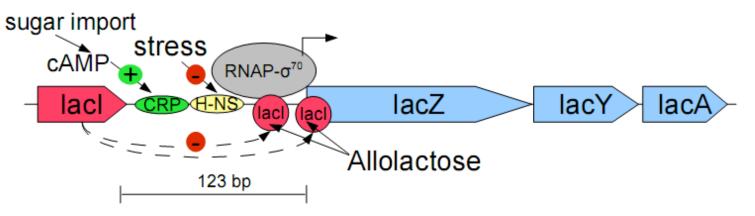
The Evolution of Gene Regulation in Bacteria

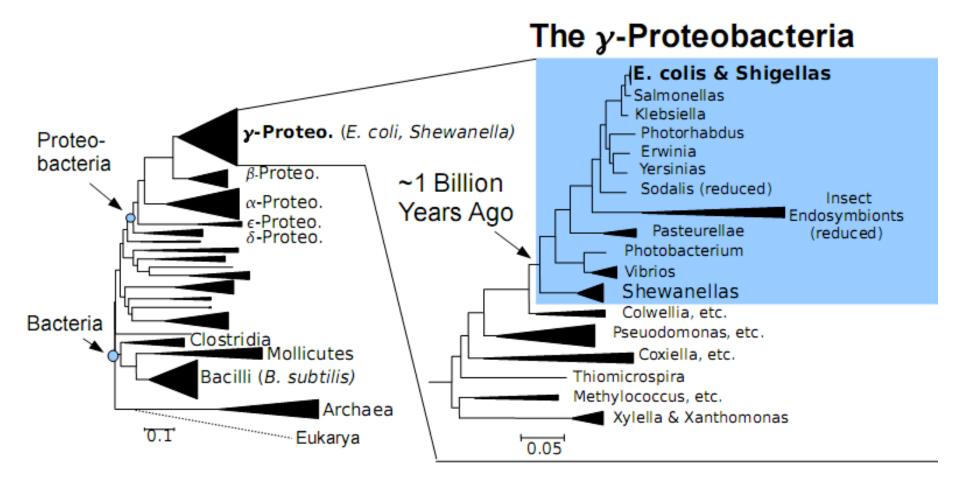
Paramvir Dehal Lawrence Berkeley National Lab

Bioinformatics 2008 Warsaw, Poland April 22

Questions


- How does gene regulation evolve?
 - Source of new transcription factors
 - Horizontal Gene Transfer (HGT)
 - Gene duplication
 - Regulation of new gene targets
 - HGT
 - Gene duplication
- How conserved is gene regulation?
- How conserved are regulatory interactions?

Our Approach

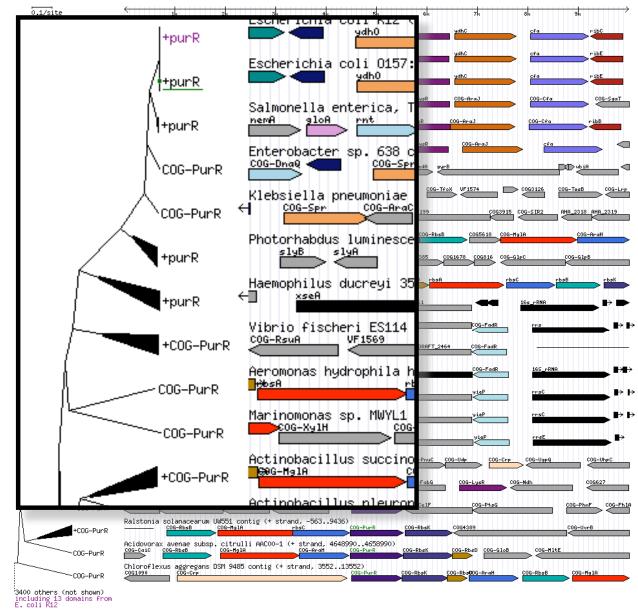

- **GOAL:** Compare *E. coli* to its sequenced relatives
 - Where do TFs come from?
 - Where do regulatory sites come from?
 - How much regulation is conserved?
- Solution: Evolutionary histories of TFs
 - Vertical inheritance
 - Horizontal gene transfer (HGT)
 - Duplication

