Medical: 5 Pulmonary: 1

UNIT TERMINAL OBJECTIVE

5-1 At the completion of this unit, the paramedic student will be able to integrate pathophysiological principles and assessment findings to formulate a field impression and implement the treatment plan for the patient with respiratory problems.

COGNITIVE OBJECTIVES

At the completion of this unit, the paramedic student will be able to:

- 5-1.1 Discuss the epidemiology of pulmonary diseases and conditions. (C-1)
- 5-1.2 Identify and describe the function of the structures located in the upper and lower airway. (C-1)
- 5-1.3 Discuss the physiology of ventilation and respiration. (C-1)
- 5-1.4 Identify common pathological events that affect the pulmonary system. (C-1)
- 5-1.5 Discuss abnormal assessment findings associated with pulmonary diseases and conditions. (C-1)
- 5-1.6 Compare various airway and ventilation techniques used in the management of pulmonary diseases. (C-3)
- 5-1.7 Review the pharmacological preparations that paramedics use for management of respiratory diseases and conditions. (C-1)
- 5-1.8 Review the pharmacological preparations used in managing patients with respiratory diseases that may be prescribed by physicians. (C-1)
- 5-1.9 Review the use of equipment used during the physical examination of patients with complaints associated with respiratory diseases and conditions. (C-1)
- 5-1.10 Identify the epidemiology, anatomy, physiology, pathophysiology, assessment findings, and management for the following respiratory diseases and conditions: (C-1)
 - a. Adult respiratory distress syndrome
 - b. Bronchial asthma
 - c. Chronic bronchitis
 - 4. Emphysema
 - 5. Pneumonia
 - 6. Pulmonary edema
 - 7. Pulmonary thromboembolism
 - 8. Neoplasms of the lung
 - 9. Upper respiratory infections
 - 10. Spontaneous pneumothorax
 - 11. Hyperventilation syndrome

AFFECTIVE OBJECTIVES

At the completion of this unit, the paramedic student will be able to:

- 5-1.11 Recognize and value the assessment and treatment of patients with respiratory diseases. (A-2)
- 5-1.12 Indicate appreciation for the critical nature of accurate field impressions of patients with respiratory diseases and conditions. (A-2)

PSYCHOMOTOR OBJECTIVES

At the completion of this unit, the paramedic student will be able to:

- 5-1.13 Demonstrate proper use of airway and ventilation devices. (P-1)
- 5-1.14 Conduct a history and patient assessment for patients with pulmonary diseases and conditions. (P-1)
- 5-1.15 Demonstrate the application of a CPAP/ BiPAP unit. (P-1)

DECLARATIVE

- I. Introduction
 - A. Epidemiology
 - 1. Incidence
 - a) Respiratory complaints are a major aspect of EMS, resulting in 28% of all EMS chief complaints according to a US study of over 2.5 million EMS calls
 - 2. Mortality/ morbidity
 - a) Over 200,000 persons die from respiratory emergencies each year
 - 3. Risk factors
 - a) Intrinsic factors which increase the risk of developing respiratory disease
 - (1) Genetic predisposition
 - (a) Influences development of
 - (i) Asthma
 - (ii) COPD
 - (iii) Carcinomas
 - (2) Associated cardiac or circulatory pathologies
 - (a) Influences development of
 - (i) Pulmonary edema
 - (ii) Pulmonary emboli
 - (3) Stress
 - (a) Increases the severity of respiratory complaints
 - (b) May be associated with the frequency of exacerbations of asthma and COPD
 - b) Extrinsic factors which increase the risk of developing respiratory disease
 - (1) Smoking
 - (a) Increases the prevalence of COPD and carcinomas
 - (b) Increases the severity of virtually all respiratory disorders
 - (2) Environmental pollutants
 - (a) Increases the prevalence of COPD
 - (b) Increases the severity of all obstructive disorders
 - B. Anatomy and physiology review
 - 1. Global physiology of the pulmonary system
 - a) Function

