volumetric stiffness of the material. Recalling that
the shear modulus, representing the resistance of the material to shearing motions,
proves useful to examine the ratiokof to as an indicator of the degree of
incompressibility of the material. Using the relationships between the Lamé paramel
and the more familiar elastic modulus and Poisson’s ratia {s&¢)and(1.65), we find
this ratio can be written solely in terms of the Poisson’s ratio:

K_ 2(1+v)

- Saia (3.186)

Recalling that the thermodynamically admissible values for range betfieen % anc

we see that the case where approa%‘hes from below causes (3.186) to grow witl

bound, so that the bulk modulus becomes infinitely large when% . In this case tt
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volume chang® is constrained to be zero pointwise in the medium, and the mater
said to be incompressible.

Let us now consider the behavior of a finite element discretization of the linear boun
value problem described innear Elastic IBVP, wherev = % . We consider the mesh

shown in Figure 3.13, comprised of linear triangles. This is an element not discusset
this point but can be obtained formally by consideration of the four-noded quadrilate
discussed iBasics of Element Desigiwith two of the nodal coordinates set to be the

same. Thus the displacement field is linearly interpolated with the result, in the case
triangles, that the strains are constant throughout the element.

Figure 3.13  Sample mesh illustrating mesh locking for the incompressible case.

Since the strains are constant in the element, the requirement that

up =0 (3.187)
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pointwise causes the total volume change in the element to be zero also:

dA h
A

meaning simply that each element in the mesh may not change area due to the

Incompressibility constraint.

Examining now the behavior of Element IRgure 3.13 the constant area constraint

implies that Node A can only move in the horizontal direction, since the two lower nc
of Element | are fixed. However, Element Il places the restriction that Node A can or
move vertically. Taken together, the isochoric constraint in each element prevents N
from moving at all, in any direction. This argument can be repeated throughout the n

to conclude that no node can move at all, souflat 0 IS the solution to the discre
problem. However, it is clear that in the physical situation, the fact that the material i
incompressible does not preclude all deformation. Thus the finite element solution
produces a solution that is nearly nonphysical because of the fact that the numerica
approximation of the incompressibility condition overconstrains the numerical
representation of the physical system.

The phenomenon described for this admittedly specialized system is referred to, ger

speaking, as “mesh locking”. It will not, of course, always be the casa'that0 fc
every boundary value problem, but it does turn out that fully integrated elements of t
type discussed iBasics of Element Desigmwill, in general, produce excessively stiff

solutions when the material is either nearly or completely incompressible. We are tht
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Selective/Fully Reduced Integration

One of the simplest techniques used to eliminate element locking is to deliberately

underintegrate the internal force vedtdr © (and the element stiffriess in the ce
a quasistatic or implicit dynamic calculation). Selective reduced integration means tt
only the troublesome volumetric terms are underintegrated, whereas fully reduced
integration means that all terms are underintegrated. The latter option is particularly
attractive in explicit dynamic and matrix-free quasistatic calculations, since the elem:
level calculations comprise a large proportion of total solution costs in these cases. .
the cost of element calculations is directly proportional to the number of quadrature
points, fully reduced integration becomes very attractive when speed is of special co

Let us consider the case of the eight-noded hexahedron in three dimensions as an e

and apply fully reduced integration in the calculatiorf of : . The ordinary quadrat
rule for this element would be eight-point Gauss (two points in each direction), but it t
out that this element locks. The reduced quadrature rule would then be one-point G

. ; . i e
which leads to the following expression for"

£ [=8N, ; (0)Tf (0)j 4(0), (3.189)

where, as indicated, all quantities are evaluated at the @rigin  of the parent coordin
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I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

Advanced
Element Design

< Go Back

Theory Manuals (2/19/99) Finite Element Formulations - Advanced Element Design Issues - Selective/Fully Reduced Integration



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

Advanced
Element Design

< Go Back

Hourglass Control

Arguably the most important work done in this area was publish@ddoyagan, D.P.
and Belytschko, T., 1981]The development in this section closely follows their origin:
presentation. To understand more clearly the possible spurious behaviors enabled b

reduced integration, we first note that the shape funchigns can be written in terms
some standardized element deformation modes as follows:

_ 1 1
Na = §Za+zr
1 1 1

1
+§st I'la+§rt F2a+§rs F3a+§rst [ 44

1 1
(3.190)

These modes are depicted schematicallyigure 3.14 As can be seen therein,
represents a rigid body translation, the represent constant strain deformation m

and thel" ,, are referred to as hourglass modes.

If we consider the velocity field representable by this element, we find that it can be
written via

Vi = Ve, Vi = ¥ Vi N, (3.191)
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Figure 3.14  Mode shapes for the eight-noded hexahedron element.

The fully linear portion of the velocity field is made up of he  And
the hourglass portion of the velocity field can be written as
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lin

hg _ 1 -
Via = Via _Via — ﬁ;qi araa’

ia

(3.192)

Where%3 IS a normalizing factor, aqélu are the hourglass normal velocities. It turn

that the hourglass velocities are orthogonal to the element’s other modes in that

V95 =0 (3.193)
and
VISA., = 0. (3.194)

Basically the one-point integration scheme discussed in the last section fully control:
linear modes of the system but provides no resistance at all to the hourglass velociti

Vik;g. The objective of hourglass control therefore is to restore such control even in tt
context of one-point integration.

Flanagan and Belytschko wrote the hourglass nodal velocities in terms of the hourgl
shape vectoy,, Vvia

: 1
Qia = :/'évia Yaa: (3.195)

with the shape vector,, found to be
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1oV
Yoa = Naa =y Xieb M ab- (3.196)

Vave
0Xi,

Hourglass force$ ir;g are applied in these directions, so as to be orthogonal to the pf
modes of the system. One choice is

hg _ 1
Fia = 2 aYoar (3.197)
where the generalized forc,  are given via
_ _pov oV
Q4 - (3.198)

B0V Ay€ Ave
0Xi5 0%y

with 1 being an effective shear modulus. The interested reader should tdtertpass
Control Algorithm in Eight-Node Uniform Strain Element for the details of a specific
implementation of hourglass control.

Theory Manuals (2/19/99) Finite Element Formulations - Advanced Element Design Issues - Hourglass Control



P
M

SEACAS

Library

R

Theory
Manuals

Fini

te Element

Formulations

< Go Back

Blue text
indicates

a link to more

info

Theory Manuals (2/19/99)

rmation.