Transcription Factors in E. coli

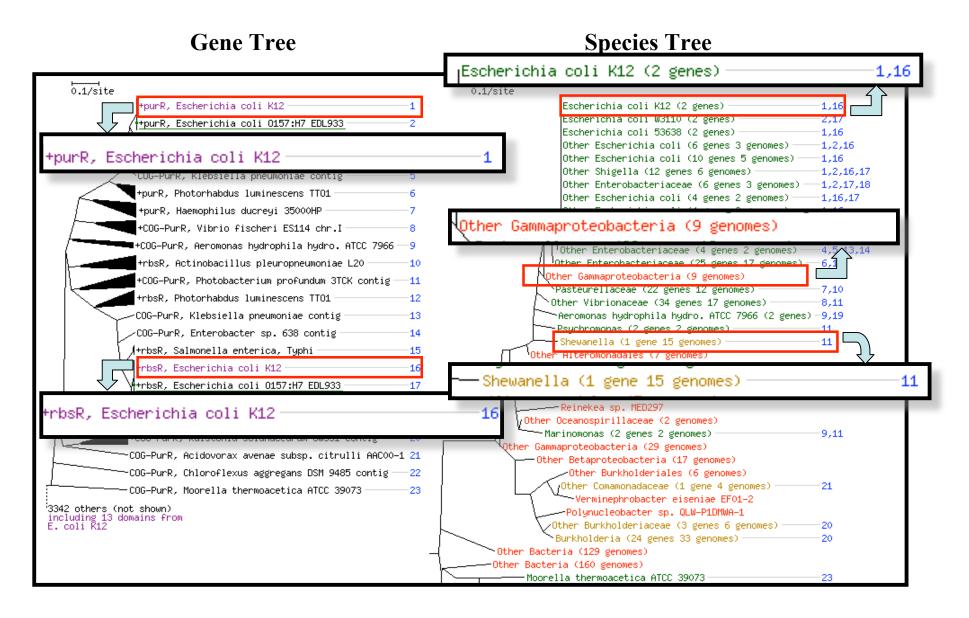
- ~250 TFs, >150 characterized (RegulonDB)
 - DNA binding & sensing domains, homodimers
- Large families
 - E.g. 45 LysR-like TFs with diverse functions
- "Neighbor regulators" vs. global TFs

The Tree of Life

MicrobesOnline TreeBrowser

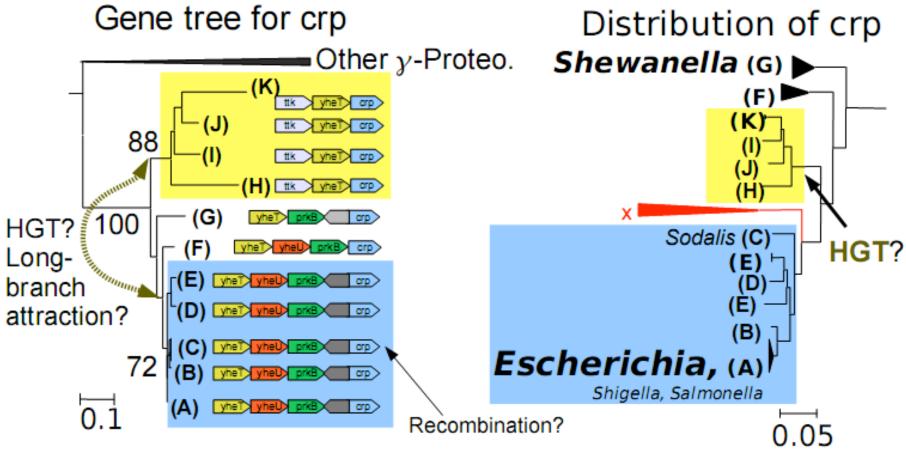

- Phylogenetic trees for all gene families
- Quickly
 evaluate HGT
 and duplication
 events