- (1) The respiratory system functions as a gas exchange system
- (2) 10,000 liters of air are filtered, warmed, humidified, and exchanged daily in adults
- (3) Oxygen is diffused into the bloodstream for use in cellular metabolism by the body's 100 trillion cells
- (4) Wastes, including carbon dioxide, are excreted from the body via the respiratory system
- b) Physiology
 - (1) Ventilation
 - (a) Ventilation refers to the process of air movement in and out of the lungs
 - (b) In order for ventilation to occur, the following functions must be intact
 - (i) Neurologic control (brainstem) needs to initiate inspiration
 - (ii) Nerves between the brainstem and the muscles of respiration (diaphragm & intercostals) need to be intact and undamaged
 - (iii) Diaphragm and intercostal
 muscles must be functional and non traumatized
 - (iv) Upper airways must be intact and patent
 - (v) Lower airways must be intact and patent
 - (vi) The alveoli must be intact and noncollapsed
 - (c) Emergent intervention for ventilation problems includes
 - (i) Opening the upper and lower airways
 - (ii) Providing assisted ventilation
 - (2) Diffusion
 - (a) Diffusion refers to the process of gas exchange between the air-filled alveoli and the pulmonary capillary bed
 - (b) Gas exchange is driven by simple diffusion - gases from areas of high concentration to areas of low concentration (gas exchange continues

- until the concentrations are equal) (c) In order for diffusion to occur, the
 - following functions must be intact
 - (i) The alveolar walls must be intact and not thickened
 - (ii) The interstitial space (between the alveoli and capillary wall) must not be enlarged or filled with fluid
 - (iii) The capillary walls must be intact and not thickened
- (d) Emergent intervention for diffusion problems includes
 - (i) Provision of high flow oxygen
 - (ii) Taking measures to reduce inflammation in the interstitial space
- (3) Perfusion
 - (a) Perfusion refers to the process of circulating blood through the pulmonary capillary bed
 - (b) In order for perfusion to occur, the following functions must be intact
 - (i) There must be adequate blood volume (and adequate hemoglobin within the blood)
 - (ii) The pulmonary capillaries must be intact and not occluded
 - (iii) The left heart must be functioning properly to assure a smooth flow of blood through the pulmonary capillary bed
 - (c) Emergent intervention for perfusion problems includes
 - (i) Ensuring adequate circulating volume and hemoglobin levels
 - (ii) Optimizing left heart function as necessary
- c) Rationale behind learning physiology
 - (1) There are many, many different pulmonary diseases
 - (2) Many diseases act in a variety of different ways on a number of body systems

- (3) Learning the pathophysiology of every respiratory disease is impossible at the paramedic level, and is not a useful exercise because of the dynamic nature of newly developing or identified pulmonary pathologies
- (4) However, all respiratory problems, old or new, can be categorized as impacting ventilation, diffusion, or perfusion
- (5) Treatment can be initiated rapidly and effectively once the problem has been identified as ventilation, diffusion, perfusion or a combination
- 2. Anatomy of the pulmonary system
 - a) The upper airway
 - (1) Functions
 - (a) Conduit for air
 - (b) Filtration
 - (c) Warming
 - (d) Humidification
 - (e) Protection of lower airway
 - (2) Structures
 - (a) Nose
 - (b) Pharynx
 - (c) Larynx
 - b) The lower airway
 - (1) Functions
 - (a) Conduit for air
 - (b) Filtration
 - (c) Warming
 - (d) Humidification
 - (e) Removal of foreign particles
 - (2) Structures
 - (a) Trachea
 - (b) Bronchi
 - (c) Bronchioles
 - (d) Cilia
 - c) The gas exchange interface
 - (1) Functions
 - (a) Facilitate gas exchange
 - (b) Transfer gases
 - (c) Mechanism and normals
 - (d) Diffusion

United States Department of Transportation

- (e) Venous partial pressures of gases
- (f) Arterial partial pressures of gases
- (q) Oxygen saturation
- (h) Oxyhemoglobin dissociation curve
- (2) Structures
 - (a) Alveoli
 - (b) Interstitial space
 - (c) Pulmonary capillary bed
- d) The chest wall
 - (1) Functions
 - (a) Ventilation
 - (b) Protection of lungs and airways
 - (c) Mechanism and normals
 - (d) The process of inspiration and expiration
 - (2) Structures
 - (a) Diaphragm is the major muscle of respiration
 - (b) Intercostal muscles
 - (c) Accessory muscles
 - (d) Pleural space
- e) The neurologic control of breathing
 - (1) Functions
 - (a) To control ventilation in coordination with physiologic needs
 - (b) Mechanism and normals
 - (c) Driven primarily by the pH of the cerebrospinal fluid - which is influenced by the PaCO₂
 - (d) Secondary drive is the partial pressure of CO_2 (PaCO₂)
 - (e) Tertiary drive (typically only utilized in a small number of individuals with severe pulmonary disease) is the PaO_2 as measured by peripheral baroreceptors located in the aortic arch and carotid artery
 - (2) Structures
 - (a) Medulla
 - (b) Phrenic nerve innervate the diaphragm
 - (c) Spinal nerves (thoracic levels)