= B 2 ot 2 o 2 B 2 o 2 o 2 B
Introduction Weak Form Discretization Quasistatics Dynamics  Nonlinear Basics of
Revisited Equation Element

Solving Design

Element Examples

Eight-Node Uniform Strain Element
Four-Node Corotational Shell

Finite Element Formulations - Element Examples

- - .;’ Ii""\-.
Advanced Element
Element Examples

Design Issues



P
M

Eight-Node Four-Node
SEACAS Uniform Corotational
Library Strain Element Shell
T Eight-Node Uniform Strain Element
Theory Introduction
Manuals

Element Force Vector
' :l| Lumped Mass Matrix

Finite Element
Formulations

Finite Rotation Algorithm
Determination of Effective Moduli

B Determination of the Stable Time Increment
Element Hourglass Control Algorithm
Examples

Artificial Bulk Viscosity
< Go Back

Theory Manuals (2/19/99) Finite Element Formulations - Element Examples: Eight-Node Uniform Strain Element



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

Element
Examples

Eight-Node
Uniform Strain
Element

< Go Back

Introduction

The eight-node, three-dimensional isoparametric element is widely used in computa
mechanics. The determination of optimal integration schemes for this element, howe
presents a difficult dilemma. A one-point integration of the element underintegrates t
element, resulting in a rank deficiency that manifests itself in spurious zero energy m
commonly referred to as hourglass modes ksm@glass Control). A two-by-two-by-

two integration of the element, by contrast, overintegrates the element and can lead
serious problems of element locking in fully plastic and incompressible problems (se
Constrained Media and Locking. The eight-point integration also carries a tremendo
computational penalty compared to the one-point rule. Particularly in explicit dynami
applications (see&xplicit Finite Element Methods), this added expense is extremely
undesirable.

In this section we present an element that is widely used in explicit analyses, wherei
point integration is utilized in combination with an hourglass control scheme that con
the spurious modes. The implementation presented below follows directly from
[Flanagan, D.P. and Belytschko, T., 1981]n particular the aspects of this element
pertaining to hourglass control have already been discusstmlinglass Control.

The hexahedral element relates the spatial element coorcbia}eates to the nodal

coordinatesl,,  through the isoparametric shape funchigns as follows

x: = Ny(&,n,0)d., , (3.199)
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where for convenience the summation convention on nodal inglices has been adoj
Subscripts  have a range of three, corresponding to the spatial coordinate directior
subscriptsa have a range of eight.

Our discussion here will focus primarily on explicit dynamics applications, where the
argument for the use of this element is most compelling. As such it is necessary to ©
expressions for the elemental velocity field

Vi = Nyv._ (3.200)
and for the acceleration field

a =Na. . (3.201)

l ala

In (3.200) and (3.201) the nodal velocitieg and nodal accelerajgns are the

localized global velocities and accelerations, which for central differences are produc
the update$3.75)given inExplicit Finite Element Methods.

The velocity gradient tensarhas been discussedRates of Deformationand was
specified in Eq(2.30) It can be written in the domain of an element as

Lij =Vi; = ViaN;j- (3.202)

By convention a comma preceding a lowercase subscript denotes differentiation witl

_ _ ov.
respect to the spatial coordinates (azgj, derga%és ).
X]
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The three-dimensional isoparametric shape functions map the unit aube in r-space

written explicitly as(,s t ) to a general hexahedroxin -space, as depicted for the
element reference configurationkigure 3.6. The trilinear shape functions defined ovel
this domain, as summarized3mape Functions can be conveniently expanded in term:
of an orthogonal set of base vectors, as was mentioned previotiiyiglass Control:

1 1
Na = éza*‘z].

1 1 1

1
+§st F1a+§rt F2a+§rs F3a+§rst [ 44

1 1
(3.203)

The basis vectors represent the displacement modes of a unit cube, as was also dis
in Hourglass Control. The first vectory,, , accounts for rigid body translation. The

vectors/\,, may be readily combined to define three uniform normal strains and thr

rigid body rotation modes for the unit cube. We refefto as the volumetric base

vectors since, as we will illustrate below, they are the only base vectors which appee
the element volume expression. The last four veckys, , where Greek subscripts |
range of four, give rise to linear strain modes which are neglected by uniform strain
integration (i.e., the one-point quadrature rule summariz&1189). These vectors
define the hourglass patterns for a unit cube, so that we refgr, to as the hourglas

vectors. The displacement modes represented by all these vectors are dhigwrein
3.14
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Element Force Vector

Recalling the development Bfsics of Element Desigithe generic expression for the
element internal force vector (s€e142) is

nt (e
0y (Q°)
In the element we consider, the one-point integration scheme neglects the nonlinear

portion of the element displacement field, thereby considering a state of uniform strai
stress. The preceding expression is approximated by

L D NI 3.20
ia = ljj I AV, (3.205)

a, |
61(Q®)

whereTij , the mean stress tensor, represents the assumed uniform stress field. By

neglecting the nonlinear displacements, we have assumed that the mean stresses d
only on the mean strains. Mean kinematic quantities are defined by integrating over
element as follows:

;oo
V.. = v J e Vi | dv. (3.206)
o (Q7)

We now define the discrete gradient operator as
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B, = I N, i dv. (3.207)
0 (Q°)
The mean velocity gradient, applying £§.202) is given by

7. =3iv. B . (3.208)

I vy 1a “ja
Combining Equation§3.205)and (3.207), we may express the nodal forces by
t"™ fa =Ty B, - (3.209)

Computing nodal forces with this integration scheme requires evaluation of the grad
operator and the element volume. These two tasks are linked since

Xij = 6” , (3.210)
where6ij Is the Kronecker delta. Equati¢8s.99) (3.207), and (3.210) yield
Xia Bja = I (Xiq Na)’j dv = v6ij : (3.211)
Ve
Consequently, the gradient operator may be expressed by
_ov
B, = ox (3.212)
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To integrate the element area in closed form, we use the Jacobian of the isoparame
transformation to transform to an integral over the biunit cube:

+1 +1 +1

vV = J’dv = I J’ I j & dsdt . (3.213)
v -1 -1 -1
The Jacobian is given in terms of the permutation synampl as
_ ox 0y 0z
J = ey ar; or ar (3.214)
Therefore, Equation (3.213) can be written as
V = XaYpZ Cope: (3.215)
where
Lo+l BN, ON, ON
Cave =ik [ f 5 g ardradradrs. (3.216)

-1 -1 1! J

Observe that the coefficient arr@y,,. Is identical for all hexahedrons. Furthermore
possesses the following alternator properties:

Cabc = Cbca = Ccab = _Cac

b — _Cbac -C

cba -

(3.217)
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Therefore, applying Equatio3.212)and(3.217)to (3.215)yields the following form for
evaluating thd-matrix:

Yz,
XpYc
In light of Equation(3.203) it is evident that evaluating each componer@ gf. involv

integrating a polynomial that is at most biquadratic. However, since we are integratir
over a symmetric region, any term with a linear dependence will vanish. The only ter
which survive the integration will be the constant, square, double square, and triple s
terms. Furthermore, the alternator properties cause half of these remaining terms to

out. The resulting expression fGg,,. Is

1
Cabc 192 Ij

T aNp Fie tFa Fip Mke)

(BN ANip Nee TN T T
|k jb " Yke kb jC. (3.219)

SinceC_, . has the alternator properties given in Equ&Bdti7) only 56 (the

combination of eight nodes taken three at a time) distinct nonzero terms are possibls
However, the volume must be independent of the selection of Node 1, which implies

C_pc Must be invariant under all node numberings, preserving the relative orientatio
the element. Consequently, only 21 (the combination of seven nodes taken two at a
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terms may be independent. Furthermore, once Node 1 is selected, three orientations
node numbering system are possible, so that only seven te@yg_.of need be eva

The seven sets of tripl¢a, b,c)  giving rise to independent teri@gQf (1lage:3)
(1,2,5;(1,26);(1,2 7);(1 2 8);(1,3 5 ;1, 3 6. Of these, only the first three
terms do not vanish. All other nonzero term<Cgf . are found by permutations and
of the alternator properties summarized by B217)

With theC_, . in hand, the first term & IS expressed uEigl8)as

C

By = 31V o((Z6=23) ~(24=25)) +Y3(2,~2,)
+Y,4((z3-2g) —(25-2,)) +Yc((Zg—2g) —(25—24)) * (3.220)

+Ye(z5—2,) tyg(z4—25)]

After permuting the nodes according to the transformations described above, other t
of B,, are also evaluated usi($218) The element volume is most easily computed k

contracting thd3-matrix and nodal coordinates as per Bg211)
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Lumped Mass Matrix

In order to reap the benefits of an explicit architecture, we must diagonalize the mas
matrix (seeExplicit Finite Element Methods). We do this by integrating the inertial
terms as

(Mma®)ia = ay, m,, (3.221)
where

m, = pvd,, (3.222)

andd,, is the Kronecker delta. Clearly the assembly process for the global mass m

from the individual element matrices results in a global mass matrix that is diagonal
can be expressed as a vechly, , if desired.

Theory Manuals (2/19/99) Finite Element Formulations - Eight-Node Uniform Strain Element - Lumped Mass Matrix



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

- -

Element
Examples

Eight-Node
Uniform Strain
Element

< Go Back

Finite Rotation Algorithm

As discussed in more detail irame Indifference, an important factor in proper
formulation of large deformation problems is the assurance of material objectivity. In
element we now consider, this is achieved by formulation of the constitutive updates |
rotated configuration depicted irFigure 2.2and introduced more thoroughlyRate of
Deformation Tensors Of particular interest in constitutive modeling are quantities like

the rotated rate of deformation tengdr  (see(EG9), the rotated Cauchy stregs  ir
Eq.(2.57) and the Green-Naghdi rate of Cauchy stfiess  defin@dlip?)

Notably all of the above objects require the determinatidd of , the rotation tensor de
by the polar decomposition summarized by EdL3) Here we describe an incremental
algorithm for determination of this tensor with emphasis on computational efficiency
numerical accuracy. We begin by conside(iag?2)as a first-order differential equation ir
R

R = LR. (3.223)

The crux of integrating Eq. (3.223) fBris to maintain the orthogonality &.
Unfortunately, if one merely applies a forward difference scheme, the orthogondlity ¢
degenerates rapidly no matter how fine the time increments. Instead the algorithm o
Hughes and WingefHlughes, T.J.R. and Winget, J., 1980]for integrating incremental
rotations can be adopted as follows.

A rigid body rotation over a time incremeft may be represented by
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Xi yar = Qat Xi (3.224)

whereQ,; Is a proper orthogonal tensor with the same rate of rotatiyreasgiven by
Eq.(3.223) The total rotatiorR is updated via

Riiat = Qae R (3.225)

For a constant rate of rotation, the midpoint velocity and the midpoint coordinates ar
related by

1 1
—A—t—(xt L AL —xt) = EL(XI £ AL +xt). (3.226)

Combining Egs. (3.224) and (3.226) yields

(Qq =1 )%, = %L(QAt +1)x, . (3.227)

Sincex; Is arbitrary in Equation (3.227), it may be eliminated. We then sol@ for
which gives

_g At g LA g
Q: = H -5 . +—Lg. (3.228)

The accuracy of this integration scheme is dependent upon the accuracy of the midy
relationship of Equation (3.226). The rate of rotation must not vary significantly over
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g time increment. Furthermorg{ughes, T.J.R. and Winget, J., 19803$howed that the
MM conditioning of Equatioi3.228)degenerates ast L grows.

SEQZ@S Our complete numerical algorithm for a single time step can be summarized as belo
anns  Calculate the rate of deformation tenfbr and the spin talfsor (sd€€.Bijsand
i (2.32)

Th . . .

Manuas . DetermlneL frorrW andVv (the left stretch, see(dL3), using the following

algorithm due tgDienes, J.K., 1979] Compute

Ty

- ll '- Z; = € VimDmk (3.229)

Finite Element
Formulations

I = w=2(V—=11tr(V)) 'z (3.230)
B o ) 1
Li = 38k s (3.231)
Element
Examples
where
Wi = € : 3.232
Eight-Node ' ijk VYk ( )
Uniform Strain e Solve
Element
< Go Back A,
At [] _ []
d -5 R s = d * 5 R (3.233)
» Calculate
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P
M

* Update
SEACAS
e Vit =V ALV, (3.235)
Iiiii - Compute the rotated rate of deformation (&89)
Theory T
Manuals D = R DR (3.236)

* Integrate the constitutive equations in the rotated frame of reference

I i‘i ::
FiniteEIement T = f (D1 T) (3-237)
Formulations |, compute the Cauchy stress in the spatial configuration

T = RTR'. (3.238)

Ef('gmglnets Note that this algorithm requires that the ten$besdR be stored in memory for each
element.

Eight-Node
Uniform Strain
Element
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Determination of Effective Moduli

Algorithms for calculating the stable time increment require effective moduli for each
element (se€3.73)in Explicit Finite Element Methods). Such calculations of
dilatational and shear moduli are also necessary for hourglass control, bulk viscosity
nonreflecting boundaries. Here we present a procedure for adaptively determining tt
effective dilatational and shear moduli of the material.

