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ABSTRACT 

 
We quantify dynamical change in nonlinear time-

serial data via dissimilarity measures between statistical 
distribution functions. These new measures are superior to 
traditional nonlinear measures, and give robust and timely 
forewarning of normal-to-abnormal transitions in 
physiological regimes. These novel measures also provide 
rapid quantitative assessment of physiological change, 
such as alertness, soldier readiness, and bioagent exposure. 

 
 

1. INTRODUCTION 
 
Characterization of change in complex system 

dynamics is particularly difficult for physiological 
processes, which share several confounding features: non-
stationarity, nonlinearity, multiple time scales, and strong 
sensitivity to environmental perturbations. The process 
dynamics can be quantified by traditional nonlinear 
measures, such as: (i) the first minimum, M1, in the 
mutual information function, which is a measure of 
nonlinear de-correlation time; (ii) the correlation 
dimension, D, which quantifies dynamical complexity; 
and (iii) the Kolmogorov entropy, K, which is an indicator 
of predictability (or equivalently, the rate of nonlinear 
information loss). Kolmogorov entropy and correlation 
dimension are usually defined in the limit of zero scale 
length. However, all real data have noise and even 
noiseless model data are limited by the finite precision of 
computer arithmetic.  Finite-scale values of K and D do 
not capture the full dynamical complexity of these 
processes in the absence of noise and have smaller values 
than expected for the zero-scale-length limit. In general, 
traditional nonlinear measures can distinguish between 
clear-cut regular and chaotic dynamics. However, they are 
not sufficiently sensitive to discern between slightly 
different chaotic regimes, especially when data are limited 
and/or noisy. This lack of discrimination arises from 
averaging over the global dynamics, which erases most of 
the dynamical details. 

 
We address these limitations in traditional nonlinear 
measures via new measures to quantify change in time-
serial data (including machines) as follows.  We convert 
time-serial data to a discrete geometric (phase space) 
representation. A distribution function describes the 
visitation frequency and sequence of the discrete phase-

space states; (un)changing dynamics lead to an 
(un)altered distribution function. Dissimilarity measures 
quantify the distance between a test case distribution 
function and the baseline distribution function. Large 
dissimilarity means that the system is far from the 
baseline, as a forewarning of an abnormal event, 
particularly in human data. A comparison of the results 
shows a significant and consistent superiority of our new 
measures over traditional nonlinear measures for 
detection and forewarning of condition change in real 
physiological data.   

 
We organize the paper as follows. Section 2 discusses 

the analysis methodology and our new dissimilarity 
measures. Section 3 presents the results, as applied to 
physiological time series. We summarize the conclusions 
in Section 4, with acknowledgments in Sect. 5. 
 

2. ANALYSIS METHODOLOGY 
 
We begin with a process-indicative scalar signal, e, 

that is sampled at equal time intervals, τ, starting at time 
t0, yielding a time series ei = e(t0 + iτ), i = 1, 2, …, N. 
Physiologic data are usually affected by artifacts (e.g., eye 
blinks, muscle twitches). We remove essentially all of 
these artifacts by fitting a parabola to ei over a moving 
window of 2w+1 points with the same number of data 
points, w, on either side of a central point. We use the 
fitted value at the central point to estimate the artifact 
signal, fi. Subsequent analysis uses only the artifact-
filtered data, xi = ei – fi , which is essentially artifact-free.  

 
We extract the main features of the underlying 

dynamics via a dynamical reconstruction technique. 
Specifically, we form a d-dimensional time-delay vector, 
y(i) = [xi, xi+λ, …, xi+(d-1)λ].  The choice of lag, λ, and 
embedding dimension, d, determine whether the data are 
under-sampled (projected upon themselves) or redundant. 
This phase-space approach is used for both our new 
measures of condition change and the traditional 
nonlinear measures; see the reference for more details. 
We also note that different system observables contain 
dissimilar information. Thus, phase-space reconstruction 
can be easier from one variable, but more difficult (or 
even impossible) from another. Our analysis seeks a 
balance between these caveats and the practical constraint 
of a limited amount of noisy data. 
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Sensitive change discrimination uses the phase-space 
reconstruction of the reconstructed dynamics, as follows. 
We first represent each continuous value, xi, as a discrete 
symbol, si, that is one of S different integers, 0, 1, …, S–1: 