- innervate the intercostal
 (d) Hering-Breuer reflex prevents
 overinflation
- II. General system pathophysiology, assessment and management
 - A. Pathophysiology
 - 1. A variety of problems can impact the pulmonary system's ability to achieve its goal of gas exchange to provide for cellular needs and excretion of wastes
 - 2. Understanding these problems globally can enable the paramedic to quickly and effectively pinpoint probable causes and necessary interventions
 - 3. Specific pathophysiologies
 - a) Ventilation
 - (1) Upper airway obstruction
 - (a) Trauma
 - (b) Epiglottis
 - (c) Foreign body obstruction
 - (d) Inflammation of the tonsils
 - (2) Lower airway obstruction
 - (a) Trauma
 - (b) Obstructive lung disease
 - (c) Mucous accumulation
 - (d) Smooth muscle spasm
 - (e) Airway edema
 - (3) Chest wall impairment
 - (a) Trauma
 - (b) Hemothorax
 - (c) Pneumothorax
 - (d) Empyema
 - (e) Pleural inflammation
 - (4) Problems in neurologic control
 - (a) Brainstem malfunction
 - (i) CNS depressant drugs
 - (ii) CVA or other medical neurologic condition
 - (iii) Trauma
 - (b) Phrenic/ spinal nerve dysfunction
 - (i) Trauma
 - (ii) Neuromuscular diseases

United States Department of Transportation National Highway Traffic Safety Administration **Paramedic:** National Standard Curriculum

- b) Diffusion
 - (1) Inadequate oxygen concentration in ambient air
 - (2) Alveolar pathology
 - (a) Asbestosis, other environmental lung diseases
 - (b) Blebs/ bullaes associated with chronic obstructive lung disease
 - (c) Inhalation injuries
 - (3) Interstitial space pathology
 - (a) Pulmonary edema
 - - (a) Left heart failure
 - (b) Idiopathic pulmonary
 hypertension
 - - (a) ARDS
 - (b) Asbestosis, environmental lung
 diseases
 - (c) Near-drowning
 - (d) Post-hypoxia
 - (e) Inhalation injuries
 - (4) Capillary bed pathology
 - (a) Severe atherosclerosis
- c) Perfusion
 - (1) Inadequate blood volume/ hemoglobin levels
 - (a) Hypovolemia
 - (b) Anemia
 - (2) Impaired circulatory blood flow
 - (a) Pulmonary embolus
 - (3) Capillary wall pathology
 - (a) Trauma
- B. Assessment findings
 - 1. Scene size-up
 - a) Pulmonary complaints may be associated with exposure to a wide variety of toxins, including carbon monoxide, toxic products of combustion, or environments which have deficient ambient oxygen (such as silos, enclosed storage spaces etc.)
 - b) It is critical to assure a safe environment for all EMS personnel before initiating patient

United States Department of Transportation National Highway Traffic Safety Administration **Paramedic:** National Standard Curriculum contact

- c) If necessary, individuals with specialized training and equipment should be utilized to remove the patient from a hazardous environment
- 2. Initial assessment
 - a) A major focus of the initial assessment is the recognition of life-threat; there are a variety of pulmonary conditions which may offer a very real risk for patient death
 - b) Recognition of life threat and the initiation of resuscitation takes priority over detailed assessment
 - c) Signs of life-threatening respiratory distress in adults, listed from most ominous to least severe
 - (1) Alterations in mental status
 - (2) Severe cyanosis
 - (3) Absent breath sounds
 - (4) Audible stridor
 - (5) 1-2 word dyspnea
 - (6) Tachycardia > 130 beats/ minute
 - (7) Pallor and diaphoresis
 - (8) The presence of retractions/ use of the accessory muscles
- 3. Focused history and physical examination
 - a) Chief complaint
 - (1) Dyspnea
 - (2) Chest pain
 - (3) Cough
 - (a) Productive
 - (b) Non-productive
 - (c) Hemoptysis
 - (4) Wheezing
 - (5) Signs of infection
 - (a) Fever/ chills
 - (b) Increased sputum production
 - b) History
 - (1) Previous experiences with similar/ identical symptoms
 - (a) The patient's subjective description of acuity is an accurate indicator of the acuity of this episode if the pathology is chronic
 - (b) Asking the patient "what happened the

last time you had an attack this bad" is an extremely useful predictor of this episode's course