In an explicit integration algorithm, the constitutive response over a time step can be |
a posteriori as a hypoelastic relationship. We approximate this relationship as isotroj

This defines effective Lamé parametérs, and , in terms of the hypoelastic stress
iIncrement and strain increment (in the rotated frame of reference) as follows:

AT; = At (\D &; +2iD;; ). (3.239)
Equation (3.239) can be rewritten in terms of volumetric and deviatoric parts as
AT, = At (3N +2[1)D,, (3.240)
and
s. = At 2pe; (3.241)

J

where
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Theory Manuals (2/19/99)

and
_ 15 5
The effective bulk moduluk follows directly from Equati@i240)as
3K = 3R+ 201 = ok 3.244

Taking the inner product of Equati¢®241)with the deviatoric strain rate and solving fo
the effective shear modul@§1 , gives

(3.245)

20 = .
H Ate mr€ mn

Using the result of Equation (3.244) with Equation (3.245), we can calculate the effe

dilatational modulus\ + 2{i

A+20 = %(3K +2020)). (3.246)

If the strain increments are insignificant, Equations (3.244) and (3.245) will not yield
numerically meaningful results. In this circumstance the dilatational modulus can be :
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an initial estimate), + 2|1, . An initial estimate of the dilatational modulus is, therefo
the only parameter which every constitutive model is required to provide to the time
control algorithm.

In a case where the volumetric strain increment is significant but the deviatoric incre
IS not, the effective shear modulus can be estimated by rearranging E@Ba&4id)as
follows:

2 = %(3()\0+ 2410) — 3K). (3.247)

If neither strain increment is significant, the effective shear modulus can be set equal
initial dilatational modulus.
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Determination of the Stable Time Increme

Flanagan and BelytschkBlanagan, D.P. and Belytschko, T., 1984jrovided eigenvalue
estimates for the uniform strain hexahedron described in this section. They showed
the maximum eigenvalue is bounded by

A+2p BiaBia 2
D L2 max =

8 a_1a_ (3.248)

Using the effective dilatational modulus fradetermination of Effective Moduli with
the eigenvalue estimates of Equation (3.248) allows us to write the stability criteria o
(3.73)as

( PoVo)
(A +20)B; By -

Af° < % (3.249)

The stable time increment is determined from Equation (3.249) as the minimum ove
elements.

Equation (3.249) is numerically invalid if the effective dilatational modulus is less tha
equal to zero. A negative modulus indicates a strain softening situation that renders
central difference operator unconditionally unstable. In practice, however, strain softe
Is generally short lived, so that the calculations can continue in a stable manner onc
softening energy has been dissipated. To aid the user in controlling an unstable stra
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softening situation, the effective dilatational modulus can be adjusted with a strain-
softening scale factor, ssft, as follows

Ao * 21,

If A +2{1<0 thenA + 21 = ;
( ssfi)

(3.250)

To avoid dividing by zero in Equatidf.249) one can enforce the following condition:

A+ 201> (Mg +2p,) OLO°. (3.251)

The estimate of the critical time increment given in Equdo249)is for the case where
there is no damping in the system. If we defimes the fraction of critical damping in the
highest element mode, the stability criteria of 80249)becomes

At <Af (J1+e°—¢). (3.252)

Conventional estimates of the critical time increment size have been based on the tr

time of a dilatational wave over the shortest dimenkion of an element or zone. For
undamped case this gives

At <—, (3.253)

L
C
wherec is the dilatational wave speed.

There are two fundamental and important differences between the time increment lir
given by Equation$£3.249)and (3.253). First, our time increment limit is dependent on
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characteristic element dimension, which is based on the finite element gradient opel
and does not require an ad hoc guess of this dimension. This characteristic element

dimension] |, is defined by inspection of Equati®i249)as

\Y

S — (3.254)
B Bj

|
NI

Second, the sound speed used in the estimate is based on the current response of 1
material and not on the original elastic sound speed. For materials that experience &
reduction in stiffness due to plastic flow, this can result in significant increases in the
critical time increment.

It should be noted that the stability analysis performed at each time step predicts the
critical time increment for the next step. Our assumption is that the conservativeness
this estimate compensates for any reduction in the stable time increment over a sing|
step.
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Hourglass Control Algorithm

The mean stress-strain formulation of the uniform strain element considers only a fu
linear velocity field. The remaining portion of the nodal velocity field is the so-called
hourglass field. Excitation of these modes may lead to severe, unresisted mesh dist
The hourglass control algorithm described here is taken directly]Famagan, D.P.

and Belytschko, T., 1981]The method isolates the hourglass modes so that they ma
treated independently of the rigid body and uniform strain modes.

A fully linear velocity field for the hexahedron can be described by
=V vV (X —X%;). (3.255)
The mean coordinate§  correspond to the center of the element and are defined ¢

g = ix._ 3 (3.256)

| 8 la —a*
The mean translational velocity is similarly defined by

v = v 3 (3.257)

I 8 la —a*

The linear portion of the nodal velocity field may be expressed by specializing Eqg. (3.
to the nodes as follows:
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LIN _ _

Xia
where2, is used to maintain consistent index notation and indicateg that x; and

independent of position within the element. From Equatidrisll)and (3.258) and the
orthogonality of the base vectors, it follows that

LIN

Vig 2y =V, 2, =8v,, (3.259)
and
LIN _
Vig Bja = Vi, Bja = VWi (3.260)

The hourglass field ;G may now be defined by removing the linear portion of the nc
velocity field:

HG _ LIN

Vig = Vig —Vig (3.261)

Equations (3.259) through (3.261) prove that B]gd are orthogonal to the hour
field:

vi%s =0 (3.262)

H
Via B, = 0. (3.263)
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Furthermore, it can be shown that the B matrix is a linear combination of the volume
base vectord\,, , so E(B.263)can be written as

VIeA, = 0. (3.264)
Equationg3.262)and (3.264) show that the hourglass field is orthogonal to all the ba

vectors depicted iRigure 3.14except the hourglass base vectors. Therefq'gg, may
expanded as a linear combination of the hourglass base vectors as follows:

HG _ 1

Via = ﬁqi al qa- (3.265)
The hourglass nodal velocities are representegl hy above (the leading constant
added to normaliz€ ,, ). We now define the hourglass shape yggtor such that
. 1. 5
ql - TBula yC(a' (3 66)