 
0 ≤ si = INT[S(xi – xmin)/(xmax – xmin)] ≤ S – 1.   (1) 
 

The function, INT, converts a decimal number to the 
closest lower integer. The minimum and maximum values 
of xi are xmin and xmax, respectively, over the baseline 
(reference data).  We require that si(xi = xmax) = S − 1 in 
order to maintain exactly S distinct symbols. The 
discretized vector, y(i) = [si, si+λ, …, si+(d-1)λ], partitions 
the phase space into Sd hypercubes or bins. We count the 
number of phase-space points in each bin to obtain a 
distribution function. We denote the population of the i-th 
bin of the distribution function as Qi for the baseline, and 
Ri for a test case. The parameters (S, N, d, and λ) depend 
on the specific data, and reflect the underlying dynamics. 
 

We compare the distribution functions of the test case 
and baseline dynamics by measuring the difference 
between Qi with Ri by the χ2 statistics and L1 distance: 

 
χ2 = Σ(Qi – Ri)2/(Qi + Ri),    (2) 
         i 

L = Σ|Qi – Ri|.     (3) 
        i 

The sums in Eq. (2 - 3) run over all of the populated 
phase-space cells. These measures account for changes in 
the geometry and occurrence frequency of the distribution 
function. The sum in the denominator of Eq. (2) is based 
on a test for equality of two multinomial distributions. 
 

3. APPLICATION TO PHYSIOLOGICAL DATA 
 
We present five illustrations of our approach by 

comparing traditional nonlinear measures (D and K) with 
phase-space dissimilarity measures (χ2 and L). Direct 
comparison of these measures is difficult due to their 
disparate range, variability, and physical meaning. 
Renormalization allows meaningful comparison by 
defining Vi as the value of each indicator for the i-th 
cutset from the set, V = {D, K, χ2, and L}. We denote the 
mean value of that indicator over the base case by V, with 
a corresponding sample standard deviation, σ. A 
renormalized indicator is then U(V) = |Vi – V |/ σ, which 
measures the number of standard deviations that the test 
case deviates from the baseline mean.  Dynamical states 
close to (far from) the baseline have small (large) values 
of the renormalized dissimilarity.  

 
1. Human electroencephalogram data were acquired 

during clinical epilepsy monitoring and analyzed by the 
procedure of Section 2. Figure 1 shows typical results. 
Raw data in subplot (a) have very complex, non-periodic 
features that are typical of brain waves. The seizure event 

occurred at 110.7 minutes, as denoted by the solid vertical 
line in subplots (d) and (e). No seizure event forewarning 
is provided by the correlation dimension in subplot (b), or 
by the Kolmogorov entropy in subplot (c). The isolated 
peaks at 42 and 58 minutes in subplot (c) are not 
significant. An  event forewarning of 27 minutes is 
provided by U(χ2) in subplot (d) and U(L) in subplot (e), 
with two (or more) successive occurrences above the 
threshold of 5 (dashed horizontal line) at 85 minutes 
(vertical dashed line). Hively and Protopopescu (2003) 
give additional details on the methodology for this and 
subsequent examples. 

 
2. Human electrocardiogram data were acquired 

during ambulatory monitoring. Figure 2 shows results for 
a ventricular fibrillation event at 37 minutes.  The raw 
data in subplot (a) show ten distinct heartbeats and their 
associated quasi-periodic (nonlinear) features. The 
correlation dimension in subplot (b) varies randomly (no 
forewarning features) with a rise at the fibrillation event. 
The Kolmogorov entropy in subplot (c) varies erratically; 
the peaks occurring at 8 and 24 minutes are not valid 
forewarning indications. Event forewarning of 16 minutes 
(the vertical dashed line) is provided by both U(χ2) in 
subplot (d) and  U(L) in subplot (e); forewarning 
corresponds to two (or more) successive occurrences 
above the threshold  (dashed horizontal line). Similar 
results were obtained for several additional datasets. 

