Department of Numerical Mathematics (DNM): References


[1]Marchuk, G.I., V. Dymnikov, V. Zalesny, V. Lykossov, and V. Ya. Galin, 1984: Mathematical Modeling of the General Circulation of the Atmosphere and Ocean. Gidrometeoizdat, 320 pp. (in Russian).

[2]Feigelson, E.M., 1984: Radiation in a Cloudy Atmosphere. Atmospheric Sciences Library, D. Reidel, Dordrecht, 293 pp.

[3]Podolskaya, E.L., and I.G. Rivin, 1988: The correction of the integral transmitting function in the longwave part of the spectrum. Izvestia AN SSSR, FAO, 24, 883-886 (in Russian).

[4]Galin, V. Ya., 1984: A treatment of radiative heating in a GCM. Preprint N75 of the DNM AN SSSR, 21 pp. (in Russian).

[5]Lykossov, V.N., 1990: K-theory of atmospheric turbulent planetary boundary layer and the Boussinesq generalized hypothesis. Soviet J. Num. Analy. Math. Modelling, 5, 221-240.

[6]Kazakov, A.L., and V.N. Lykossov, 1982: On parameterization of the interaction between the atmosphere and the underlying surface for numerical modelling of the atmospheric processes. Trudy Zapsinnii, 55, Gidrometeoizdat, Moscow, 3-20.

[7]Arakawa, A., and V.R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics, 17, J. Chang (ed.), Academic Press, New York, 173-265.

[8]Koprova, L., and L. Uranova, 1978: Monthly averaged values of ozone content in 1964-1965, Soviet Meteor. and Hydrol., 5, 49-55 (in Russian).

[9]Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.

[10]Manabe, S., and R.F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361-385.

[11]Raschke, E., 1973: Approximation of a band of transmission functions by finite sums of exponentials. Contrib. Atmos. Physics, 46, 203-212.

[12]Rodgers, C.D., 1967: The use of emissivity in atmospheric radiation calculations. Quart. J. Roy. Meteor. Soc., 93, 43-54.

[13]Kuo, H.L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232-1240.

[14]Anthes, R.A., 1977: A cumulus parameterization scheme utilizing a one-dimensional model. Mon. Wea. Rev., 105, 270-286.

[15]Smagorinsky, J., 1960: On the dynamical prediction of large-scale condensation by numerical methods. Geophysical Monographs, 5, American Geophysical Union, Washington, D.C., 71-78.

[16]Gates, W.L., and A.B. Nelson, 1975: A new (revised) tabulation of the Scripps topography on a one-degree grid. Part 1: Terrain heights. Tech. Report R-1276-1-ARPA, The Rand Corporation, Santa Monica, CA, 132 pp.

[17]Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639-640.

[18]Garratt, J.R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915-929.

[19]Businger, J.A., J.C. Wyngaard, I. Izumi, and E.F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181-189.

[20]Borisenkov, Ye.P., and M.A. Kuznetsov, 1978: Parameterization of the interaction between the atmosphere and the ocean under stormy weather conditions as applied to models of general atmospheric circulation. Izvestiya Atm. and Ocean. Phys., 14, 362-368.

[21]Monahan, E.C., 1968: Sea spray as a function of low elevation wind speed. J. Geophys. Res., 73, 1127-1137.

[22]Kazakov, A.L., and V.N. Lykossov, 1980: Parameterization of heat and moisture exchange during storms with application to problems of atmosphere-ocean interaction. Soviet Meteor. and Hydrol., 8, 45-50.

[23]Legates, B.R., 1987: A climatology of global precipitation. Publ. Climatol., 40, 85 pp.

[24]Budyko, M.I., 1956: Heat Balance of the Earth's Surface. Gidrometeoizdat, Leningrad, 255 pp.

[25]Mintz, Y., and Y. Serafini, 1981: Global Fields of Soil Moisture and Land-Surface Evapotranspiration. NASA Tech. Memo. 83907, Research Review--1980/81, NASA Goddard Space Flight Center, Greenbelt, MD, 178-180.

[26]Galin, V.Ya., V.P. Dymnikov, E.M. Volodin, and V.N. Lykossov, 1995: AMIP runs by the DNM GCM. DNM Internal Memorandum, 6 pp. [Available from V.Ya. Galin, Department of Numerical Mathematics, Russian Academy of Sciences, 8 Gubkina Str., 32 A, Moscow 117333, Russia.]

[27] Matthews, E., 1983: Global vegetation and land use: New high-resolution data bases for climate studies. J. Clim. Appl. Meteor., 22, 474-487.

[28]Wilson, M.F., and A. Henderson-Sellers, 1985: A global archive of land cover and soils data sets for use in general circulation models. Int. J. Climatology, 5, 119-143.

[29]Barker, H.W., and Z.Li, 1995: Improved simulation of clear sky shortwave radiative transfer in the CCC GCM, J.Climate, 8, 2213-2223.

[30]Burridge, D.M., and J. Haseler, 1977: A Model for Medium-Range Weather Forecasting: Adiabatic Formulation. Tech. Report No. 4, European Centre for Medium-Range Weather Forecasts, Bracknell, Berkshire, UK.

[31]Lemus, L., L. Rikus, C. Martin, and R. Platt, 1997: Global cloud liquid water path simulations. J.Climate, 10, 52-64.

[32]Matveev, L.T.,1984: Cloud Dynamics, Atmospheric Science Library, D.Reidel Publishing Company, 340pp.

[33]Slingo, A.,1989: A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 1419-1427.

[34]Ebert, E.E., and J.A.Curry,1992: A parameterization of ice cloud optical properties for climate models. J.Geoph. Res.,97, 3831-3836.

