Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO₂ concentration

C. K. YODER^{1,2}, P. VIVIN^{1,3}, L. A. DEFALCO^{1,4}, J. R. SEEMANN⁵ AND R. S. NOWAK^{1*}

¹Department of Environmental and Resources Sciences, University of Nevada, Reno, NV 89557, USA ²Ecology Center, Utah State University, Logan, UT 84322, USA ³Department of Agronomy, INRA Bordeaux, 33883 Villenave d'Ornon, France ⁴US Geological Survey, Western Ecological Research Center, Las Vegas Field Station, Las Vegas, NV 89119, USA ⁵Department of Biochemistry, University of Nevada, Reno, NV 89557, USA

Received 13 July 1999; accepted 13 October 1999

SUMMARY

Root growth and physiological responses to elevated CO2 were investigated for three important Mojave Desert grasses: the C_3 perennial Achnatherum hymenoides, the C_4 perennial Pleuraphis rigida and the C_3 annual Bromus madritensis ssp. rubens. Seeds of each species were grown at ambient (360 μ l l⁻¹) or elevated (1000 μ l l⁻¹) CO₂ in a glasshouse and harvested at three phenological stages: vegetative, anthesis and seed fill. Because P. rigida did not flower during the course of this study, harvests for this species represent three vegetative stages. Primary productivity was increased in both C_3 grasses in response to elevated CO₃ (40 and 19% for A. hymenoides and B. rubens, respectively), but root biomass increased only in the C3 perennial grass. Neither above-ground nor belowground biomass of the C_4 perennial grass was significantly affected by the CO_2 treatment. Elevated CO_2 did not significantly affect root surface area for any species. Total plant nitrogen was also not statistically different between CO₂ treatments for any species, indicating no enhanced uptake of N under elevated CO₂. Physiological uptake capacities for NO3 and NH4 were not affected by the CO2 treatment during the second harvest; measurements were not made for the first harvest. However, at the third harvest uptake capacity was significantly decreased in response to elevated CO2 for at least one N form in each species. NO3 uptake rates were lower in A. hymenoides and P. rigida, and NH4 uptake rates were lower in B. rubens at elevated CO2. Nitrogen uptake on a whole rootsystem basis (NO₃ + NH₄ uptake capacity \times root biomass) was influenced positively by elevated CO₃ only for A. hymenoides after anthesis. These results suggest that elevated CO₂ may result in a competitive advantage for A. hymenoides relative to species that do not increase root-system N uptake capacity. Root respiration measurements normalized to 20°C were not significantly affected by the CO₂ treatment. However, specific root respiration was significantly correlated with either root C:N ratio or root water content when all data per species were included within a simple regression model. The results of this study provide little evidence for up-regulation of root physiology in response to elevated CO2 and indicate that root biomass responses to CO2 are species-specific.

Key words: elevated CO_2 , root growth, root respiration, water relations, nitrogen uptake, *Bromus madritensis* ssp. *rubens*, *Achnatherum hymenoides*, *Pleuraphis rigida*.

INTRODUCTION

Hot deserts, such as the Mojave Desert in southwestern North America, are predicted to be among the most sensitive ecosystems to rising atmospheric CO_2 concentration (Strain & Bazzaz, 1983). Studies

*Author for correspondence (fax +1 775 784 4789; e-mail nowak@scsr.nevada.edu).

in a variety of ecosystems have measured increased assimilation rate but decreased stomatal conductance under elevated atmospheric CO_2 , which increases water-use efficiency at the leaf level (Koch & Mooney, 1996). Increased water-use efficiency is especially important in arid ecosystems, and models that incorporate effects of elevated CO_2 on water-use efficiency predict that deserts will have among the largest relative increase in net primary production (Melillo *et al.*, 1993). However, deserts are both water- and nutrient-limited ecosystems (Smith *et al.*, 1997), and it is not certain how long plants can sustain a positive response to CO_2 without concomitant increases in the availability and/or acquisition of growth-limiting nutrients. Thus understanding the interaction between rising atmospheric CO_2 concentration and factors that may affect the availability and nutrients, has been recognized as a key element in predicting plant and ecosystem responses to global change (Bazzaz, 1990).

Increased water and nutrient acquisition in response to elevated CO2 may occur through increases in carbon allocation below ground, which in turn can be utilized to grow larger root systems. Increased root biomass, greater root growth and length, and changes in root distribution occurred concomitantly with increased atmospheric CO₂ concentrations in experiments with different C3 species, including crop plants (Prior et al., 1994), woody species (Ceulemans & Mousseau, 1994; Norby, 1994), and Great Basin grasses (Smith et al., 1987). In a survey of 150 observations of plant responses to elevated CO₂, Rogers et al. (1994) found that 87% of the species increased absolute production of roots. The increase in response to elevated CO₂ can be large for fine roots: more than twofold during a multi-year study of Citrus aurantinum (Idso & Kimball, 1992) and one- to twofold in a multi-year study of Pinus ponderosa (Tingey et al., 1996). Increases in root distribution may be important in terms of plant resource acquisition, particularly if biomass is not allocated into tap roots or other highly suberized components of the root system that are not involved in water and nutrient uptake (Berntson & Woodward, 1992; Stulen & Den Hertog, 1993). Elevated CO2 can also result in more highly branched root systems, which permit plants to explore larger soil volumes (Norby, 1994; Rogers et al., 1994).

In addition to the size and architecture of root systems, elevated CO2 may also influence root physiological uptake capacity. Root uptake and assimilation of NO₃ and NH₄ are energy-requiring processes (Bloom et al., 1992; Lambers, 1996), and because elevated CO₂ can enhance the supply of root respiratory substrates (Tschaplinski et al., 1993; BassiriRad et al., 1996b), metabolically regulated processes such as root N uptake are expected to be stimulated under elevated CO₂. However, recent studies of NO3 and NH4 uptake in response to elevated atmospheric CO₂ have shown surprising and sometimes conflicting results. Root uptake capacity for NO₃ actually decreased significantly in response to CO2 enrichment in Larrea tridentata (BassiriRad et al., 1997) as well as in annual grass and forb species (Jackson & Reynolds, 1996). However, NO3 uptake rates more than doubled in Bouteloua eriopoda and were unaffected in Prosopis glandulosa (BassiriRad et al., 1997). For NH_4 uptake, no evidence of up-regulation in response to elevated CO_2 has yet been documented (BassiriRad et al., 1996a,b; Jackson & Reynolds, 1996)

Studies of responses of desert vegetation to elevated CO₂ have been largely confined to cacti and other succulents (Nobel & Hartsock, 1986; Palta & Nobel, 1989). There are few studies on shrubs, grasses and annuals, which dominate most North American deserts (e.g. Drennan & Nobel, 1996; Huxman et al., 1998). In the present study, the importance of altered root growth and function were investigated following long-term exposure of three Mojave Desert grass species: Achnatherum hymenoides (a C₂ perennial), Bromus madritensis ssp. rubens (an introduced C₃ annual), and Pleuraphis rigida (a C_4 perennial) to ambient ($\sim\!360~\mu l~l^{-1})$ or elevated $(\sim 1000 \text{ } \mu l \text{ } l^{-1})$ atmospheric CO₂ concentration. These species were selected to represent the major functional types among grasses in the Mojave Desert: C_3 versus C_4 , and annual versus perennial. The objective was to assess the relative importance of root growth, root respiration and physiological uptake capacity in determining plant N uptake responses to elevated CO₂.