 
3. Human electrocardiogram data were acquired 

during laboratory tests of fainting (syncope), under the 
following protocol: (i) lying horizontal for 10 minutes, (ii) 
lying in tilted condition (70o from horizontal) for 40 
minutes, and (iii) lying horizontal again for 5 minutes. 
Figure 3 (top) shows non-syncopal results with low values 
of renormalized dissimilarity (~10) that increase very 
slowly and erratically over the tilt period (slope, A~0.06-
0.07 per minute). Figure 3 (bottom) shows syncopal 
results for the same subject with much larger 
renormalized dissimilarity (40-70) that increase much 
more rapidly over the tilt period (A~0.8-1 per minute). 
The tilt period in this second test was terminated early 
when the subject fainted.  Similar results are obtained for 
a second subject. 

  
4. Heart wave data were obtained via surface chest 

electrodes from anesthetized rats subjected to an induced 
sepsis experiment. After 55 minutes of normal-state 
recording, each test rat was exposed to inhaled bacterial 
endotoxin that induces an inflammatory response and 
eventually sepsis. Figure 4 shows sample results. Raw 
data in subplot (a) have distinct heartbeats with additional 
quasi-periodic (nonlinear) features. No indication of 
condition change is displayed by either the correlation 
dimension in subplot (b), or by the Kolmogorov entropy 
in subplot (c). The condition change is shown clearly by 
both U(χ2) in  subplot  (d) and  U(L)  in subplot  (e), which  
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Figure 1: Results for human electroencephalogram channel 5 of dataset #PVM006, showing time-serial plots for: (a) 2.4 
seconds of raw data collected at 250Hz, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and (e) U(L). 
The phase-space dissimilarity measures in subplots (d) and (e) are for d = 3, S = 20, λ = 17, and after removal of eye blink 
artifacts. Each cutest has N = 22,000 points, corresponding to 88 seconds. We have successfully applied this analysis to 
over sixty human datasets 
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Figure 2: Results for human dataset #EC8202, showing time-serial plots for: (a) 10 seconds of raw heart wave data 
collected at 250 Hz, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and (e) U(L). The phase-space 
dissimilarity measures in subplots (d) and (e) are for d= 5, S = 3, λ = 27, after removal of breathing artifacts. Each cutest 
had N = 18,000 points, corresponding to 72 seconds. 
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Figure 3: Results for human subject RAY show U(L) and U(LC) when no syncope occurs (above the double line), in 
contrast with U(L) and U(LC) when syncope does occur (below the double line). No results for traditional nonlinear 
measures are shown, due to their insensitivity in the other examples. The phase-space dissimilarity measures are for d =2, S 
= 2, λ = 83, after removal of breathing artifacts. Each cutest has N=20,000 points (80 seconds of data at a sampling rate of 
250 Hz). 
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Figure 4: Results for dataset #33209V, showing time-serial plots for: (a) 2.4 seconds of raw rat heart wave data collected at 
500 Hz, (b) correlation dimension, D, (c) Kolmogorov entropy K, (d) U(χ2), and (e) U(L). The phase-space dissimilarity 
measures in subplots (d) and (e) are for d =2, S = 2, λ = 80, after removal of breathing artifacts. Each cutest has N=20,000 
points (40 seconds of data). 
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remains low for the first 57 minutes, rising abruptly after 
the exposure onset, remaining high for the next 20 
minutes, then decreasing slowly as the immune response 
fought off the bioagent effects. This recovery response is 
consistent with other physiological observations during 
the test (not shown). The total true (negative) positive 
rate for (un)exposed animals is (6/6) 17/17. 

 
5. A surface stethoscope acquired lung sounds data 

during lung experiments on anesthetized pigs. The 
baseline state consisted of normal breathing. Subsequent 
test cases were obtained by injecting a controlled volume 
of air (in increments of 100 milliliters up to 1400 
milliliters) in the space between the diaphragm and the 
lungs, making breathing increasingly more difficult. 
Figure 5 shows sample pneumothorax results. Raw lung 
sounds data in subplot (a) have very complex features, 
including quasi-periodic heartbeats that are 
superimposed on breath-cycle undulations. The 
correlation dimension in subplot (b) provides no clear 
indication of condition change. The Kolmogorov entropy 
in subplot (c) likewise varies erratically. Condition 
change is indicated by both U(χ2) in subplot (d) and U(L) 
in subplot (e); both rise to a plateau of 5 over 100-500 
ml, then increase to values larger than 20 over 500-1300 
ml thereby providing robust forewarning of the animal's 
death at 1400 ml. Similar results were obtained for a 
second animal. 