- (2) Known pulmonary diagnosis
 - (a) If the diagnosis is not known to the paramedic, an effort should be made to learn whether it is primarily related to ventilation, diffusion, perfusion, or a combination
- (3) History of previous intubation is an accurate indicator of severe pulmonary disease, and suggests that intubation may be required again
- (4) Medication history
 - (a) Current medications
 - (b) Medication allergies
 - (c) Pulmonary medications
 - (i) Sympathomimetic
 - (a) Inhaled
 - (b) Oral
 - (c) Parenteral
 - (ii) Corticosteroid
 - (a) Inhaled
 - (b) Oral (daily versus during exacerbations only)
 - (iii) Chromolyn sodium
 - (iv) Methylxanthines (theophyllin
 preparations)
 - (v) Antibiotics
 - (d) Cardiac-related drugs
- (5) History of the present episode
- (6) Exposure/ smoking history
- c) Physical exam
 - (1) General impression
 - (a) Position
 - (i) Sitting
 - (ii) "Tripod" position
 - (iii) Feet dangling
 - (b) Mentation
 - (i) Confusion is a sign of hypoxemia or hypercarbia
 - (ii) Restlessness and irritability may be signs of fear and hypoxemia

United States Department of Transportation National Highway Traffic Safety Administration **Paramedic:** National Standard Curriculum

- (iii) Severe lethargy or coma is a sign of hypercarbia
- (c) Ability to speak
 - (i) 1-2 word dyspnea versus ability to speak freely
 - (ii) Rapid, rambling speech as a sign of anxiety and fear
- (d) Respiratory effort
 - (i) Hard work indicates obstruction
 - (ii) Retractions
 - (iii) Use of accessory muscles
- (e) Color
 - (i) Pallor
 - (ii) Diaphoresis
 - (iii) Cyanosis
 - (a) Central
 - (b) Peripheral
- (2) Vital signs
 - (a) Pulse
 - (i) Tachycardia is a sign of hypoxemia and the use of sympathomimetic medications
 - (ii) In the face of a pulmonary etiology, bradycardia is an ominous sign of severe hypoxemia and imminent cardiac arrest
 - (b) Blood pressure
 - (i) Hypertension may be associated with sympathomimetic medication use
 - (c) Respiratory rate
 - (i) The respiratory rate is not a very accurate indicator of respiratory status unless it is very slow
 - (ii) Trends are essential in evaluating the chronic patient
 - (a) Slowing rate in the face of an unimproved condition suggests exhaustion and impending respiratory insufficiency
 - (d) Respiratory patterns
 - (i) Eupnea
 - (ii) Tachypnea
 - (iii) Cheyne-Stokes

- (iv) Central neurogenic hyperventilation
- (v) Kussmaul
- (vi) Ataxic (Biot's)
- (vii) Apneustic
- (viii) Apnea
- (3) Head/ neck
 - (a) Pursed lip breathing
 - (b) Use of accessory muscles
 - (c) Sputum
 - (i) Increasing amounts suggests infection
 - (ii) Thick, green or brown sputum suggests infection and/ or pneumonia
 - (iii) Yellow or pale gray sputum may
 be related to allergic or
 inflammatory etiologies
 - (iv) Frank hemoptysis often accompanies
 severe tuberculosis or carcinomas
 - (v) Pink, frothy sputum is associated with severe, late stages of pulmonary edema
 - (d) Jugular venous distention may accompany right sided heart failure, which may be caused by severe pulmonary obstruction
- (4) Chest
 - (a) Signs of trauma
 - (b) Barrel chest demonstrates the presence of long-standing chronic obstructive lung disease
 - (c) Retractions
 - (d) Symmetry
 - (e) Breath sounds
 - (i) Normal
 - (a) Bronchial
 - (b) Bronchovesicular
 - (c) Vesicular
 - (ii) Abnormals
 - (a) Stridor
 - (b) Wheezing
 - (c) Ronchi (low wheezes)
 - (d) Rales (crackles)
 - (e) Pleural friction rub