0.1/site	\leftarrow 1k 2k 3k 4k 5k 6k 7k 8k 9k \rightarrow
+purR	Escherichia coli K12 (+ strand, 1731380.1741380)
+purR	Escherichia coli 0157:H7 EDL933 (+ strand, 24082622418262) ydh0 sodb cole-final purk ydh6 sfa ribE
h+purR	Salmonella enterica, Typhi (+ strand, 1613298.1623298)
COG-Pur	
C0G-Pur	
+purR	Photorhabdus luminescens TT01 (+ strand, 30421783052178) sly6 slyfi
+purR	Haemophilus ducreyi 35000HP (+ strand, 1356520).
+COG-Pu	
COG-Puri	
COG-Pur	
+COG-Pu	
H+rbsR	Actinobacillus pleuropneumoniae L20 (+ strand, 1889438.1899438) C00-Tra5 C002963 artP_1 antK antK art PbsR bbR bbR bbR bbR bbR bbR bbR bbR bbR
+rbsR	Photorhabdus luminescens TT01 (+ strand, 5057660576)
COG-Pur	
COG-Pur	
/ [/+rbsR	Salmonella enterica, Typhi (- strand, 3747161.3757161)
+rbsR	Escherichia coli K12 (+ strand, 39317463941746)
+rbsR	Escherichia coli 0157:H7 EDL933 (+ strand, 47961484806148)
rbsR	Shigella dysenteriae Sd197 (- strand, 3722116, 3732116) rbsR
+COG-Pu	
+COG-Pu	
COG-Puri	
+COG-Puri	
COG-PurR	Acidovorax avenae subsp. citrulli Actoo-1 (+ strand, 4648990).4658990)
COG-PurR	Chloroflexus aggregans DSM 9485 contig (+ strand, 3552.13552) C06-Dep C06-Dep C06-Dep C06-Rest

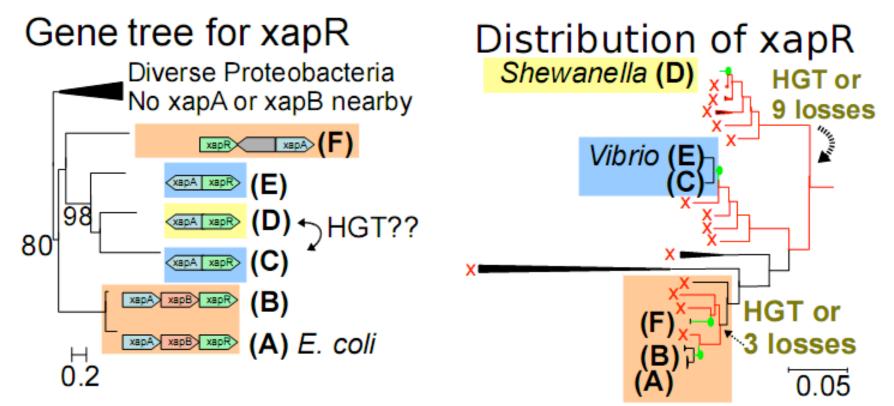

400 otners (not snown) ncluding 13 domains from . coli R12

MicrobesOnline TreeBrowser

- Neighbor Joining Tree
- Branch lengths proportionate to rate of amino acid substitutions
- Bootstrap values on mouse over
- Expand and collapse interior nodes


MicrobesOnline TreeBrowser

Analyzing Gene Histories


- Tree-browser gives an overview
 Hmmalign & quicktree (not that accurate)
- More accurate trees are built
 - Realign with MUSCLE
 - Maximum likelihood trees (phyml)
 - Tools from microbesonline.org "gene carts"

Vertical Inheritance of Global Regulators

17/20 top global regulators are native

Complex Histories of Neighbor Regulators

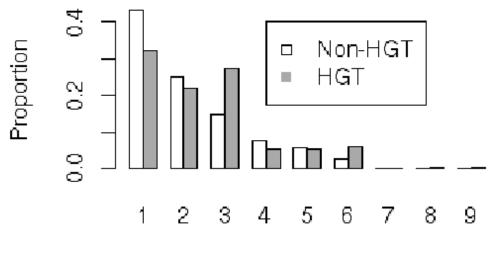
- Co-transfer: ~60% of neighbor regulators
- Repeated HGT within γ-Proteobacteria: ~40% of neighbor reg.

