Interfacial Soil Chemistry of Radionuclides in the Unsaturated Zone

Principal Investigators:

Jon Chorover, Penn State \rightarrow SWES, Univ. Arizona Karl Mueller, Dept. of Chemistry, Penn State K. G. Karthikeyan, Dept. Biological Systems Engin., Univ. Wisc. A. Vairavamurthy, Dept. of Environmental Science, BNL **R. Jeff Serne,** Appl. Geology/Geochemistry Group, PNNL **Graduate Students and Postdocs:** Mary Kay Amistadi (Soil Science, Research Associate, U of A) **Sunkyung Choi** (Soil Science, Postdoc, U of A) Garry Crosson (Chemistry, Ph.D., Penn State) **Paula Rotenberg** (Soil Science, M.S., Penn State) Soh-Joung Yoon (BSE, Postdoc, U of W)

Primary Minerals

Quartz, plagioclase, mica, K-feldspar, basaltic fragments

Secondary clays

Smectite, vermiculite, illite, chlorite, kaolinite

Objectives

- Investigate dynamics of Cs and Sr uptake over time during reaction of synthetic tank waste leachate (STWL) with specimen clays and Hanford sediments.
- Determine the weathering behavior of clays and sediments under the STWL conditions imposed near-field by the waste leachate.
- Establish relations among mineral weathering processes and sorption behavior of Cs/Sr.

Kinetic studies: Coupled mineral transformation and contaminant sorption

Time series' of Si release from specimen clays (mmol kg⁻¹)

Kaolinite: Dissolution and precipitation of Si (mmol kg⁻¹ clay)

Chemical Formula: [Si₄]Al_{3.66}Fe(III)_{.07} Ti_{0.16}O₁₀(OH)₈

Kaolinite: Dissolution and precipitation of AI (mmol kg⁻¹ clay)

XRD patterns of kaolinite as a function of reaction time

- **V** $Na_{4-2x}Sr_xAl_4Si_8O_{24}$ •12H₂O (Sr-containing chabazite, "*strontian*")
- 1.08Na₂O Al₂O₃ 1.68SiO₂•1.8H₂O (Sodalite)
- **V** $Na_8(Al_6Si_6O_{24})(NO_3)_2 \bullet 4H_2O$ (Cancrinite)

DRIFT spectra of kaolinite reaction products

Wavenumber (cm⁻¹)

Montmorillonite: Dissolution and precipitation of Si (mmol kg⁻¹ clay)

Chemical Formula:Na_{0.56}[Si_{7.98}Al_{0.02}]Al_{3.01}Fe_{0.41}Mg_{0.54}Ti_{0.02}O₂₀(OH)₄

Montmorillonite: Dissolution and precipitation of AI (mmol kg⁻¹ clay)

XRD patterns of montmorillonite as a function of reaction time

VaAlSiO₄ (Linde Type A)

Na₈(Al₆Si₆O₂₄)(NO₃)₂•4H₂O (Cancrinite)

Solid phase reaction products

- Strontium aluminum silicate hydrate (▼) Zeolite: chabazite (Sr); Na_{4-2x}Sr_xAl₄Si₈O₂₄•12H₂O *Zeolite structure Type Name-Code : Chabazite -CHA* Crystal system : Rhombohedral
- 2. Sodium aluminum silicate hydrate (▼)
 Zeolite: unnamed zeolite; 1.08Na_{2-2x}Sr_xO Al₂O₃ 1.68SiO₂•1.8H₂O *Zeolite structure Type Name-Code : Sodalite-SOD*Crystal system : Cubic
- 3. Sodium aluminum nitrate silicate hydrate (▼)
 Zeolite: unnamed zeolite; Na_{8-2x}Sr_x(Al₆Si₆O₂₄)(NO₃)₂•4H₂O
 Zeolite structure Type Name-Code : Cancrinite-CAN Crystal system : Hexagonal
- 4. Sodium aluminum silicate (▼)
 Zeolite: Zeolite A (Na); NaAlSiO₄ *Zeolite structure Type Name-Code : Linde Type A-LTA*Crystal system : Cubic