- (5) Extremities
 - (a) Peripheral cyanosis
 - (b) Clubbing is indicative of long-standing chronic hypoxemia
 - (c) Carpopedal spasm may be associated with hypocapnia resulting from periods of rapid, deep respiration
- d) Diagnostic testing
 - (1) Pulse oximetry
 - (a) Used to evaluate or confirm the adequacy of oxygen saturation
 - (b) May be inaccurate in the presence of conditions which abnormally bind hemoglobin, including carbon monoxide poisoning or methemoglobinemia
 - (2) Peak flow
 - (a) Provides a baseline assessment of airflow for patients with obstructive lung disease
 - (3) Capnometry
 - (a) Provides ongoing assessment of endotracheal tube position End-tidal CO₂ drops immediately when the tube is displaced from the trachea
 - (b) Quantitative versus qualitative
- C. Management
 - 1. Airway and ventilation
 - a) Head-tilt/ chin-lift
 - b) Jaw thrust without head-tilt
 - c) Head-tilt/ jaw thrust
 - d) Oropharyngeal airway
 - e) Nasopharyngeal airway
 - f) Nasal cannula
 - g) Simple oxygen mask
 - h) Nonrebreather mask
 - i) Pharyngeal tracheal double-lumen airway
 - j) Pharyngeal tracheal lumen airway
 - k) Bag-valve-mask
 - 1) Bag-valve-mask with PEEP
 - m) CPAP
 - n) Orotracheal intubation
 - o) Nasotracheal intubation
 - p) Suctioning

United States Department of Transportation
National Highway Traffic Safety Administration

National Highway Traffic Safety Administration

Paramedic: National Standard Curriculum

- q) Endotracheal tube
- Oxygen powered manually triggered ventilators r)
- s) Automatic transport ventilator
- Needle cricothyroidotomy t)
- Surgical cricothyroidotomy u)
- 2. Circulation
- 3. Pharmacological
 - a) Oxygen
 - b) Sympathomimetic
 - C) Albuterol
 - d) Epinephrine
 - Isoetharine e)
 - f) Metaproterenol sulfate
 - Racemic epinephrine a)
 - h) Terbutaline sulfate
 - Corticosteroid i)
 - j) Methylxanthines
 - Theophylline ethylenediamine aminophylline k)
 - 1) Antibiotics
 - Mucokinetic drugs m)
 - Mucolytic drugs n)
 - Bronchomucotropic drugs 0)
 - Prophylactic asthma drugs p)
 - Cough suppressants antitussive agents q)
 - "Street" drugs r)
- 4. Non-pharmacological
 - Positioning sitting up
 - b) Back blows
- 5. Monitoring and devices used in pulmonary care
 - Pulse oximetry a)
 - b) Peak flow
 - C) Capnometry
- 6. Transport considerations
 - Appropriate mode a)
 - b) Appropriate facility

III. Specific illness

- Acute/ adult respiratory distress syndrome A.
 - Respiratory syndrome characterized by respiratory insufficiency and hypoxia
 - **Triggers** a)
 - Aspiration (1)
 - Cardio-pulmonary bypass surgery (2)
 - (3) Gram-negative sepsis
 - Multiple blood transfusions (4)

15

- (5) Oxygen toxicity
- (6) Trauma
- (7) Pneumonia
- (8) Respiratory Infection
- 2. Findings
 - a) Shortness of breath
 - b) Rapid breathing
 - c) Inadequate oxygenation
 - d) Decreased lung compliance
- 3. Interventions
 - a) Airway management
 - b) Oxygen administration
 - (1) Mechanical ventilation
 - (2) PEEP
 - c) Improving underlying condition
 - d) Removing the cause
 - e) Suction prn
- B. Obstructive airway diseases
 - A spectrum of diseases which affect a substantial number of individuals worldwide
 - 2. Diseases include asthma and COPD (which includes emphysema and chronic bronchitis)
 - 3. Epidemiology
 - a) Morbidity/ mortality
 - (1) Overall
 - (2) Asthma 4-5% of US population
 - (3) 20% of adult males have chronic bronchitis
 - b) Causative factors
 - (1) Cigarette smoking
 - (2) Exposure to environmental toxins
 - (3) Genetic predisposition
 - c) Factors which may exacerbate underlying conditions
 - (1) Intrinsic
 - (a) Stress is a significant exacerbating factor, particularly in adults
 - (b) Upper respiratory infection
 - (c) Exercise
 - (2) Extrinsic
 - (a) Tobacco smoke
 - (b) Allergens (including foods, animal danders, dusts, molds, pollens)
 - (c) Drugs
 - (d) Occupational hazards
 - d) Prevention strategies
 - (1) Smoking prevention, particularly for youth
 - (2) Stop smoking for existing smokers
 - (3) Control of air pollution
 - (4) Provision of smoke-free workplaces and public locations
 - 4. Anatomy and physiology review
 - a) Ventilation disorders
 - b) Obstruction occurs in the bronchioles, and may be the result of