MATERIALS AND METHODS

In February 1997, seeds of red brome (Bromus madritensis ssp. rubens) (L.) Husnot, Indian ricegrass (Achnatherum hymenoides (Roemer and Schultes) Barkworth; previously known as Oryzopsis hymenoides (Roemer and Schultes) Ricker), and galleta grass (Pleuraphis rigida Thurber; formerly Hilaria rigida Scribner) were planted in monoculture in 1 m tall × 0.15 m diameter PVC pots. A homogeneous sand with approx. 2 $\mu g g^{-1} NO_3$ and 10 $\mu g g^{-1}$ NH4 was used for a potting medium. Pots were placed in two adjacent glasshouses in the Fritz Went Glasshouse Facility at the University of Nevada, Reno, USA. One glasshouse was maintained at ambient atmospheric CO₂ concentration $(\sim 360 \ \mu l \ l^{-1})$ and the other at elevated concentration $(\sim 1000 \text{ } \mu \text{l} \text{ } \text{l}^{-1})$. We used 1000 $\mu \text{l} \text{ } \text{l}^{-1} \text{ CO}_{2}$ in order to maximize the potential for CO2 response. Within each CO2 treatment room, 18 pots of each species were thinned to a density of 15 (B. rubens), eight (A. hymenoides) and five (P. rigida) plants per pot, 1 wk after planting. These plant densities are similar to tiller densities found at the Nevada Desert FACE Facility (Jordan et al., 1999). Pots were watered twice a week to maintain soil water content near pot capacity. No additional nutrients were added, and no evidence of nutrient deficiencies was noted during the study. Plants were grown under natural irradiance and 28/20°C day/night thermoperiod.

All above-ground tissues and whole-root systems from six replicate pots of each species per CO₂

	A. hymenoides		B. rubens		P. rigida	
Harvest date	No. of days	Phenological stage	No. of days	Phenological stage	No. of days	Phenological stage
1	45	Vegetative	27	Vegetative	80	Vegetative
2	71	Anthesis	55	Anthesis	122	Vegetative
3	108	Seed fill	85	Seed fill	161	Vegetative

Table 1. Number of days since planting and phenological stage corresponding to each harvest for Achnatherumhymenoides, Bromus madritensis spp. rubens and Pleuraphis rigida

Initiation of phenological stages was similar between CO2 treatments.

treatment were harvested on three sampling dates corresponding to different shoot phenologies: vegetative, anthesis and seed fill. *Pleuraphis rigida* never initiated flowering, thus harvest dates for this species represent three vegetative stages. Initiation of different phenological stages was very similar between the CO_2 treatments, but different among the three species. Table 1 summarizes the number of days from planting to each harvest for the three species.

On each sample date, a 0.2×1 m section of PVC was cut from the side of each pot, and root samples were removed from depths between 0.10 and 0.80 m for physiological measurements. Harvest of roots from each CO2 treatment was alternated to prevent masking of treatment effects by inherent diurnal variation of physiological parameters. Fine root subsamples (< 1 mm in diameter) were washed in deionized water to remove adsorbed soil and organic matter, blotted dry with paper towels, and weighed to obtain fresh weights before analysis. All remaining roots in each pot were collected by rinsing the soil within the pots through a fine mesh (0.6 mm). The rinsed roots were blotted dry with paper towels and fresh weights recorded. The roots were then wrapped in moist paper towels, placed in plastic bags and stored in a cold room at 4°C. Surface area measurements were made on dyed roots (Congo red) which were placed in a single layer between sheets of clear acetate. Images of the roots were collected using a scanner attached to a PC. A DOS-based computer program (ROOT 32 Version 3.1; Ryan Dotson, Desert Research Institute, Reno, NV) was used to convert the number of pixels associated with a given image to surface area estimates (cm²). On completion of surface area measurements, roots were oven-dried at 45°C to a constant mass, weighed, and their N content determined with an elemental CHN analyser (Perkin-Elmer 2400 Elemental Analyzer, Norwalk, CT, USA). Nitrogen uptake rate was calculated as the ratio of the at-harvest plant N content to at-harvest root dry mass. Root biomass, surface area and N measurements are expressed per individual plant rather than per pot, to account for random mortality and subsequent differences in numbers of individuals within pots of a given species and treatment.

Above-ground tissues were sorted by tissue type (leaves, culms, inflorescences and dead), dried in a convection oven at 45°C to a constant mass, and weighed for dry mass. As with root tissue, the N content of above-ground tissues was determined with an elemental CHN analyser.

NO_3 and NH_4 uptake kinetics

During the second and third harvests for each species, approx. 100 mg (f. wt) of fine root subsamples collected from the middle section of the pots (depths between 0.2 and 0.6 m) were placed in empty tea bags and equilibrated for 20 min in 0.5 mM CaCl₂ at the assay temperature of 20°C. The roots were then placed into solutions containing either 250 µM ¹⁵NH₄Cl or 250 µM K¹⁵NO₃ for 30 min. Solutions of 250 µM were selected because NO₃ concentrations in Mojave Desert soils range from $\sim 230 \ \mu\text{M}$ in intershrub areas to $\sim 350 \ \mu\text{M}$ beneath shrubs to depths of 0.55 m (Rundel & Gibson, 1996), based on an assumed gravimetric soil water content of 10%. All solutions were well mixed and aerated, adjusted to pH 6, and contained 0.01 M sucrose as an energy source and 0.5 mM CaCl₂ for membrane integrity (Jackson et al., 1990). After incubation each sample was rinsed in several solutions of 1 mM KCl at 5°C to remove any 15N adsorbed to the root surfaces. Roots were then oven-dried at 45°C, ground and analysed for ¹⁵N content and percentage N by mass spectrometry. The nutrient uptake assay was completed <1 h after harvesting roots in order to minimize the effects of root excision on NO₃ and NH₄ uptake (Bloom & Caldwell, 1988). Physiological rates of N uptake are expressed on a root dry mass basis (μ M g⁻¹ h⁻¹). Whole-root-system flux rates were obtained by multiplying physiological fluxes by root-system biomass and are expressed on an individual plant basis.

