NUMERICAL CALCULATIONS

OF
TERRESTRIAL PLANET FORMATION

Benjamin C. Bromley

Department of Physics, University of Utah
and

Scott J. Kenyon

Smithsonian Astrophysical Observatory

Second TPF /Darwin International Conference on Dust Disks and the

Formation, Evolution and Detection of Habitable Planets

26-29 July, 2004
San Diego, CA



abstract

We describe numerical calculations of terrestrial planet formation
using a hybrid multiannulus coagulation4+n-body code. The code
allows us to follow the collisional evolution of cm to m sized bodies
into terrestrial mass planets and an associated debris disk. Our
numerical simulations form terrestrial mass planets in 1-10 Myr
at 0.5-2 AU. As rocky planets grow, they stir up leftover plan-
etesimals along their orbits. The resulting cascade of collisions
produces a debris disk. With current facilities, the infrared excess
of the debris is visible for 10-30 Myr. Planned facilities such as
TPF /Darwin may be sensitive enough to detect structure in the
debris, including wakes from terrestrial planets.
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http://jwstsite.stsci.edu/science/planetary.shtml



I. Introduction

Observations:

e Ubiquitous disks of gas & dust surround young stars (e.g.,
Wyatt et al. 2003).

e The majority of the gas disappears by ~1 Myr.

e Debris disks form within 10-100 Myr. (e.g., Greaves & Wyatt
2003)

Planetesimal Theory:

e Planetesimals form in the dusty midplane of a protoplanetary

disk by coagulation and/or gravitational instability (Goldreich
& Ward 1973; Youdin & Shu 2003).

e Terrestrial planets grow by mergers of 1-10 km planetesimals
(e.g., Wetherill & Stuart 1993; Chambers 2001).

e Planets stir up leftover planetesimals to disruption velocity
(Williams & Wetherill 1994); cascade of collisions grinds left-
overs to observable dust.



I1. Calculations

Simulations of rocky planet formation:

e Coagulation calculations (early evolution only; Safronov 1977;
Wetherill & Stewart 1983; Kenyon & Luu 1998, 1999)

e N-body calculations (late evolution only; e.g., Duncan, Levi-
son & Lee 1998; Chambers 2001)

e Hybrid code to model all stages of planet formation (e.g., Jew-

ell & Alexander 1996; Weidenschilling et al. 1997)

Coagulation code features:

e 32 annuli of width 0.01 AU centered at 1 AU

e Initial surface density of 1-5 MMSN in 1-10 km planetesimals
on nearly circular orbits (e = 107%)

e Gravitational stirring, gas drag, Robertson-Poynting drag

N-body code features:

e Eighth-order accurate, adaptive, ODE solver for particle or-
bits

o Accelerated reference frames (Encke [1857] method) for orbit
determination

e Direct orbital element modification (e.g., de/dt) as specified
by coagulation code

e Fast merger identification based on particle indices saved dur-
ing force evaluations



IT1. Tests of the code

e Coagulation code tests: Kenyon & Bromley (2001, 2002)
e N-body integrator dynamic range (Fig. 1), and stability (Fig. 2)
e Coagulation versus direct N-body

e Merger tests: 10 cm “grapefruits” on opposing 1 AU orbits;
Greenzweig & Lissauer (1990) planetary accretion rates.
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Figure 1. Orbit parameters from simulations of a hard-binary “jupiters”
at 1 AU (Duncan, Levison & Lee 1998; upper two panels) and a “spy satel-
lite” on a surface-skimming orbit about the Earth (lower panel). These
runs test dynamic range and interpolation in the N-body code.
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Figure 2. Evolution of eccentricity of the major planets as calculated

with our adaptive integrator and a fixed-timestep symplectic integrator.
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Figure 3. Gravitational stirring by two planets in a swarm of 800 low

mass bodies. (Blue: N-body code; black: coagulation code).



IV.

Results

Our numerical calculations demonstrate the detailed process
of terrestrial planet formation from a sea of small planetesi-
mals.

Simulations with our hybrid code produces Earth-massed ob-
jects at 1 AU within O(10) Myr (Fig. 4).

Fragmentation processes during the early stages of terrestrial
planet formation (as tracked by the coagulation code) produce
observable amounts of dust (Fig. 5; Kenyon & Bromley 2004).

The Spitzer Space Telescope can detect excess infrared emis-
sion associated with terrestrial planet formation. A statistical
analysis of data from young stars will provide a test of the
models presented here.

Upcoming adaptive-optics instruments will be able to resolve
the rings of dust produced near 1 AU during terrestrial planet
formation.

Had distant observers viewed the Earth 4.5 billion years ago,
using technology available to us today, they could have in-
ferred the formation of the Earth.
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Figure 4. The evolution of heliocentric distance for rocky planets in two
simulations which differ in initial surface density (g = 20 g/cm? upper
panel; twice this value for the lower panel). The dashed lines indicate
boundaries of the planetesimal grid. Initial N-body masses are ~ 2x10% g.
N-bodies accrete mass from the planetesimals and from mergers with other
N-bodies. After 107 yr, three planets in the lower density simulation (the
largest of which is 50% of the mass of the Earth) have cleared all but
one smaller n-body from the grid. Evolutionary processes are generally
accelerated in the higher mass disk and produce a planet which is 1.5 times
the mass of the Earth.
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Figure 5. Evolution of broadband 10 pm (N-Nj) and 20 pm (Q-Qo)
excess radiation from dust during terrestrial planet formation. The left
panels are for a model in a narrow ring of material near 1 AU, while the
right panels are for a broader region. Fragmentation of planetesimals in
these rings, triggered by terrestrial planet formation, produces copious
amounts dust. At the peak of dust production, roughly 10° yr, starlight
reprocessed by the dust can be a sizable fraction of the stellar luminosity
in these wavebands. The three curves in each plot are for models with
initial surface densities ¥y of 8, 16 and 32 g/cm?; the excess radiation is
greater for larger X.
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