- (1) Smooth muscle spasm
 - (a) Beta receptors
- (2) Mucous
 - (a) Goblet cells
 - (b) Cilia
- (3) Inflammation
- c) Obstruction may be reversible or irreversible
- d) Obstruction causes air trapping through the following mechanism
 - (1) Bronchioles dilate naturally on inspiration
 - (2) Dilation enables air to enter the alveoli despite the presence of obstruction
 - (3) Bronchioles naturally constrict on expiration
 - (4) Air becomes trapped distal to obstruction on exhalation
- 5. Pathophysiology varies slightly by disease
 - a) Asthma
 - (1) Reversible obstruction
 - (2) Obstruction caused by a combination of smooth muscle spasm, mucous, and edema
 - (3) Exacerbating factors tend to be extrinsic in children, intrinsic in adults
 - (4) Status asthmaticus prolonged exacerbation which doesn't respond to therapy
 - b) Chronic bronchitis
 - (1) Reversible and irreversible obstruction
 - (2) Characterized by hyperplasia and hypertrophy of mucous-producing glands
 - (3) Clinical definition productive cough for at least 3 months per year for 2 or more consecutive years
 - (4) Typically associated with cigarette smoking, but may also occur in nonsmokers
 - c) Emphysema
 - (1) Irreversible airway obstruction
 - (2) Diffusion defect also exists because of the presence of blebs
 - (3) Because blebs have extremely thin walls, they are prone to collapse
 - (4) To prevent collapse, the patient often exhales through pursed lips, effectively maintaining a positive airway pressure
 - (5) Almost always associated with cigarette smoking or significant exposure to environmental toxins
- 6. Assessment findings
 - a) Signs of severe respiratory impairment
 - (1) Altered mentation
 - (2) 1-2 word dyspnea
 - (3) Absent breath sounds
 - b) Chief complaint
 - (1) Dyspnea
 - (2) Cough
 - (3) Nocturnal awakening with dyspnea and wheezing
 - c) History
 - (1) Personal or family history of asthma and/ or allergies
 - (2) History of acute exposure to pulmonary irritant

- (3) History of prior similar episodes
- d) Physical findings
 - (1) Wheezing may be present in ALL types of obstructive lung disease
 - (2) Retractions and/ or use of accessory muscles
- e) Diagnostic testing
 - (1) Pulse oximeter to document degree of hypoxemia and response to therapy
 - (2) Peak flow to establish baseline airflow
- 7. Management
 - a) Airway and ventilation
 - (1) Intubation as required
 - (2) Assisted ventilation may be necessary
 - (3) High flow oxygen
 - b) Circulation
 - (1) Intravenous therapy may be necessary to
 - (a) Improve hydration
 - (b) Thin and loosen mucous
 - (2) Pharmacologic
 - (a) Adrenergic stimulants
 - (b) Albuterol
 - (c) Metaproterenol
 - (d) Terbutaline
 - (e) Atropine sulfate
 - (f) Magnesium
 - (g) Methylxanthines
 - (h) Corticosteroid
 - c) Supportive care
 - d) Transport considerations
 - (1) Appropriate mode
 - (2) Appropriate facility
 - (3) Continue monitoring
 - (4) Contact medical direction
 - e) Psychological support/ communication strategies

C. Pneumonia

- 1. Epidemiology
 - a) Incidence
 - (1) Fifth leading cause of death in the US
 - (2) Not a single disease, but a group of specific infections
 - b) Risk factors
 - (1) Cigarette smoking
 - (2) Alcoholism
 - (3) Exposure to cold
 - (4) Extremes of age (old or young)
 - c) Anatomy and physiology review
 - (1) Cilia
 - (2) Causes and process of mucous production
- 2. Pathophysiology
 - a) Ventilation disorder
 - b) Infection of lung parenchyma