Duplication of Transcription Factors Gene tree for rbsR, purR Distribution of rbsR, purR Firmicutes r baik rbak rba 100 Vibrio (F,M) (E,L)99 Reduced dup'. genomes (X,/) 77 dhPpurB 0.05 0.2 E. coli (A,G)

- Duplications are rare (13% of TFs)
- Non-overlapping set of regulated genes (~half of dups)

Putative Regulators

- 9/20 show co-transfer with adjacent genes
 - Most of the ~100 uncharacterized regulators are probable neighbor regulators
- Co-transfer predicts targets
 - 27/30 correct on characterized regulators


Evolution of *E. coli* TFs (The Last Billion Years)

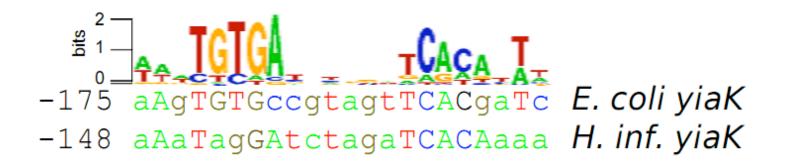
- Little duplication (13%)
 - Duplicates often have different functions
- Lots of HGT (63%)
 - Most "paralogs" diverged in different genomes
 - "allopatric gene divergence" to different functions
 - Co-transfer is common
 - Uncharacterized TFs are probably neighbor regulators
 - Neighbor regulation selected for by HGT?
 - Multiple transfers within γ -Proteobacteria
- But global regulators are native & conserved!

Histories of Regulatory Interactions

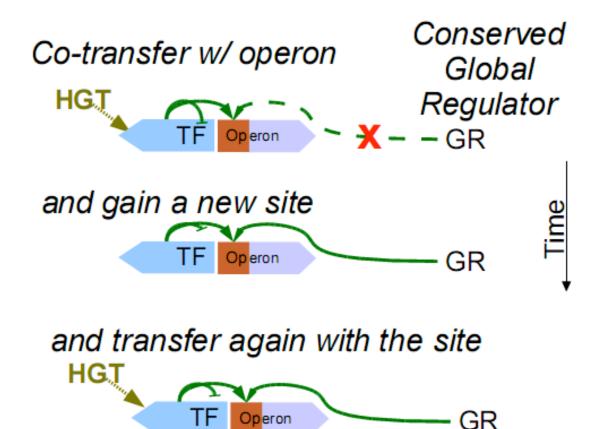
- TFs often gained/lost, but 2/3rds of known regulation in *E. coli* is by top-20 global regulators
 - Do their regulons evolve quickly?
 - How are HGT genes regulated?
- Evolution by duplication?
 - Not common for TFs, but what about regulatory interactions?

Complex Regulation of HGT Genes

Number of Different Regulators

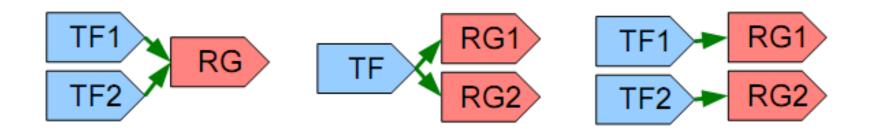

E.g., CRP regulates half of HGT genes but only a quarter of other genes.