Root respiration

 CO_2 efflux rates were measured with an LI-6200 portable photosynthesis system (LI-COR Inc., Lincoln, NE, USA) on ~200 mg (f. wt) of fine root

Table 2. Mean (n = 6) whole-plant and root dry weights, root : shoot ratios and root surface areas, all expressed on an individual plant basis, and analysis of variance P values for Achnatherum hymenoides, Bromus madritensis spp. rubens and Pleuraphis rigida grown at 360 or 1000 $\mu l l^{-1} CO_2$ concentration and harvested at three different phenology stages

		A. hymenoides		B. rubens		P. rigida	
	Date	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated
Plant d. wt (g)	1	0.25 (0.04)	0.35 (0.03)	0.20 (0.04)	0.28 (0.03)	0.64 (0.13)	0.40 (0.14)
	2	0.69 (0.08)	0.92 (0.06)	0.62 (0.06)	0.69 (0.04)	1.60 (0.56)	1.59 (0.56)
	3	0.99(0.08)	1.39 (0.12)	0.80(0.07)	0.95 (0.06)	2.01 (0.12)	1.30 (0.27)
CO		<	0.001		0.030		0.243
Date		<	0.001	<	0.001		0.003
$Date \times CO_{2}$			0.129		0.689		0.583
Root d. wt (g)	1	0.10(0.01)	0.11(0.01)	0.09 (0.02)	0.13 (0.01)	0.30 (0.06)	0.16(0.07)
	2	0.29(0.04)	0.39(0.03)	0.26(0.02)	0.24(0.02)	0.92(0.40)	0.99(0.37)
	3	0.39(0.02)	0.52(0.04)	0.24(0.02)	0.24(0.02)	1.20 (0.10)	0.71(0.15)
CO		` ´<	0.001	× /	0.799	· · · ·	0.228
Date		<	0.001	<	0.001		0.002
$Date \times CO_{a}$			0.098		0.300		0.423
R:S ratio $(g g^{-1})$	1	0.69 (0.04)	0.48 (0.02)	0.84(0.04)	0.95 (0.10)	0.93 (0.14)	0.96 (0.28)
	2	0.78(0.10)	0.75(0.08)	0.86(0.17)	0.55(0.04)	1.28 (0.31)	1.50 (0.23)
	3	0.70(0.08)	0.60(0.04)	0.45 (0.05)	0.33(0.03)	1.47 (0.12)	1.24 (0.09)
CO		~ /	0.050	× /	0.150	· · · ·	0.965
Date			0.040	<	0.001		0.097
$Date \times CO_{a}$			0.416		0.078		0.580
Root surface area (dm ²)	1	0.71(0.10)	0.44(0.03)	0.54(0.08)	0.74(0.12)	1.36 (0.29)	0.26(0.09)
× ,	2	1.90 (0.27)	2.81 (0.29)	1.80 (0.19)	1.77 (0.14)	3.26 (1.17)	4.60 (2.1)
	3	3.56 (0.62)	3.83 (0.28)	2.17(0.17)	2.06 (0.29)	4.02 (0.31)	2.23 (0.43)
CO		· · · ·	0.265	~ /	0.910	· · · ·	0.174
Date		<	0.001	< 0.001		0.001	
$Date \times CO_2$			0.219		0.654		0.186

SE in parentheses.

subsamples excavated from the upper 0.2 m of the soil and a deepest horizon (0.6-0.8 m). The instrument was programmed so that each observation took 60 s after an initial 5-min adjustment period at the set temperature; longer equilibrium times did not affect CO₂ efflux rates. Carbon dioxide concentration within the 0.25 l cuvette was kept near that of the ambient air (between 350 and 400 μ l l⁻¹) to minimize potential effects of diffusion through minor leaks. Care was taken to minimize root exposure to light by covering the cuvette with a black cloth. In addition, a piece of moistened tissue paper was kept inside the cuvette to prevent dehydration of the roots by maintaining a constant humidity near saturation, and to reduce errors that can result from changing partial pressure of water in the sample cell of the instrument (Rakonczay et al., 1997). Following respiration measurements, root samples were dried, weighed and ground, and their C and N contents determined with an elemental CHN analyser. Respiration rates were expressed on the basis of root dry mass, and normalized to 20°C assuming a temperature coefficient (Q_{10}) of 2.0 (Amthor, 1991), as:

$$R = R_{20} \times Q_{10}^{(t-20)/10}$$

(*R*, the specific respiration rate (nmol CO₂ g⁻¹ s⁻¹); R_{20} , respiration rate at 20°C; Q_{10} , rate of change of respiration per 10° C change in temperature; t, respiration-chamber air temperature).

Root osmotic potential and total nonstructural carbohydrate concentrations

Root osmotic potential (MPa) and nonstructural carbohydrate concentrations (mg g⁻¹) were determined on subsamples of fine roots ($\sim 200 \text{ mg f. wt}$) collected concurrently with root respiration measurements. For each species \times depth \times CO₂ treatment combination, half of the root subsample was immediately transferred into 1 ml syringes and kept frozen in liquid N until further analysis in the laboratory. Osmotic potentials were measured on 10 µl of the sap expressed from thawed syringes using a calibrated vapour pressure osmometer (Wescor 5500, Logan, UT, USA). Soluble simple sugars and starch concentrations for samples collected during the second and third harvest of each species were determined enzymatically on the other half of frozen root subsamples, as described by Hendrix (1993), and expressed as root d. wt; no carbohydrate analyses were performed on roots from the first harvest. Soil water content (g water per g soil) and leaf predawn water potential (Ψ_w , MPa) were determined using a standard gravimetric method and a Scholander-type pressure chamber, respectively.

Table 3. Mean (n = 6) soil water content (SWC), leaf pre-dawn water potential (Ψ_w), root water content
(RWC), osmotic potential (n) and analysis of variance P values for Achnatherum hymenoides, Bromus
madritensis spp. rubens and Pleuraphis rigida grown at 360 or 1000 $\mu l l^{-1} CO_2$ concentration and harvested at
three different phenology stages