 
4. CONCLUSIONS 

 
We have developed a model-independent method for 

measuring physiological condition change. First, we 
remove confounding artifacts (such as eye-blinks and 
breathing) with a novel zero-phase quadratic filter.  The 
artifact-filtered data are converted into a statistical 
distribution function that describes the visitation 
frequency and sequence of the dynamical states. 
Dissimilarity measures between baseline and test data 
detect the change by summing the absolute values of the 
differences between distribution functions. The 
methodology is quite general and applies to a variety of 
physiological data, as shown by five examples: (1) brain 
waves for forewarning of epileptic events (Fig. 1); (2) 
heart waves for forewarning of ventricular fibrillation 
(Fig. 2), and for detection of syncope (Fig. 3) and sepsis 
(Fig. 4); and (3) lung sounds for detection of breathing 
difficulty (Fig. 5). The dissimilarity measures have small 
values in the normal state, followed by significantly 
larger values above a “normality threshold,” indicating 
abnormal dynamics. The results show that the phase-
space dissimilarity approach is sensitive, robust, and 
timely.  

 
Our new approach also detects dynamical change in 

various physical processes.  Examples include: detecting 
balanced and unbalanced centrifugal pump conditions 
from motor power; distinguishing different drilling 

conditions from spindle motor current of a machining 
center; and predicting failure of a bellows coupling in a 
rotating drive train from motor current; discerning the 
difference in micro-cantilever vibrations with and 
without mercury on the sensor; forewarning of failure in 
electrical motors; and forewarning of failure in motor-
driven components.   

 
We now have high-fidelity laboratory integration of 

the technology elements into desktop-computer software 
that analyzes noisy, archival data and provides change 
indication. The analysis is much faster than real-time, 
and can handle multiple channels. We have been granted 
6 U.S. patents on the approach (with two additional 
patents pending). Thus, the technology readiness level is 
5. On-going development includes a graphical user 
interface, more robust software, and implementation on a 
hand-held device (e.g., personal digital assistant). We 
expect to complete these improvements in 2004, which 
will allow qualification for a technology readiness level 
of 6.  

 
Success for such diverse applications suggests that 

the method can reliably measure condition change in 
many nonlinear systems. Examples of such new potential 
applications include combat readiness of soldiers, new 
complex combat systems, and next-generation system-
of-systems (e.g., unit-of-action/future combat systems). 
 

5. ACKNOWLEDGMENTS 
 
We gratefully acknowledge partial support from the 

U.S. Department of Energy’s Materials Science and 
Engineering Program of the Office of Basic Energy 
Sciences and from the Nuclear Energy Research 
Initiative (project# NERI2000-109); from Laboratory 
Directed Research and Development Program at Oak 
Ridge National Laboratory, which is managed by UT-
Battelle, LLC, for the USDOE under Contract No. DE-
AC05-00OR22725; from ViaSys Healthcare Inc. 
(formerly Nicolet Biomedical Inc. of Madison, WI), 
which provided human brain wave data under 
Cooperative Research and Development Agreement #99-
0559; and from Physio-Control Corp., which supplied 
human heart wave data under Cooperative Research and 
Development Agreement #95-0353.  
 

REFERENCE 
 

L.M. Hively and V.A. Protopopescu, “Detection of 
Changing Dynamics in Physiological Time Series,” 
Proc. Nucl. Math. & Comput. Sci. (Gatlinburg, TN, 6-11 
April 2003) Amer. Nucl. Soc., LaGrange Park, IL 
(2003), paper #117, pages 1-17; reprints are available at 
http://computing.ornl.gov/cse_home/staff/hively.shtml 
 



 8

         
−1

−0.5

0

0.5

1

S
O

U
N

D
 (A

U
)

(a)

        
0

0.5

1

1.5

2

U
(D

)

(b)

        
0

1

2

3

4

U
(K

)

(c)

        
0

10

20

30

U
(χ

2 )

(d)

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25
(e)

U
(L

)

V (mL)  
 
Figure 5: Results from dataset #PTX5, showing time-serial plots for: (a) 4 seconds of raw lung sounds data collected at 10 
kHz, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and (e) U(L). The phase-space dissimilarity 
measures in subplots (d) and (e) are for d = 3, S = 30, λ = 20, after removal of breathing artifacts. Each cutest has N = 
50,000 points (5 seconds of data). 