By substituting Equations3.258) (3.261) and (3.266) into (3.265), then multiplying by
[ 4 @nd using the orthogonality of the base vectors, we obtain the following:

Theory Manuals (2/19/99) Finite Element Formulations - Eight-Node Uniform Strain Element - Hourglass Control Algorithm



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

Element
Examples

Eight-Node
Uniform Strain
Element

< Go Back

With the definition of the mean velocity gradient, Equaf{®208) we can eliminate the
nodal velocities above. As a result, we can compylte from the following expressi

1
yaa — raa—\_/Bia le rab (3268)

The difference between the hourglass base vettors and the hourglass shape ve
Yoq4 IS Very important. They are identical if and only if the hexahedron is a right-

parallelepiped. For a general shdpg, is orthogonal tcha , whereag,, Is orthogona

LIN

to the linear velocity fielor,, ~ [,

to accurately detect hourglassing.

defines the hourglass patternyand IS neces

For the purpose of controlling the hourglass modes, we define generalizedJqjces
which are conjugate tQ; , so that the rate of work is
= 1g 4 3.269
Vialia = écaaqia (3. )
for arbitraryu;, . Using Equatio(8.266)it follows that the contribution of the hourglas:
resistance to the nodal forces is given by

fHG:l

a 2 |ayaa-

(3.270)
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Two types of hourglass resistance are possible: artificial stiffness and artificial damp
Considering the stiffness type as an example, we can define a tuneable hourglass st

K, and express the resistance by

B., B.
K.~ Pjb Pjb
Qq = —2}1—J J

. L, 4. (3.271)

Note that the stiffness expression must be integrated, which further requires that this
resistance be stored in a global array.

Observe that the nodal antihourglass forces of Equeii@a0)have the shape @f,

rather thad” ,., . This fact is essential since the antihourglass forces should be orthc

to the linear velocity field, so that no energy is transferred to or from the rigid body a
uniform strain modes by the antihourglassing scheme.
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Artificial Bulk Viscosity

Artificial viscosity may be desirable in numerical calculations for two reasons. First, |
velocity gradients can collapse an element before it has a chance to respond if no vis
Is employed. Second, viscosity is often useful in quieting truncation frequency “ringir

|deally one would like to add viscosity only to the highest mode of the element, but
isolating this mode is impractical. The standard technique is to simply add viscosity t
volumetric or “bulk” response. This generates a viscous pressure in terms of the vol
strain rate as follows:

_ e b Waj (3.272)

whereb; andb, are coefficients for the linear and quadratic terms, respectively. The

guadratic term in Equation (3.272) is more important and is designed to “smear” a sl
front across several elements. This term yields a jump in energy as a smeared shoc
passes, which simulates the shock heating. As a result, the smeared shock front cat
propagated as a steady wave.

The linear term is intended to dissipate truncation frequency oscillations. The quadr:
term is only applied to compressive strain rates, since an element cannot collapse ir
expansion.

The preceding expression is simplified if we use the undamped stable time incremet
defined by Equatio(3.249)and write
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2
~ |_ _ V P
R 3:273)

or

m V
JA + 2 DQBia B, (3.274)

wheremis the element mass. We now define the factuch that the quadratic viscosity
term vanishes in expansion

At

e = b, —b5Af min(0 D). (3.275)

This quantity is required for the damped stability criteria of EQu&8dib2) Note that
the condition imposed by8.251)prevents Equation (3.275) from yielding so large a val
of € that Equatior{3.252)would numerically yield a zero value.

We will show below that can be used to estimate the fraction of critical damping in tt
highest element mode. Using Equation (3.275) in Equation (3.274) allows us to write
VISCOUS pressure as

q = (b;—b5Af D )(A + 20)AE Dy, . (3.276)

The bulk viscosity pressure is appended to the stresses during the internal force
calculations to yield the following forces:
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The above expression can be expanded using Equédi@7¢l)and(3.275)to yield

SEACAS

Library
I :
Inu fi, = spc\—/ij Bia Ujp - (3.278)
i
Theory This form indicates that iB,,  is an eigenvector, the modal damping is
Manuals
111 i‘i : sp% : (3.279)

Finite Element . . . . .
Formulations | T he critical damping estimate of the maximum element frequency is

V2 _ oV

M = 25T T Py

(3.280)

EEX'SQS;‘;S The two expressions above show that is half the fraction of critical damping in the

highest mode.
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Introduction

In this section we discuss in detail some of the implementational issues associated \
frequently utilized structural element in nonlinear mechanics: the four-noded corotat
shell element depicted in Figure 3.15. In so doing, we will add some important detai
the very conceptual discussion of shells and other structural entities gs#natural

Components

Figure 3.15  Four-noded, corotational shell element also showing the element coordinate system.

Although much of the discussion is equally applicable to matrix-free quasistatic solu
strategies (se€onjugate Gradient Methodg, We target our discussion here primarily ti
explicit dynamic calculations (s&plicit Finite Element Methods). In such settings the
equations of motion of the deformable body thus become a system of uncoupled equ
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governing the nodal motions in the discretized system. For continuum elements eac
equation in the system is the equation for three-dimensional motion of a particle,

EXT INT
aijpn = (Fia —Fia )/ My, (3.281)
: . _EXT INT :
wherea,, Is the acceleratioR;, aR\ are the external and internal forces, :

M, is the lumped mass, all associated with global Nodeor a continuum element with

displacement degrees of freeddm , a localized version of Eqg. (3.281) completely
describes the motion of the nodes.

By contrast, a shell element requires rotational degrees of freedom in addition to the
displacement degrees of freedom The additional equations governing these degrees
freedom are Euler’s equations for the rotation of a rigid body about the principal axe:
written here for an individual shell element

EXT INT

O1p = (M =My ) = (1 gy =1 5p) 0305171 4,
g = [(Myp =My ) = (1 3= 3) 033 1/1 5y (3.282)

g = [(”EE’ST— ”Ib’\tI)T) — (I op =1 1p) W W1 1/1 3y

In these equations,,, Is the angular acceleration for local Nodwg, |, IS angular

velocity, andl ;,, is the mass moment of inertia associated with local Node b in princ
Direction 1. Similarly numerical subscripts 2 and 3 designate the other principal
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g directions. A coordinate system is used at each node to track rotation of the principa
M system.