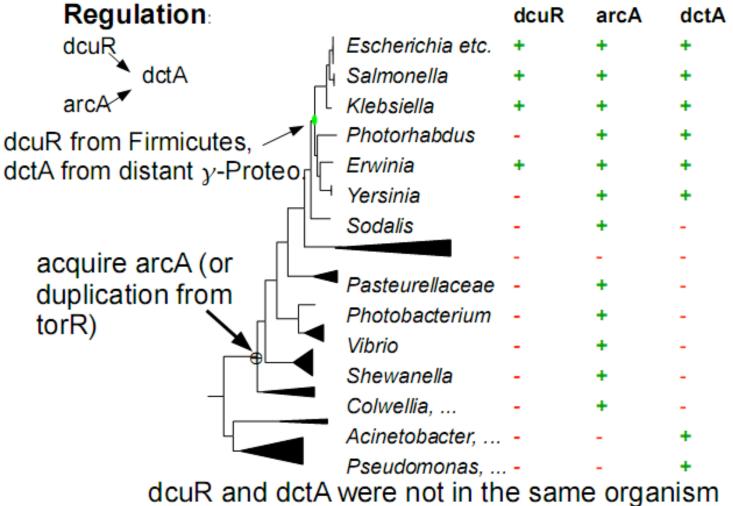
Sources of the CRP Regulon


- CRP has orthologs only in β,γ-Proteobacteria
 No functional orthologs known in distant bacteria
 - Other functions for this family: fnr, dnr, etc.
- ~80% of CRP-regulated genes acquired from distant bacteria w/o CRP
- ~20% from β , γ -Proteobacteria

Regulation is Not Conserved Across HGT Events

- CRP site is conserved across HGT in only 4/12 cases for HGT within γProteobacteria
- For other global regulators, 6/20 sites conserved across HGT events

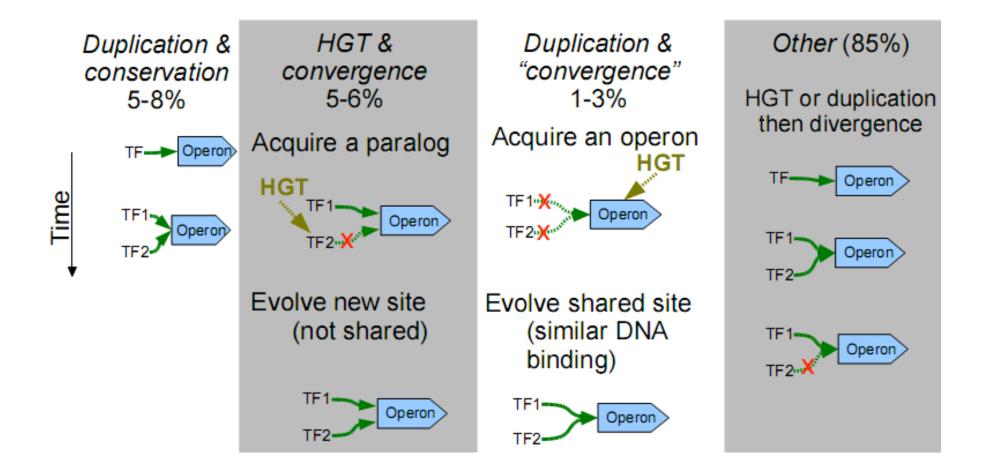

Niche-Specific Neighbor Regulators vs. Conserved Global Regulators


(not HGT)

Evolution of Regulatory Interactions by Duplication?

Three Scenarios:

Age of Regulation vs. Age of Duplication



until long after the divergence of dcuR from arcA

Convergent Evolution of Regulation

- Not conserved from common ancestor
 - Regulation cannot be older than presence of RG & TF in the lineage
 - Regulation of dctA evolved after transfer
- Shared interactions are 14% of RegulonDB
 - 5% duplication
 - -6% convergent evolution (>chance, P < 0.001)
 - 3% unclear

Summary: Origin of Regulatory Interactions

Conclusion

- Rapid Evolution of Gene Regulation
- Rampant transfer, not duplication, of TFs
 - "Orthologs" are misleading
 - Annotations are usually incorrect
- "Neighbor regulation" evolves by HGT
 Co-transfer predicts target of TFs
- Global regulators are much more conserved

More Information

Horizontal gene transfer and the evolution of transcriptional regulation in *Escherichia coli*. Genome Biology 2008, 9:R4

Orthologous transcription factors in bacteria have different functions and regulate different genes. PLoS Comput. Biol. 2007 3:1739-50.

Morgan Price, Paramvir Dehal, and Adam Arkin

Acknowledgements

Morgan Price Adam Arkin Eric Alm Inna Dubchak Michael Cipriano

MicrobesOnline.org Dylan Chivian Marcin Joachimiak Wayne Huang Keith Keller Katherine Huang

Funded by DOE's Genomics:GTL

http://MicrobesOnline.org

FastTree

- Sub N² implementation of Neighbor Joining using Profiles
- ~10,000x faster than traditional approaches with similar accuracy
- 160k 16S tree in 17hrs with support values

http://MicrobesOnline.org/fasttree