Aluminum coordination in kaolinite and zeolite structures

Octahedral sites

Tetrahedral sites

²⁷AI MAS NMR spectra of kaolinite transformation

Al^{IV}/Al^{VI} ratio measured by NMR

X-ray diffraction: acid oxalate extracted kaolinite after 6 month reaction time with STWL

Uptake of Cs and Sr during mineral transformation KGa-2 (mmol kg⁻¹ clay)

Uptake of Cs and Sr during mineral transformation SWy-2 (mmol kg⁻¹ clay)

EDX of solid products

5 um

Heteronuclear Correlation NMR Studies: ²⁹Si/¹³³Cs TRAPDOR Experiments

Non-mobile Cs at room temperature is associated with the kaolinite phase.

Mobility in a zeolite phase may be an issue.

²⁹Si Frequency (ppm from TMS)

Sr-K edge EXAFS spectra of kaolinite reacted with

 $Cs/Sr = 10^{-3} M$

Early times consistent with SrCO₃ solid.

At long times, second shell appears to be Al or Si.

Distances uncorrected for phase shift.

Summary and Implications: Lability of radionuclides is coupled to mineral transformations

- Kaolinite and montmorillonite are transformed to chabazite, sodalite or Linde type A and then cancrinite over 190 d in STWL.
- Mineral transformation rates depend on contaminant concentrations: rates decrease as Cs and Sr concentrations are increased from 10⁻⁵ to 10⁻³ M.
- Cs and Sr are incorporated into increasingly recalcitrant (less available) forms with increased aging time.

Summary (cont'd)

- Intense weathering, coupled to Ostwald ripening processes increase mineral crystallinity and decreasing mobility of these radionuclide contaminants in the near field STWL environment.
- Radionuclide fate after removal of STWL source is not clear.

Current and FY02 work

- Extending experiments to longer term (1yr and 2 yr).
- Desorption kinetics of Cs and Sr coupled to dissolution of metastable solid-phase products at neutral pH and moderate ionic strength.
- Sr K-edge EXAFS and HRXRD analysis of the specimen clay time series', establish the siting of Sr in the secondary phases.
- Presentation of results at national meetings (ACS, AGU, SSSA) and preparation of manuscripts for journal publication.

Sediments: Dissolution and precipitation of Si (mmol kg⁻¹ sediment)

Initial Cs & Sr = 10⁻⁵ M

Hanford Coarse

Hanford Fine

Ringold Silt

SEM images of (a-c) unreacted sediments (d-f) 6 mo weathering products. Initial Cs & Sr = 10^{-5} M.

DRIFT Spectra

Hanford Coarse Hanford Fine

Ringold Silt

Wavenumber cm⁻¹

Sediments: Sr uptake kinetics

Sorbed Sr (mmol kg⁻¹ sediment)

Reaction time (d)

Sediments: Cs uptake kinetics

Sorbed Cs (mmol kg⁻¹ sediment)

Initial Concentrations:

Sediments: Desorption of Sr

Sediments: Desorption of Cs

Kaolinite: Dissolution and precipitation of Fe (mmol kg⁻¹ clay)

Montmorillonite: Dissolution and precipitation of Fe (mmol kg⁻¹ clay)

¹H/²⁹Si CPMAS NMR Studies of Kaolinite Transformation

Frequency (ppm from TMS)

TGA of Kaolinite at 93 d

TEM images of (A) unreacted kaolinite, and reacted kaolinite after 190 d with Cs/Sr at: (B) 10⁻⁵ M, (C) 10⁻⁴ M, and (D) 10⁻³ M.

Mass loss of kaolinite as measured by TGA

Sediments: Dissolution and precipitation of Al

(mmol kg⁻¹ sediment)

Initial Cs & Sr = 10⁻⁵ M

²⁹Si MAS NMR Studies of Kaolinite Transformation

Frequency (ppm from TMS)