- (1) Most commonly bacterial
- (2) May also be viral or fungal
- c) May cause alveolar collapse (atelectasis)
- Localized inflammation/ infection may become systemic, leading to sepsis and septic shock
- e) Community acquired versus hospital acquired
- 3. Assessment findings
 - a) Typical pneumonia
 - (1) Acute onset of fever and chills
 - (2) Cough productive of purulent sputum
 - (3) Pleuritic chest pain (in some cases)
 - (4) Pulmonary consolidation on auscultation
 - (5) Location of bronchial breath sounds
 - (6) Rales
 - (7) Egophony
 - b) Atypical pneumonia
 - (1) Non-productive cough
 - (2) Extra-pulmonary symptoms
 - (3) Headache
 - (4) Myalagias
 - (5) Fatigue
 - (6) Sore throat
 - (7) Nausea, vomiting, diarrhea
 - (8) Fever and chills
- 4. Management
 - a) Airway and ventilation
 - (1) Intubation may be required
 - (2) Assisted ventilation as necessary
 - (3) High flow oxygen
 - b) Circulation
 - (1) Intravenous access
 - (2) Administration of IV fluids
 - (3) Improve hydration
 - (4) Thin and mobilize mucous
 - c) Pharmacological
 - (1) Bronchodilators may be required if airway obstruction is severe or if the patient has accompanying obstructive lung disease
 - (2) Antibiotic therapy by prescription
 - (3) Antipyretics
 - d) Non-pharmacological
 - (1) Cool if high fever
 - e) Transport considerations
 - (1) Elderly, over 65 years
 - (a) Significant co-morbidity
 - (b) Inability to take oral medications
 - (c) Support complications
 - (d) Appropriate facility
 - f) Psychological support/ communication strategies
- D. Pulmonary edema

- 1. Not a disease but a pathophysiological condition
 - a) High pressure (cardiogenic)
 - b) High permeability (non-cardiogenic)
- 2. Epidemiology
 - a) Risk factors vary based on type
 - (1) High pressure (cardiogenic)
 - (a) Acute myocardial infarction
 - (b) Chronic hypertension
 - (c) Myocarditis
 - (2) High permeability (non-cardiogenic)
 - (a) Acute hypoxemia
 - (b) Near-drowning
 - (c) Post-cardiac arrest
 - (d) Post shock
 - (e) High altitude exposure
 - (f) Inhalation of pulmonary irritants
 - (g) Adult respiratory distress syndrome (ARDS)
- 3. Anatomy and physiology review
 - a) Alveoli
 - b) Pulmonary capillaries
 - c) Interstitial space and fluid
 - d) Pulmonary circulation
 - e) Role of surfactant
 - f) Hydrostatic pressure
 - g) Colloid osmotic pressure
 - h) Capillary wall damage
 - i) Left sided heart failure
 - j) Lymphatic drainage
 - k) Pulmonary blood pressures
 - I) Starling's law of the heart
 - m) Hypoalbuminemic states (liver disease)
- 4. Pathophysiology
 - a) Diffusion disorder
 - b) High pressure (cardiogenic)
 - (1) Left sided heart failure
 - (2) Increase in pulmonary venous pressure
 - (3) Increase in hydrostatic pressure
 - (4) Engorgement of pulmonary vasculature
 - (5) Failure of cough and lymphatics to drain fluids
 - (6) Excessive accumulation of fluid in the interstitial space
 - (7) Widening interstitial space impairs diffusion
 - (8) In severe cases, fluid may accumulate in the alveoli
 - c) High permeability (non-cardiogenic)
 - (1) Disruption of the alveolar-capillary membranes caused by
 - (a) Severe hypotension
 - (b) Severe hypoxemia (post-drowning, post-cardiac arrest, severe seizure, prolonged hypoventilation)
 - (c) High altitude
 - (d) Environmental toxins