[35]Rockel, B., E.Raschke, and B.Weyres,1991: A parameterization of broad band radiative transfer properties of water,ice and mixed clouds. Beitr. Phys. Atmosph., 64, 1-12.

[36]Businger, J.A.,  J.C. Wyngaard,  I. Izumi, and E.F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer.  J. Atmos. Sci., 28, 181-189.

[37]Potter, G. L., J. M. Slingo, J.-J. Morcrette, and L. Corsetti, 1992: A modeling perspective on cloud radiative forcing. J. Geophys. Res, 97, 20,507-20,518.

[38]Hoskins, B. J., M. E. McIntyre, and A. W. Roberson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Met. Soc, 111, 877-946.

[39]Holtslag, A.A.M., and B.A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825-1842.

[40]Vogelezang, D., and  A. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound. Layer Met., 81, 245-269

[41] Arakawa, A., and V.R. Lamb, 1981: A potential enstrophy and energy conserving scheme for shallow water equations. Mon  Wea.Rev., 109, 18-36.

[42]Betts, A.K., and M.J. Miller, 1984: A new convective adjustment scheme. ECMWF Technical Report No.43., 68pp.

[43]Palmer, T.N., G.J.Shutts and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterisation. Quart. J. Roy. Met. Soc., 112, 1001-1031.

[44]Robert, A.J., J. Henderson, and C. Turnbull, 1972: An implicit time integration scheme for baroclinic models in the atmosphere. Mon. Wea. Rev., 100, 329-335.

[45a]Volodin, E.M., and V.N. Lykossov, 1998a: Parameterization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data. Izvestiya Atmospheric and Oceanic Physics, 34, 405-416 (Translated from Izvestiya AN. Fizika Atmosfery i Okeana).

[45b]Volodin, E.M., and V.N. Lykossov, 1998b: Parameterization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 2. Numerical experiments in climate modelling. Izvestiya Atmospheric and Oceanic Physics, 34, 559-569 (Translated from Izvestiya AN. Fizika Atmosfery i Okeana).

[46]Galin, V.Ya., 1998: Description of the radiation scheme in the DNM model. Izvestia RAN, Fizika Atmosphery i Oceana, 34, 13-23 (in Russian).

[47]Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487-490.

[48]Miller, M.J., T.N. Palmer, and R. Swinbank, 1989: Parameterization and influence of subgrid-scale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys., 40, 84-109.

[49]Joseph, J.H., W.J. Wiscombe, and J.A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atm. Sci., 33,  2452-2459.

[50]Briegleb, B.P., 1992: Delta-Eddington approximation for solar radiation in the NCAR community climate model. J. Geophys. Res., 97, 7603-7612.

[51]Chou M.-D., W. Ridgway, and M.-H. Yan, 1993: One-parameter scaling and exponential-sum fitting for water vapor and CO2 infrared transmission functions. J.Atmos. Sci., 50,  2294-2303.

[52]Chou, M.-D., and L. Kouvaris, 1991b: Calculations of transmission functions in the infrared CO2 and O3 bands. J. Geophys. Res., 96, 9003-9012.

[53]Chou, M.-D., D.P. Kratz, and W. Ridgway,1991a: Infrared radiation parameterizations in numerical climate models. J.Climate, 4, 424-437.

[54]Slingo, J.M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Met. Soc., 133, 899-927.

[55]Dorman, J.L., and P.J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model (SiB). J. Appl. Met., 28, 833-855.

[56]Geleyn, J. -F., and H.J. Preuss, 1983: A new data set of satellite-derived surface albedo values for operational use at ECMWF. Arch. Meteor. Geophys. Bioclim., Series A, 32, 353-359.

[57]Matthews, E., 1983: Global vegetation and land use: new high-resolution data bases for climate studies. J. Clim. Appl. Meteor., 22, 474-487.

[58]Wilson, M.F., and A. Henderson-Sellers, 1985: A global archive of land cover and soils data for use in general circulation climate models. Int. J. Climatol., 5, 119-143.

[59]Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J.Atmos. Sci., 43, 505-531.

[60]Clapp, R.B., and M.G. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601-604.

[61]Cosby, B.J., G.M. Hornberger,R.B. Clapp, and T.R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of the soil. Water Resour. Res., 20, 682-690.

[62]Dümenil, L., and E. Todini, 1992: A rainfall-runoff scheme for use in the Hamburg climate model. In Advances in Theoretical Hydrology, a Tribute to James Dooge (Ed. J.P. O'Kane). European Geophysical Society Series on Hydrological Sciences, Vol. 1, Elsevier Press, Amsterdam, 129-157.

[63]McCumber, M.C., and R.A. Pielke, 1986: Simulation of the effects of the surface fluxes of heat and moisture in a mesoscale numerical model. Part 1. Soil layer. J. Geophys. Res., 86,  9929-9938.

[64]Palagin, E.G, 1981: Numerical Modelling of Agrometeorological Conditions of Wintering of Winter Crops.  Gidrometeoizdat,  Leningrad, 191pp. (in Russian).

[65]Zobler, L, 1986: A World Soil File for Global Climate Modelling. NASA technical memorandum 87802, Washington, D.C., 32pp.

[66]Wang, W.-C., X.-Z. Liang, M.P. Dudek, D. Pollard, and S.L. Thompson, 1995: Atmospheric ozone as a climate gas., Atm. Res., 37, 247-256.


Return to:

Top of Page

AMIP II Model/Experiment Documentation


Last modified September 12, 2000. For further information, contact: Tom Phillips ( phillips@pcmdi.llnl.gov )

LLNL Disclaimers

UCRL-MI-135872