		A. hymenoides		B. rubens		P. rigida	
Depth	Date	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated
SWC ($\times 10^{-2}$ g g ⁻¹							
~0.2 m	1	6.9(0.8)	7.9 (0.2)	n/a	n/a	9.7(0.1)	9.9(0.4)
	2	8.4 (0.5)	9.4(0.2)	3.1(0.7)	4.6 (0.9)	10.1(0.5)	10.1 (0.6)
	3	7.4 (0.5)	10.0(0.3)	7.0 (0.5)	8.0 (0.3)	10.6(0.7)	10.9(0.2)
~0.7 m	1	9.0 (0.8)	10.1 (1.0)	n/a	n/a	10.7(0.5)	11.5(0.5)
	2	7.3 (1.2)	9.3 (1.9)	4.8(0.9)	7.1 (1.5)	9.3 (0.3)	11.8(0.9)
	3	5.0(1.3)	8.8 (1.5)	6.7 (1.5)	9.4 (1.0)	10.7 (0.4)	12.8 (0.6)
CO.	U	010 (110)	0.002	017 (110)	0.013	1017 (011)	0.001
Date			0.483	<	0.001		0.021
Depth			0.887		0.072		0.002
$CO \times Date$			0.030		0.296		0.528
Ψ (MPa)	1	-0.22(0.03)	(0.000) = 0.23 (0.03)	-0.38(0.05)	(0.2)(0.2)(0.01)	-0.18(0.03)	(0.520)
I _w (ivil a)	2	-0.62(0.00)	(0.03) (0.03) (0.03)	-0.73(0.18)	(0.01) (0.01) (0.01) (0.02)	-0.33(0.06)	(0.20, (0.01)) (0.05)
	3	-0.45(0.02)	(0.03) = 0.12 (0.03) = 0.12 (0.03)	$n/a = \frac{0.75}{2}$	n/a	-0.26(0.00)	(0.23 (0.03)) = 0.27 (0.03)
CO	5	0.15 (0.02	0.001) 11/a	0 494	0.20 (0.00	0.836
Date			0.001	< 0.001		0.072	
$CO \times Date$			0.001		0.657		0.729
$PWC (\times 10^{-2} \text{ g s}^{-1})$			0.033		0.037		0.729
	1	4.6 (0.8)	56(08)	58(08)	61(0.0)	3.7(0.5)	50(0.6)
~ 0.2 III	1	7.0(0.3)	3.0(0.8)	3.8(0.8)	3.6(0.3)	3.7(0.3)	3.0(0.0)
	2	2.9(0.3)	3.3(0.2)	3.1(0.0)	5.0(0.2)	2.2(0.2)	7.3(0.7)
0.7	3 1	2.8(0.3)	3.0(0.1)	4.2(0.3)	3.0(0.3)	2.3(0.2)	2.3(0.2)
$\sim 0.7 \text{ m}$	1	12.8(0.9)	13.1(0.8)	10.5(1.7)	11.8(1.5)	0.4(1.5)	7.2(1.7)
	2	0.8(0.7)	5.5(0.7)	5.4(1.1)	(0.8)	5.1(0.8)	0.4(0.4)
60	3	2.6 (0.8)	4.2 (0.8)	4.5 (0.7)	6.3 (0.5)	3.8 (0.4)	4.5 (0.7)
CO_2			0.269		0.138		0.017
Date		<	0.001	< 0.001		0.001	
Depth		<	0.001	< 0.001		< 0.001	
$CO_2 \times Date$			0.371		0.490		0.256
Root π (MPa)		0 1 - (0 0 0		0.04 (0.00		o FO (0.00	
$\sim 0.2 \text{ m}$	1	-0.45(0.03)	(0.02) (0.02)) -0.94 (0.08)	(0.04) (0.04)	-0.52(0.08)	(0.05) = -0.61 (0.05)
	2	-0.33(0.01)) -0.34 (0.01)) -0.82 (0.10)	(0.02) -0.58 (0.02)	-0.32(0.01)) -0.34 (0.04)
	3	-0.37(0.02)	(0.01) (0.01)) -0.70 (0.05)	(0.05) - 0.41 (0.05)	-0.41(0.10)) -0.41 (0.06)
$\sim 0.7 \text{ m}$	1	-0.45(0.03)	(0.02) (0.02)) -0.97 (0.11)	() -0.86 (0.11)	-0.78(0.05)	(0.13) - 0.88 (0.13)
	2	-0.43(0.04)	-0.41 (0.04)) -0.92 (0.10)	(0.02) -0.81 (0.02)	-0.34 (0.04	-0.54(0.17)
	3	-0.77(0.12)	(0.02) - 0.43) -0.97 (0.12)	(0.07) (0.07)	-0.42 (0.04	-0.49(0.04)
$\rm CO_2$			0.016	<	0.001		0.251
Date			0.006	<	0.001	<	0.001
Depth		<	0.001		0.008	<	0.001
$CO_2 \times Date$		<	0.001		0.047		0.778

Soil and root water parameters were measured at two soil depths. n/a, data not available; SE in parentheses.

Statistical analysis

Statistical analyses were performed with SAS software (SAS Institute, Inc., Cary, NC, USA). Twoway ANOVA was performed to test the main effects of CO_2 concentration and sample period on physiological NO₃ and NH₄ uptake rates and whole-rootsystem N fluxes for each species. Three-way ANOVA was performed on remaining measured and calculated variables to test the main effects of CO_2 concentration, depth and sample period for each species. The assumptions of equal variance and normality were tested by plots of residuals against predicted values, as well as normality curves. Data were transformed as needed until the Shapiro–Wilk test statistic, normal probability plots and stem leaf plots (Cody & Smith, 1991) indicated normally distributed data. Differences were considered significant at P < 0.05.

RESULTS

Plant biomass and root growth

Elevated atmospheric CO₂ concentration substantially increased total plant biomass in the two C₃ grasses *A. hymenoides* and *B. rubens*, but not in the C₄ grass *P. rigida* (Table 2). At the final harvest date, plants of *A. hymenoides* and *B. rubens* were larger in response to CO₂ enrichment by 40 and 19%,

Fig. 1. Mean $(n = 6, \pm 1 \text{ SE})$ starch (left panels) and simple sugar concentrations (right panels) for roots of *Achnatherum hymenoides*, *Bromus madritensis* ssp. *rubens* and *Pleuraphis rigida* grown at either ambient CO₂ (hatched bars) or elevated CO₂ (solid bars) and harvested at two different shoot phenologies and two soil depths. Three-way ANOVA results for date, CO₂ and depth are represented by: ns, not significant; *, P < 0.05; **, P < 0.01.

respectively. However, the elevated CO_2 treatment significantly increased root production only in *A*. *hymenoides* (Table 2). Root biomass increased significantly over time for both C_3 species under each CO_2 treatment (Table 2). This same pattern occurred for *P. rigida*, except that root biomass did not significantly increase between the second and third sample dates (Table 2). No plants from any treatment appeared to be pot-bound, as there were few roots against the walls of the PVC pots.

The response of root:shoot (R:S) ratio to elevated CO_2 was variable among species and shoot phenology (Table 2). For *A. hymenoides*, R:S ratio was lower in response to elevated CO_2 at each harvest date, whereas for *B. rubens* and *P. rigida*, elevated CO_2 did not significantly affect R:S ratio (Table 2). Root surface area tended to increase over time for each species, but was not significantly affected by the CO_2 treatment for any species (Table 2).