SEACAS
Library

I“-"‘-

Theory
Manuals

Finite Element
Formulations

Element
Examples

Four-Node
Corotational
Shell

< Go Back

Theory Manuals (2/19/99) Finite Element Formulations - Four-Node Corotational Shell - Introduction



M
SEACAS
Library

I“-"‘-

Theory
Manuals

I i‘i

Finite Element
Formulations

Element
Examples

Four-Node
Corotational
Shell

< Go Back

Shell Kinematics

In Mindlin shell theory (sefMindlin, R.D., 1951]), the shell normals are assumed to
remain straight, although they are allowed to rotate. Rotation of the normals allows t
element to model transverse shear strains. Because displacements are assumed to
linearly through the shell thickness, the velocity at any point can be expressed as

vh=v+2é;xq, (3.283)

in whichvU is the velocity of a point in the shell body, is the velocity of the point on
midsurface lying on the same normal, and is the rotational velocity of the normal (
Figure 3.16. Z is the coordinate through the shell thickness along the unit normal ve

e 5+ Vector components In the corotational coordinate system are indicatedﬂby the

symbol.

The components of velocity strain in the corotational coordinate system are

. 100V 0V, O
dj =3s0—+—0 (3.284)
ZQBXJ- ox; U

Strain-displacement relationships for the shell are obtained by substitution of Eq. (3.
into Eqg. (3.284), giving
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Manuals d12 _ % Al 2.2 T q2 ?1D | (3.285)
_;_i.i:: 0X, 0x; Lbx, ox,[
- ~ A
Finite EI t —
e das = 2B 9
2
g A OV
dig = % 2+ OI%
Element @X
Examples

where all quantities are expressed in the corotated coordinate systé(m; the being

cornode | COOrdinates in this system, and the  being the spatial midsurface velocities expres

Corotational :
e this system.
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Constitutive Assumptions

If the velocity strain components in the corotational system are arranged in a columr
matrix, d , as

~

d = [dyy, dyy 20,5, 2d,5,2d,4] (3.286)

then the conjugate Cauchy stress components in the corotated coordinate system c
written as

O |
T =[07105,015,0530:3 (3.287)
Furthermore, the shell is assumed to be in a state of plane stress, so

Ga3 = O. (3.288)

Note also the omission a;lf33 , the rate of through-the-thickness thinning(3t86b)
and (3.286).

The representations of deformation and stress given in (3.286) and (3.287) are conijt

in the sense that the stress poWer , discussed in general continuum mechanical te
Stress Powey can be expressed as

P=d'T. (3.289)
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Shell Element Coordinate Systems

We consider now the element formulation of a four-node, quadrilateral shefigsee

3.19, where the midsurface velocitigs and rotation rq';es are interpolated usin

bilinear shape functions describeddhape Functions Thickness of the shell is handled
as an element attribute. The element uses reduced integration with hourglass control
based on a corotational formulation (§Belytschko, T., Lin, J.I. and Tsay, C.S., 1984]
and[Belytschko, T., Ong, J.S.-J., Liu, W.K. and Kennedy, J.M., 1984]

Three coordinate systems are used in the shell element formulation. The translation
equations of motion (E{3.281) are written in the global system with coordinates

and basis vectors; . Strain-displacement relationships and constitutive equations ¢
enforced in a local element coordinate system that rotates and translates with each

element. This corotational coordinate system has orthonormal basis vectors deléqted

and coordinates designated)f:}y . The internal element fbice and m@nnent

resultants are also computed in this element coordinate system. New element cooro
systems are computed at each time step using current nodal coordinates. The equa
governing the rotational motion are written in a local coordinate system at each nodk
These nodal coordinate systems are assumed to rotate with the principal axes at eac
with the motion governed by Eq8.282) The nodal systems have orthonormal basis

vectors,e;, , with coordinates designateddy . The nodal coordinate systems are
updated at each time step.
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The element (corotational) normal vectoy  is approximated by the normalized cros
product of the element diagonals (segure 3.15

A M3 X1 4
&, = (3.290)
3 [ 310%T 4

In (3.290)r ,, is the position vector of element Node  relative to element Nadehe

current configuration. The direction of the normal vector is thus determined by the
element-nodal connectivity, and the positive side of the shell is the one for which the

nodes are numbered counterclockwise. Next the directién of is taken as the porti

the vector connecting nNodes 1 and 2 that is orthogorgg] to

M210 = F21=(F21€3)€3 (3.291)
€1 = 1 o/||M 21 (3.292)

The final basis vector for the element coordinate system is obtained from the cross p!
of €5 andé ,

6, = 8,%8,. (3.293)

Internal force resultants at the nodes are computed from the stress gradient in the Ic
element coordinate system ($8€l42)in Basics of Element Design they are then
transformed to the global coordinate system via
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Dint el
¥, O
s
q (S

Ef'm 0 =
S
int ©

;" O
[] []

]
)
L]

]
)

>
>
—

(3.294)

]
)

Internal moment resultants are also computed in local element coordinates and
transformed to global coordinates using Equation (3.294). However, Euler’'s equatior
the rotational accelerations (§@8e282)are written in nodal coordinates that rotate and
translate with the node in question (denoted here by superposed bars). The transfor
from global to nodal coordinates is accomplished by

T
1[0
O =

0 O
O]

_élx é1y élz_

ézx ézy eZZ

| €3x €3y €3

00O

mg
0°0
M,

(3.295)

Therefore, the complete transformation for moments from the element to nodal

coordinates is

{m = [e]'[el{n .

(3.296)
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Element Equations

The shell element is based on a four-node quadrilateral with bilinear interpolations a
midsurface coordinates and of both translational and rotational velocities. Coordinat
the midsurface of the shell are approximated as

Xi = Xig Ny(r.s ), (3.297)

whereN, are the shape functions, and snd are the parent domain coordinates.

Repeated indices, , indicate summation over the four nodes of the element. Similar
velocity of the midsurface and the angular velocity of the normal are interpolated as

v =V N (r,s), (3.298)

and

G = g N,(r.s), (3.299)
using the same shape functions used for the midsurface coordinates.