Root water relations and nonstructural carbohydrate concentrations

Despite identical irrigation regimes, average soil water content for plants grown under elevated CO_2 were 1–4 percentage points higher than for plants grown under ambient CO_2 (Table 3); this difference was more pronounced for the two C_3 grasses than for *P. rigida*. In addition, leaf predawn water potential

 (Ψ_w) was significantly less negative under elevated CO₂ for A. hymenoides during the second and third sample periods, and for B. rubens during the first sample period. No significant CO₂ effect occurred for Ψ_{w} of *B*. *rubens* during the second sample period. Due to leaf senescence and subsequently limited fresh leaf material, Ψ_w measurements for *B. rubens* were not taken during the third sample period. For P. rigida, Ψ_w was not significantly effected by the CO_2 treatment throughout the study (Table 3). Root water contents were significantly higher under elevated CO2 only for P. rigida. However for all species and both CO2 treatments, deeper roots (0.6-0.8 m) had higher water contents than shallow roots (0.1-0.3 m) (Table 3). Root solute potentials (π) under elevated CO₂ were higher throughout the experiment for B. rubens and at the third harvest for A. hymenoides, especially for the deeper roots. The root solute potential of P. rigida was not affected significantly by the CO_2 treatment (Table 3).

Nonstructural carbohydrate concentrations were affected differentially among species by CO_2 enrichment. For *A. hymenoides*, root starch concentrations decreased significantly in plants grown at elevated CO_2 for each sample date and soil depth, but simple sugar concentrations were not affected significantly by the CO_2 treatment (Fig. 1). In contrast, *B. rubens* roots exhibited higher starch but lower simple sugar concentrations in plants grown

Table 4. Mean (n = 6) whole-plant N content, plant and root N concentrations, N uptake rate (NUR), all expressed on an individual plant basis, and analysis of variance P values for Achnatherum hymenoides, Bromus madritensis spp. rubens and Pleuraphis rigida grown at 360 or 1000 $\mu l l^{-1} CO_2$ concentration and harvested at three different phenology stages

		A. hymenoides		B. rubens		P. rigida	
	Date	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated
Plant N content (mg N)	1	3.7 (0.6)	4.2 (0.4)	2.7 (0.4)	2.9 (0.3)	7.3 (1.8)	5.2 (2.0)
(3 ,	2	5.6 (1.0)	6.1 (0.6)	4.1 (0.3)	3.8(0.2)	11.0 (5.1)	12.2(3.2)
	3	6.0 (0.6)	7.1 (1.0)	5.0 (0.5)	5.0 (0.4)	9.4 (0.5)	8.3 (1.1)
CO		· · · ·	0.281		0.911	× ,	0.768
Date			0.003	<	< 0.001		0.179
$Date \times CO_{2}$			0.908		0.791		0.832
Plant [N] $(mg N g^{-1} d.wt)$	1	14.2 (0.7)	12.0(0.4)	13.9 (0.9)	10.8 (0.5)	11.2 (1.1)	11.1 (2.6)
	2	8.1 (0.8)	6.5 (0.3)	6.7 (0.2)	5.6 (0.4)	5.4 (0.7)	5.9 (0.4)
	3	6.2 (0.4)	5.0 (0.3)	5.9 (0.5)	5.2 (0.2)	4.4 (0.2)	4.5 (0.5)
CO		· · ·	< 0.001	` ´ <	< 0.001	× ,	0.883
Date		< 0.001		< 0.001		< 0.001	
$Date \times CO_{a}$			0.593		0.052		0.976
Root $[N]$ (mg N g ⁻¹ d.wt)	1	7.6 (0.5)	7.8 (0.8)	9.2 (0.7)	9.1 (0.8)	6.2 (0.5)	4.9 (0.7)
	2	7.0 (0.6)	6.6 (0.3)	6.0(0.3)	5.4 (0.4)	5.1 (0.8)	5.6 (0.4)
	3	6.7 (0.4)	5.4 (0.3)	5.9 (0.2)	5.4 (0.5)	4.3 (0.2)	4.4 (0.5)
CO,			0.256	× ,	0.328	. ,	0.591
Date			0.015	<	< 0.001		0.122
$Date \times CO_{2}$			0.357		0.895		0.273
NUR (mg total N g ⁻¹ root d.wt)	1	35.4 (2.8)	37.3 (2.6)	30.7 (2.1)	23.4 (2.3)	25.0 (4.1)	49.6 (31.0)
	2	21.4 (5.4)	14.9 (0.6)	16.1 (1.6)	9.9 (1.1)	9.2 (1.5)	9.6 (0.1)
	3	15.3 (0.8)	13.4 (1.2)	20.0 (2.6)	21.5 (1.4)	7.3 (0.5)	8.7 (1.6)
CO,		. ,	0.362		0.013	× ,	0.443
Date			< 0.001	< 0.001		0.068	
$Date \times CO_2$			0.353		0.060		0.590

SE in parentheses.

under elevated CO_2 . For *P. rigida*, no significant CO_2 effect was found on nonstructural carbohydrate concentrations, although simple sugar concentrations of CO_2 -enriched roots were lower on the second sample date (Fig. 1). For both perennial species, starch concentrations significantly increased over time at both soil depths, suggesting a shift in below-ground reserve allocation over the course of this study. *Bromus madritensis* ssp. *rubens* also showed a slight, significant increase in starch allocation over time at the 0.2 m depth.

Root nitrogen uptake

Whole-plant N content was not modified by CO_2 enrichment for any species (Table 4). However, whole-plant N content increased significantly over time in *A. hymenoides* and *B. rubens* (Table 4). Plant N concentrations were significantly decreased in both C_3 grasses, but not in *P. rigida* in response to CO_2 enrichment (Table 4). For all species, the CO_2 treatment did not affect root N concentrations, and both plant and root N concentrations decreased throughout the course of plant growth (Table 4).

Neither NO_3 nor NH_4 uptake capacities were affected significantly by CO_2 enrichment during the second harvest for any species (Fig. 2); measurements were not performed for the first harvest. At the third harvest, the CO₂ treatment significantly decreased uptake rates for at least one N form for each species. For A. hymenoides and P. rigida, NO_3 uptake rates were lower for plants grown at elevated CO₂. For *B. rubens* and *P. rigida*, NH₄ uptake rates were lower for plants grown under elevated CO2 (Fig. 2). Whole-root-system N uptake rates (NH₄ plus NO₃ uptake rates × root biomass) were also not affected significantly by CO2 enrichment during the second harvest for any species (Fig. 3). However during the third harvest, whole-root-system N uptake rates were significantly increased for A. hymenoides and significantly decreased for B. rubens and P. rigida (Fig. 3). Because the physiological capacities for NO₃ uptake were only 30-48% of those for NH₄ uptake, NH₄ probably accounted for most of the N uptake in these grasses.

Root respiration rates

Elevated atmospheric CO₂ had no significant effect on root respiration normalized to 20°C and expressed on a dry weight basis for any species (R_{20}), regardless of date or depth (Table 5). However, R_{20} showed a marked negative time effect for all species × treatment combinations. This decline during on-

Fig. 2. Mean $(n = 6, \pm 1 \text{ SE}) \text{ NO}_3$ and NH_4 uptake rates for *Achnatherum hymenoides*, *Bromus madritensis* ssp. *rubens* and *Pleuraphis rigida* grown at either ambient (hatched bars) or elevated CO₂ (solid bars). Measurements were made during two different shoot phenologies. Asterisk indicates a significant CO₂ effect (P < 0.05).

togeny was slightly greater for roots collected at the 0.6–0.8 m depth than for roots collected at the 0.1–0.3 m depth (Table 5). Rates of efflux of CO_2 in the deepest roots of *B. rubens*, *P. rigida* and *A. hymenoides* grown at ambient CO_2 concentration reached 14.4, 11.9 and 8.3 nmol CO_2 g⁻¹ s⁻¹, respectively, on the final sample date (Table 5), which are within the range of rates reported in literature. In addition, R_{20} was significantly correlated with either root C:N ratio or root water content, when all data for a given species were included in a simple regression model (Fig. 4).

DISCUSSION

Primary productivity of both the C_3 grasses A. hymenoides and B. rubens increased in response to elevated atmospheric CO_2 concentration, but not for the C_4 grass P. rigida (Table 2). These results are consistent with the general pattern, reported in the literature, that C_3 species are more responsive to CO_2 enrichment than C_4 species (Poorter, 1993). Improved water-use efficiency from CO_2 -induced stomatal closure (L. A. DeFalco *et al.*, unpublished) and maintenance of favourable water conditions (Table 2) probably contributed to enhanced C_3 growth at elevated CO_2 (Tyree & Alexander, 1993; Morgan *et al.*, 1998).

Although total plant biomass increased in both C₃ grasses in response to elevated CO₂, root production increased only in A. hymenoides. Differences in allocation patterns between the two C₃ grasses are probably related to different life-history strategies. Bromus madritensis ssp. rubens is a short-lived species whose life-history strategy is defined by the production of many offspring at the expense of belowground allocation (Huxman et al., 1998). In contrast, the perennial A. hymenoides exhibits a larger root system that increases the absolute potential for nutrient acquisition and potentially serves an important storage function (Hunt et al., 1991). Surprisingly, our nonstructural carbohydrate measurements do not agree with observed root allocation patterns because starch concentrations were unexpectedly lower in A. hymenoides and higher in B. rubens in response to elevated CO₂ (Fig. 1). However fructans, which may serve as an important storage carbohydrate in grasses (Baxter et al., 1997), were

Fig. 3. Whole-root-system rates of N uptake (expressed as soil surface area) for *Achnatherum hymenoides*, *Bromus madritensis* ssp. *rubens* and *Pleuraphis rigida* grown at either ambient (hatched bars) or elevated CO_2 (solid bars) and harvested at two different shoot phenologies. Root system rates of N uptake are obtained by summing physiological fluxes for NO₃ and NH₄ and multiplying them by root biomass. Error bars represent SE.

not analysed in the present study. Therefore the effect of CO_2 treatment on fructan concentrations in these grasses remains an open question.

Whole-plant N concentrations of A. hymenoides and B. rubens expressed per unit d. wt were significantly decreased in response to elevated CO_2 (Table 4), which is a common observation when plants are compared at a given phenological stage but not at similar sizes (Conroy, 1992; Coleman et al., 1993). This reduction in total N concentration in the C₃ grasses arose largely from increased shoot growth (L. A. DeFalco et al., unpublished) rather than from changes in whole-plant N uptake (Table 4). Our results do not support our initial hypothesis that physiological rates of N uptake would increase with elevated CO₂. Rather, NO₃ and NH₄ uptake rates were either unaffected by CO₂, or decreased for at least one N form after anthesis or during late vegetative growth in all species (Fig. 2). The only positive N uptake-capacity response to elevated CO₂ was on a whole-root-system basis $(NO_3 + NH_4)$ physiological uptake capacity \times root biomass) for A. hymenoides after anthesis (Fig. 3). This increase in N uptake capacity for A. hymenoides was primarily due to increased root biomass and occurred despite a decreased NO3 uptake capacity. Unfortunately, increased root system N uptake capacity for A. hymenoides did not translate to a significant increase in plant N content (P = 0.28; Table 4). Nevertheless, greater root-system N uptake capacity for A. hymenoides may provide a competitive advantage for this species relative to species for which either root growth and function are unaffected by CO₂, or N uptake is down-regulated in response to elevated CO_2 , such as *B. rubens* and *P. rigida* in this study (Fig. 3). For all species, NO₃ uptake rates were only 30-48% of NH₄ uptake rates, indicating that NH₄ probably accounted for most of the N uptake by these grasses. Jackson & Reynolds (1996) reported similar findings for annual grass and forb species in a California grassland.

Negative effects of CO_2 on N uptake capacities have been reported for several species. In the desert shrub *Larrea tridentata*, root uptake capacity for

Table 5. Mean (n = 6) specific root respiration normalized at $20^{\circ}C$ (nmol $CO_2 g^{-1}$ root d. wt s⁻¹) and analysis of variance P values for Achnatherum hymenoides, Bromus madritensis spp. rubens and Pleuraphis rigida grown at 360 or 1000 $\mu l l^{-1} CO_2$ concentration and harvested at three different phenology stages at two soil depths

	Date	A. hymenoides		B. rubens		P. rigida		
Depth (m)		Ambient	Elevated	Ambient	Elevated	Ambient	Elevated	
~ 0.2	1	35.4 (5.6)	38.4 (3.2)	105.3 (15.1)	127.5 (11.7)	21.9 (4.2)	33.6 (7.8)	
	2	16.6 (1.9)	12.7 (0.7)	18.8 (4.9)	17.5 (2.4)	7.6 (1.1)	10.5 (3.6)	
	3	7.2 (1.6)	5.6(0.7)	10.9 (2.6)	11.0(2.1)	6.7 (3.1)	7.5 (1.9)	
~0.7	1	72.2 (6.0)	89.5 (8.5)	191.1 (36.4)	237.7 (55.9)	35.4 (5.2)	25.5 (3.7)	
	2	28.2 (3.7)	28.3 (4.1)	38.1 (10.4)	21.8 (3.1)	15.1 (3.6)	18.6 (2.5)	
	3	8.3 (1.9)	11.5 (2.1)	14.4 (1.2)	16.1 (4.8)	11.9 (2.8)	13.9 (4.0)	
CO		0.194			0.254		0.480	
Date		< 0.001		<	< 0.001		< 0.001	
Depth		<	< 0.001		< 0.001		0.036	
$\dot{CO_{a}} \times Date$		0.094			0.090		0.929	
$CO_{a} \times Depth$		0.102			0.811		0.196	
$Date \times depth$		<	< 0.001		< 0.001		0.726	
$CO_2 \times date \times depth$		0.597			0.604		0.134	

SE in parentheses.