In a similar fashion as described for the three-dimensional, constant stress element
Eight-Node Uniform Strain Element), the shape functions can be expanded in terms
an orthogonal set of basis vectors as

Q= 2, + %r Nigt %S Nog +1s T . (3.300)
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These basis vectors represent deformation modes of a unit square, analogous to the
three-dimensional counterparts showrrigure 3.14 Rigid body motion is represented

by the first vectol, . The volumetric basis vectdrsg, And , can be combined

represent the normal and shear strain in an element. With the reduced integration
formulation, the element area involves only these two vectors. Since the lastivgctor,

neglected in the uniform strain formulation, it represents spurious energy, or hourgla
modes for the element. Substitution of E§§s298)and(3.299)into Eqgs.(3.285)yields
the discretized strain-displacement relationships:

. 1 i ) |
dyg = ;\[ B1aVi1a tZ2B1,05,]

. 1 i ) |
doy = ;\[ B,aV2a—Z2By, 014l

~ 1 A A~ " . .
2d 12 ,Z\[ BZaV 1a ™t BlaV 2a T2 (BZaq 2a Blaq 1a)] ' (3.301)
2& 1 A .
23 ~ z\[ BZaV 3a” Naq 1a]
2& 1 2 :
13 — ,Z\[Blav 3at Naq 2a]

The gradient operatoB,, , is defined as

d
B = [—aga (3.302)

ada
eaxa
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where Greek subscripts indicate the 1 and 2 coordinates in the plane of the element
the reduced integration element, the gradient operator is needed only at thre point

s = 0 and can be expressed in closed form in terms of the corotational coordinates
element nodes (s¢Belytschko, T., Lin, J.I. and Tsay, C.S., 1984]as

1.)72_)74 Y3=Y1 Y4-Yo Yi1-Y3

aa]:2

[B (3.303)

Because the element is a quadrilateral, its #eean also be expressed in terms of nod
coordinates:

A = SI(Rg=X)(Y4=Y2) + Ry =X4)(Y3=Y )] (3.304)
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Iiiii Representation of the rate of internal energy for a shell element in the global variatic
Theory principle requires derivation of the internal force and moment resultants. Let the velc
Manuals vector for an element node be defined as
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Finite Element
Formulations

N

(3.305)

m<>
1l
5@%@%@@@Q>
obhoboboh

N

Element
Examples

in corotational coordinates of the element. Then the corresponding internal element
and moment vector is

Four-Node
Corotational
Shell
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fa= O 3.0 (3.306)

The concept of stress power, discussed for a general continukimess Powey can be
utilized here to define the vectbr, via

Element stress power I T Vi dv = I d Td (3.307)
Ve Ve
Substitution of Eg93.285)into (3.307) and using one-point quadrature leads to the

following expressions for the element internal forces and moments:
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f1a = Bigf 11+ Boaf 12
foa = Bof oo+ By f 12

f3a = Biaf 131 By f 23

_ A A Al (3.308)
My, = _BZanEZ_ BlamLZ_ Zf yz

- n A
My = Blaml1+ BZale i Zf Xz

m,, = 0.
with
f GB — ITaBdi
faz = K[Tg,0Z, (3.309)

wherek = 5/6 is the shear factor from classical plate theory. The integrals of stress ovi
shell thickness are computed analytically for linear elastic materials. For nonlinear

materials the internal force and moment resultants are computed by numerical integ
through the element thicknedsg) (using the trapezoid rule. Currently the user may use
either three or five integration points; the first point i8 at —h/2 , the middle point |

Z = 0 (the midsurface), the last point iszat= +h/2
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Hourglass Control

Reduced integration of the stress divergence leads to spurious zero-energy modes
(hourglass modes) in the element, as discussed, in genefaljiglass Control. The
hourglass control algorithm implemented for the shell element is one developed by
[Flanagan, D.P. and Belytschko, T., 198134nd by{Belytschko, T., Ong, J.S.-J., Liu,
W.K. and Kennedy, J.M., 1984] Removal of the linear portion of the nodal velocity

results in the definition of hourglass shape veagfgrs

1
Ya = ra_;\BaaXabrb’ (3.310)

and the corresponding hourglass forces and moments

“"HG

faa = QyYa

“"HG

f3a = sta (3311)
~HG

Mya = PaYa

with the generalized hourglass stresses given by
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Q('X = Clyb ob
Q= Cy,Va, (3.312)
Pa = c:SYbC.IO(b

and the hourglass stiffnesses defined via

Eh

Cl = rm8_ABO(aBO(a
3
_ Gh

C, = rz_—EBaaBaa, (3.313)

12A
3
_ Eh

C3 — relngBaaBaa

whereE andG are Young’s modulus and the shear modulus, respectivelyy anithe

: . . ~HG

element thickness. In the preceding equation$ E!ge represent the nodal hourglas
: e ~.  ~HG :

membrane forces associated with in-plane velocwjesf 35; , the hourglass bending

forces associated with out-of-plane velosity érﬁlcf , the hourglass bending mon

associated with rotational velocitigg . The corresponding hourglass parametets

andr 4 are usually assigned values ranging from 0.01 to 0.05.
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Calculation of the Stable Time Increment

The central difference operator is conditionally stable with the stability limit for a sysi
with no damping given by

At <2 (3.314)

wm ax

wherew, ., IS the maximum frequency of the system (seeaiglicit Finite Element

X
Methods). The maximum frequency in the system can be bounded by the maximum
element frequency, so the stability limit becomes

At < 2 | (3.315)

- MAXIMUNGS, )

e . . .
whereMAXIMUNW,,..,) is the maximum element frequency of all the elements in the
system.

Conservative estimates of the maximum frequency for quadrilateral shell elements v

developed by Belytschko and LBelytschko, T. and Lin, J.I., 1985]and are given for
membrane, bending, and shear deformation as
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2 12D 2 2\ £ 2
O m = (R + JRE—16(1-v)A%)
h2
0> _ o (3.316)

max, Z 12a max, m

W’ = ilﬂ;SO(+CS'AD
max® = MOA 4ol

with

Cg = KGh
Rl = ZBaaBaa

_ 2 2
R, = [Ri-16A" (3.317)
a, = (Ri+R,)/4

_ ER®
D = 2

12(1-v")

whereE is Young’'s modulusGis the shear modulug,is Poisson’s Ratidy is the element
thicknessMis the element mass, ards the shear correction factor.

In the preceding expressions for maximum element frequency, is a rotational inert
scaling factor assumed to be
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a = (3.318)

I
A’
wherel andA, are the mass moment of inertia and area, respectively, of the cross se
a is approximated using the value for a flat, rectangular element:

L - hi+A
12

(3.319)

The maximum stable time step is computed using the maximum frequency over all s
and brick elements.
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Constitutive Models

Two plane stress constitutive models that are widely implemented for the shell elem:
described here are described next: an elastic model and an elastic-plastic model wit
combined linear hardening. In corotational coordinates the stress rate follows directl
from the velocity strain. Since all stress and strain quantities are computed in corota

coordinates, the notation has been dropped.