Fig. 4. Mean $(n = 6, \pm 1 \text{ SE})$ specific root respiration at 20°C versus (a) root C:N ratio and (b) root water content for *Achnatherum hymenoides*, *Bromus madritensis* ssp. *rubens* and *Pleuraphis rigida* grown at either ambient (open symbols) or elevated CO₂ (solid symbols) and harvested at three different shoot phenologies and at a soil depth of either 0.2 m (diamonds) or 0.7 m (circles). All CO₂ efflux measurements were made at ambient CO₂ concentration and normalized to 20°C assuming a Q_{10} value of 2.

 NO_3 decreased by 55% in response to CO_2 enrichment (BassiriRad et al., 1997) and NO3 uptake capacities decreased 28% overall in annual grass and forb species (Jackson & Reynolds, 1996). However, other species show no effect or increased uptake capacity in response to elevated CO₂ (BassiriRad et al., 1996a, 1997; Jackson & Reynolds, 1996). Bassiri-Rad et al. (1996b) suggest that the discrepancy between their studies may have been due to differences in soil fertility, because N sources and concentrations can greatly affect N uptake (Raab & Terry, 1995). In our study, shoot phenology also appeared to influence the effect of elevated CO₂ on N uptake capacity, because elevated CO2 affected N uptake only after anthesis in the two C3 species and late in vegetative growth for the C4 species. Although the explanation for this phenologically related downregulation of N uptake capacity is not known, a potential feedback mechanism is that elevated CO₂ causes increases in low-quality substrate release into the rhizosphere, and subsequently leads to increased N sequestration by microbial populations (Diaz et al., 1993; Zak et al., 1993). No attempt to validate this hypothesis was made in our study.

Elevated CO₂ had no significant effect on specific root respiration (R_{20}) for any species (Table 5). Similar results have been reported for *Plantago lanceolata* (Den Hertog *et al.*, 1993), *Vigna radiata* and Helianthus annuus (Gifford et al., 1985). In addition, Poorter et al. (1992) found that prolonged exposure to atmospheric CO₂ concentration did not affect root respiration as long as plants were grown at an optimum supply of nutrients and water. However, a reduction in R_{20} is a more common response in the literature (Lambers et al., 1996) and has been partially attributed to reduced construction and maintenance costs of roots under elevated CO₂ (Ryan, 1991; Wullschleger et al., 1994). In the present study, R_{20} expressed on a dry weight basis decreased significantly over time, irrespective of species or CO₂ treatment (Table 5). Decreases in R_{20} during ontogeny may be due to decreases in the amount and activity of respiratory enzymes and corresponding increases in cellulose and starch concentrations with root age (Lambers et al., 1996). Increases in root starch concentrations over time for each species in this study are consistent with this hypothesis.

In conclusion, this study provides the first data on root growth and function responses of three important Mojave Desert grasses, A. hymenoides, P. rigida and B. rubens, to long-term CO_2 enrichment. Primary productivity of the two C_3 grasses increased in response to elevated CO_2 , but root production increased only in A. hymenoides, which is also the only species for which whole-root-system N uptake capacity increased in response to elevated CO_2 . Combined changes in physiological N uptake capacity and root growth may result in a shift in the competitive balance among these Mojave Desert species as global CO_2 enrichment increases. Determining how factors such as water and nutrient limitation, common in the Mojave Desert, will influence these responses requires further investigation.

ACKNOWLEDGEMENTS

Support for this research was provided in part by the US Department of Energy (Grant DE-FG03–96ER62292), the National Science Foundation (Grant IBN-9808753), the Biological Resources Division of USGS, and the Nevada Agricultural Experiment Station. We thank Dianne Stortz-Lintz who maintained the CO_2 rooms throughout the duration of the experiment and assisted with carbohydrate analyses; Julie Allen, Vickie Longozo, Robin Graham, David Bryla, Carolyn Wilcox, Alan Kirk, Hide Nakashima, Laura Maragni and Craig Biggart assisted with harvesting, weighing, grinding and analysing plant tissues.

REFERENCES

- **Amthor JS. 1991.** Respiration in a future, higher-CO₂ world. *Plant, Cell and Environment* **14**: 13–20.
- BassiriRad H, Griffin KL, Strain BR, Reynolds JF. 1996a. Effects of CO_2 enrichment on growth and root ¹⁵NH₄ uptake rate of loblolly pine and ponderosa pine seedlings. *Tree Physiology* **16**: 957–962.
- **BassiriRad H, Reynolds JF, Virginia RA, Brunelle MH. 1997.** Growth and root NO_3 and PO_4 uptake capacity of three desert species in response to atmospheric CO_2 enrichment. *Australian Journal of Plant Physiology* **24**: 353–358.
- **BassiriRad H, Thomas RB, Reynolds JF, Strain BR. 1996b.** Differential responses of root uptake kinetics of NH_4 and NO_3 to enriched atmospheric CO_2 concentration in field-grown loblolly pine. *Plant, Cell and Environment* **19**: 367–371.
- Baxter R, Ashenden TW, Farrar JF. 1997. Effect of elevated CO₂ and nutrient status on growth, dry matter partitioning and nutrient content of *Poa alpina* var. vivipara L. Journal of Experimental Botany 48: 1477–1486.
- **Bazzaz FA. 1990.** The response of natural ecosystems to the rising global CO_2 levels. Annual Review of Ecology and Systematics **21**: 167–196.
- **Berntson GM, Woodward FI. 1992.** The root system architecture and development of *Senecio vulgaris* in elevated CO_2 and drought. *Functional Ecology* **6**: 324–333.
- Bloom AJ, Caldwell RM. 1988. Root excision decreases nutrient absorption and assimilation by barley. *Plant Physiology* 99: 1294–1301.
- Bloom AJ, Sukrapanna SS, Warner RL. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. *Plant Physiology* **99**: 1294–1301.
- **Ceulemans R, Mousseau M. 1994.** Effects of elevated atmospheric CO₂ on woody plants: a review. *New Phytologist* **127**: 425–446.
- Cody RP, Smith JK. 1991. Applied statistics and the SAS programming language, 3rd Edn. Englewood Cliffs, USA: Prentice-Hall, Inc.
- Coleman JS, McConnaughay KDM, Bazzaz FA. 1993. Elevated CO_2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? *Oecologia* 93: 195–200.
- Conroy JP. 1992. Influence of elevated atmospheric CO₂ concentrations on plant nutrition. *Australian Journal of Botany* 40: 445–456.