For a plane stress, linear elastic model, the stress rate is computed from the velocity
as

T = N(trd )1l +2ud, (3.320)
wherep is the shear modulus.
=G= = (3.321)
H 2(1+Vv)’ '

A'is the Lamé constant for plane stress

A = (15" : (3.322)
—V
(tr d) = d,; , (3.323)

andl is the second-order identity tensor.
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Material properties required as input are Young’s modklasd Poisson’s ratio, from
which the above Lamé parameters can be calculated. There are no internal state va

In treatment of elastic-plastic materials, on the other hand, it should be first noted th
internal force and moment resultants for nonlinear materials are computed by nhume
integration through the element thickness, so the constitutive model must be evaluat
each integration point. The general theory for elastic-plastic materials, with combine
Isotropic and kinematic hardening, is discussed in detalbmstitutive Modeling.

Here we concentrate on the implementational details of plane stress radial return, a
differ from the fully three-dimensional situation. For plane stregsmaist be computed

from the constraint on the constitutive model rather than directly from the finite elem
equations. This constraint requires iterations on the radial return algorithm. The sec:
approach, presented Byallquist, J.O. and Benson, D.J., 1986and assessed for
accuracy and efficiency QWhirley, R.G., Hallquist, J.O. and Goudreau, G.L., 1988]

IS described below.

Because the plane stress assumption only affects the volumetric strains, the trial sht
stresses can be computed outside the iteration loop. The trial shear stresses are

T1, = Ty, +2uAtd 4, (3.324)
Tos = Toat 2uAtd g (3.325)
To = Tya+ 2uAtd s, (3.326)
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SEACAS tensorS; and the back stress tensgy,

Library

L LR R Elj = SIJ _aij (3327)
i

Theory Sij = Tij + pBij (3.328)
Manuals
S e (3.329)

Finite Element .
Formulations | 1 Ne shear stress differences are

T T

e €12 = T1p— 0y (3.330)
T T

EEX'ZQS.”JS o3 = Ty3—0y3 (3.331)

T T

Four-Node
Corotational The iteration loop is entered for computation of the volumetric stress difference and

Shell . . . . .. . . ..
° equivalent plastic strain. For iteratiorthe volumetric velocity strain is
< Go Back

tr ) =d,, +d,,+dl;). (3.333)

The trial normal stresses and pressure then follow as:
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T1, = T+t e o)) +2patd 4, (3.334)

70, = T+ At ¢ d)!') +2uatd ,, (3.335)
Ti, = Mt ¢ d)") +2uAtd 4 (3.336)
T 1,7 T T

The first two normal components of the stress difference computed frai®. E2j/)are:
T T T
€12 = Tyt P —0yy (3.338)

£32 = Top+p ' —0yy. (3.339)

Because the stress difference tensor is deviatoric, the third normal component is giv

E1, = —(E1,+E2). (3.340)

The increment in equivalent plastic strain for itff&iteration is

ay') = (/%) & R (3.341)
2”% SUD
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whereR is the radius of the yield surface from the previous time step,

R = /Eij Eij : (3.342)
The hardening slope’  depends on Young's modulus and the plastic mgglulus

EpE

E—Ep

The normal stress difference in the thickness direction follows from the radial return
algorithm as

T T T T
Tas = Taa—2MAYBE/ JEi & . (3.344)

wheref is a scalar parameter ranging from O to 1 that determines the relative amour
iIsotropic and kinematic hardening. b= 1 all hardening is assumed to be isotropic. A
the other extremp = 0 means only kinematic hardening is present. Finally, an estima

for d(I *1 is obtained from a secant update,

dg; "t = d T+ TE(dY) —dS )/ (T - T ). (3.345)

The ( +1) iteration proceeds by substituting the new valug;ginto (3.333)and
repeating Eq9.3.334)through (3.344) untibzzhas converged to zero.
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Library 0 Vv

iy = oy (A1 d2o), (3.346)

I"“ which assumes a completely elastic step, and

Theory

Manuals (1) _
oy

o ‘l ; based on a completely plastic (incompressible) step.

Finite Element

Formulations | Once the algorithm has converged, the yield surface radius, equivalent plastic strain
back stresses and are updated as

- -

R = R +SBHAy (3.348)
Element 3
Examples
_p|t+At ~ _plt 2
d =d" + 38y (3.349)
Four-Node
Corotational
Shell aitj tat o(itj +§(1-[3)H'y§ij . (3.350)
< Go Back

Finally, the stresses are updated using radial return

t +At T T T . T
q;; s Tij _ZUAVBE”‘ IEITE (3.351)
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Time-Stepping Algorithm

In a central difference algorithm to integrate the equations of motion, such as is use:
explicit dynamics, the translational variables are handled just as they would be for a
ordinary continuum. Once the nodal accelerations atttime solved from E(q3.281)
the velocities and displacements in global coordinates follow as

(AL At
2 2 t
\Y; =V + At a
: (3.352)
t +4L
dt+At _ dt + At v 2

Angular accelerations at timefor nodes connected to shell elements are computed ir
coordinate systems that are local to each node. Because these coordinate systems
with the nodes, the angular accelerations cannot be integrated directly for updating 1
configuration. Instead the procedure of Belytschko and coworkerfB@geschko, T.,

Lin, J.I. and Tsay, C.S., 1984)]is implemented.

The nodal rotations are updated from the angular accelerations in the same manner
translational velocities,

At At
t += t ——
2

W =w °+Atal. (3.353)

The updated nodal basis vectors are then
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_t +At _t =
e = €, +Ate
At
_t Ot+% 0
= €; +At [ xe;
[] []
_t +At . .
Foré, , the preceding equation becomes
At At
_t +At _t+AtDt+7_t t*5 0
[]
t +At _ :
The scalar product a4 armfl gives
t +At : +A7t
e = At 0,
3¢ %

Similarly the scalar product @’gwt are‘aci gives the componeéfgcJSiAt
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The third component cﬁ‘g *AU s found by normality. The rotation over a single time ¢

Is assumed to be smal,| so second-order terms are dropped; @and the component
updated vector is

_t +At _t+At\2 ,_t +At\2

Next &, is updated. From Equati¢B.354)

At At
Ot+5 ,  t+5 .0
e, M = el +At, “eh-w Zét%. (3.359)
n

The scalar product of Equation (3.359),\/\@*@ , givesjthe  componeéntof  as

_t +At t +At

e, = At w, (3.360)
y
If it is assumed th@fL A s approximately one (i.e., small rotations over the time s
X
orthogonality ofé?L At ancé?3 At yields
_t+At | _t +At _t +At
(€3 — +€&; &3 )
_t+At _ < v %
€1, = — AT : (3.361)
€3
Z
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