- **Den Hertog J, Stulen I, Lambers H. 1993.** Assimilation, respiration and allocation of carbon in *Plantago lanceolata* as affected by atmospheric CO₂. *Vegetatio* **104/105**: 369–378.
- Diaz S, Grime JP, Harris J, McPherson E. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. *Nature* **364**: 616–617.
- Drennan PM, Nobel PS. 1996. Temperature influences on root growth for *Encelia farinosa* (Asteraceae), *Pleuraphis rigida* (Poaceae), and *Agave deserti* (Agavaceae) under current and doubled CO₂ concentrations. *American Journal of Botany* 83: 133–139.
- **Gifford RM, Lambers H, Morison JIL. 1985.** Respiration of crop species under CO₂ enrichment. *Physiologia Plantarum* **63**: 351–356.
- Hendrix DL. 1993. The rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Science 33: 1306–1311.
- Hunt R, Hant DW, Hannah MA, Neal AM. 1991. Responses to CO₂ enrichment in 27 herbaceous species. *Functional Ecology* 5: 410–421.
- Huxman TE, Hamerlynck EP, Jordan DN, Salsman KJ, Smith SD. 1998. The effects of parental CO_2 environment on seed quality and subsequent seedling performance in *Bromus* rubens. Oecologia 114: 202–208.
- Idso SB, Kimball BA. 1992. Seasonal fine-root biomass development of four sour orange trees grown in atmospheres of ambient and elevated CO₂ concentration. *Plant, Cell and Environment* 15: 337–341.
- Jackson RB, Manwaring JH, Caldwell MM. 1990. Rapid physiological adjustment of roots to localized soil enrichment. *Nature* 344: 58–60.
- Jackson RB, Reynolds HL. 1996. Nitrate and ammonium uptake for single- and mixed-species communities grown at elevated CO₂. *Oecologia* 105: 74–80.
- Jordan DN, Zitzer SF, Hendrey GR, Lewin KF, Nagy J, Nowak RS, Smith SD, Coleman JS, Seemann JR. 1999. Biotic, abiotic and performance aspects of the Nevada Desert Free-Air CO₂ Enrichment (FACE) Facility. *Global Change Biology* 5: 659–668.
- **Koch GW, Mooney HA. 1996.** Response of terrestrial ecosystems to elevated CO₂: a synthesis and summary. In: Koch GW, Mooney HA, eds. *Carbon dioxide and terrestrial ecosystems*. San Diego, CA, USA: Academic Press, 399–429.
- Lambers H. 1996. Respiratory patterns in roots in relation to their functioning. In: Zamski E, Schaffer AA, eds. *Photo*assimilate distribution in plants and crops: source-sink relationships. New York, USA: Marcel Dekker, Inc., 229-263.
- Lambers H, Stulen I, van der Werf A. 1996. Carbon use in root respiration as affected by elevated atmospheric CO₂. *Plant and Soil* 187: 251–263.
- Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL 1993. Global climatic change and terrestrial net primary production. *Nature* 363: 234–240.
- Morgan JA, LeCain DR, Read JJ, Hunt HW, Knight WG. 1998. Photosynthetic pathway and ontogeny affect water relations and the impact of CO_2 on *Bouteloua gracilis* (C_4) and *Pascopyrum smithii* (C_3). Oecologia 114: 483–493.
- **Nobel PS, Hartsock TL. 1986.** Short-term and long-term responses of Crassulacean acid metabolism plants to elevated CO_2 in the past two centuries. *Nature* **315**: 45–47.
- Norby RJ. 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. *Plant and Soil* 165: 9–20.
- Palta JA, Nobel PS. 1989. Influence of soil O₂ and CO₂ on root respiration for Agave deserti. Physiologia Plantarum 76: 187–192.
- Poorter H. 1993. Interspecific variation in the growth response of plants to an elevated CO₂ concentration. *Vegetatio* 104–105: 77–97.
- **Poorter H, Gifford RM, Kridemann PE, Wong SC. 1992.** A quantitative analysis of dark respiration and carbon content as factors in the growth response of plants to elevated CO_2 . *Australian Journal of Botany* **40**: 501–513.
- **Prior SA, Rogers HH, Runion GB, Hendrey GR. 1994.** Freeair CO₂ enrichment of cotton: vertical and lateral root distribution patterns. *Plant and Soil* **165**: 33–44.

- **Raab TK, Terry N. 1995.** Carbon, nitrogen, and nutrient interaction in *Beta vulgaris* L. as influenced by nitrogen source, NO₃ vs NH₄. *Plant Physiology* **107**: 575–584.
- Rakonczay Z, Seiler JR, Kelting DL. 1997. Carbon efflux rates of fine roots of three tree species decline shortly after excision. *Environmental and Experimental Botany* 38: 243–249.
- **Rogers HH, Runion GB, Krupa SV. 1994.** Plant responses to atmospheric CO₂ enrichment with emphasis on roots and the rhizosphere. *Environmental Pollution* **83**: 155–189.
- Rundel PW, Gibson AC. 1996. Ecological communities and processes in a Mojave Desert Ecosystem: Rock Valley, Nevada. Cambridge, UK: Cambridge University Press.
- Ryan GR. 1991. Effects of climate change on plant respiration. *Ecological Applications* 1: 157–167.
- Smith SD, Monson RK, Anderson JE. 1997. Physiological ecology of North American desert plants. New York, USA: Springer.
- Smith SD, Strain BR, Sharkey TD. 1987. Effect of CO_2 enrichment on growth, CO_2 assimilation, and water-use efficiency in four Great Basin grasses. *Functional Ecology* 1: 139–143.
- Strain BR, Bazzaz FA. 1983. Terrestrial plant communities. In: Lemon E, ed. AAAS Select Symposium 84 – CO₂ and plants: the

response of plants to rising levels of carbon dioxide. Washington, DC, USA: American Association for the Advancement of Science, 177–222.

- Stulen I, Den Hertog J. 1993. Root growth and functioning under atmospheric CO₂ enrichment. Vegetatio 104/105: 99–115.
- **Tschaplinski TJ, Norby RJ, Wullschleger SD. 1993.** Responses of loblolly pine seedlings to elevated CO₂ and fluctuating water supply. *Tree Physiology* **13**: 283–296.
- Tingey DT, Johnson MG, Phillips DL, Johnson DW, Ball JT. 1996. Effects of elevated CO₂ and nitrogen on the synchrony of shoot and root growth in ponderosa pine. *Tree Physiology* 16: 905–914.
- **Tyree MT, Alexander JD. 1993.** Plant water relations and the effects of elevated CO_2 : a review and suggestions for future research. *Vegetatio* **104/105**: 47–62.
- Wullschleger SD, Ziska LH, Bunce JA. 1994. Respiratory responses of higher plants to atmospheric CO₂ enrichment. *Physiologia Plantarum* 90: 221–229.
- Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL. 1993. Elevated atmospheric CO₂ and feedback between carbon and nitrogen cycles. *Plant and Soil* 151: 105–117.