- (e) Septic shock
- (2) Disrupted membranes leak fluid into the interstitial space
- (3) Widened interstitial space impairs diffusion
- Assessment findings
 - a) High pressure (cardiogenic)
 - (1) Refer to cardiology unit
 - b) High permeability (non-cardiogenic)
 - (1) History of associated factors
 - (a) Hypoxic episode
 - (b) Shock (hypovolemic, septic, or neurogenic)
 - (c) Chest trauma
 - (d) Recent acute inhalation of toxic gases or particles
 - (e) Recent ascent to high altitude without climatizing
 - (2) Dyspnea
 - (3) Orthopnea
 - (4) Fatigue
 - (5) Reduced exercise capacity
 - (6) Pulmonary rales, particularly in severe cases
 - c) Diagnostic testing
 - (1) Pulse oximetry
- 6. Management
 - a) High pressure (cardiogenic)
 - (1) Refer to cardiology unit
 - b) High permeability (non-cardiogenic)
 - (1) Airway and ventilation
 - (2) Intubation as necessary
 - (a) Assisted ventilation may be required
 - (b) High flow oxygen
 - c) Circulation
 - (1) Avoid fluid excess
 - (2) Monitor IV flow rates carefully
 - d) Pharmacological
 - (1) Diuretics may be considered in severe cases, but are not usually appropriate since the etiology is NOT high pressure in the pulmonary capillary bed
 - (2) Corticosteroid to stabilize pulmonary capillary and alveolar walls
 - e) Non-pharmacological
 - (1) Position the patient in an upright position with legs dangling
 - (2) Rapid removal from any environmental toxins
 - (3) Rapid descent in altitude if high altitude pulmonary edema (HAPE) is suspected
 - f) Transport decisions
 - (1) Appropriate mode
 - (2) Appropriate facility
 - g) Psychological support/ communication strategies
- E. Pulmonary thromboembolism
 - Epidemiology
 - a) Incidence
 - (1) Responsible for 50,000 death annually

- (2) 5% of sudden deaths
- b) Mortality/ morbidity
 - (1) Less than 10% of pulmonary emboli result in death
- c) Risk factors
 - (1) Recent surgery
 - (2) Pregnancy
 - (3) Oral contraceptives
 - (4) Infection
 - (5) Cancer
 - (6) Sickle cell anemia
 - (7) Long bone fractures
 - (8) Prolonged inactivity
 - (9) Bedridden patients
- d) Prevention strategies
- 2. Anatomy and physiology review
 - a) Deep veins in lower legs
 - b) Venous system
 - c) Coagulation of blood
 - d) Role of venous stasis
 - e) Venous wall injury
 - f) Venous valves
 - g) Pulmonary vasculature
 - h) Ventilation-perfusion mismatch
- 3. Pathophysiology
 - a) Perfusion disorder
 - b) Deep vein stasis
 - c) Injury to view wall
 - d) Hypercoagulability
 - e) Platelet aggregation
 - f) Embolism size
 - g) Embolism location in the legs
 - h) Embolism location in the lungs
 - i) Complete loss of perfusion in some area of lungs
 - j) Other causes of pulmonary circulation obstruction
 - (1) Air
 - (2) Fat
 - (3) Foreign objects
 - (4) Venous catheters
 - (5) Amniotic fluid
- 4. Assessment findings depend on size of the clot
 - a) Evidence of significant life-threatening embolus in a proximal location
 - (1) Altered mentation
 - (2) Severe cyanosis
 - (3) Profound hypotension
 - (4) Cardiac arrest
 - b) Chief complaint
 - (1) Chest pain
 - (2) Dyspnea
 - (3) Cough (typically non-productive)

- c) History
 - (1) Sudden onset
 - (2) Identification of risk factors
- d) Physical findings
 - (1) Normal breath sounds or, in severe cases, rales
 - (2) Pleural fiction rub
 - (3) Tachycardia
 - (4) Clinical evidence of thrombophlebitis (found in less than 50%)
 - (5) Tachypnea
 - (6) Hemoptysis (fairly rare)
 - (7) Petechiae on upper thorax and arms
- 5. Management prevention has major role in management
 - a) Depends on the size of the embolism
 - b) Airway and ventilation
 - (1) Intubation if necessary
 - (2) Positive pressure ventilation if required
 - (3) High flow oxygen
 - c) Circulation
 - (1) CPR if required
 - (2) IV therapy; hydration based on clinical symptoms
 - d) Pharmacological
 - (1) Thrombolytic therapy may be appropriate if the diagnosis of pulmonary embolus is confirmed, however, this is rare - especially in the out-ofhospital setting
 - e) Non-pharmacological therapy
 - (1) Support body systems
 - (2) Most severe cases will be managed as a cardiac arrest of unknown origin
 - f) Transport considerations
 - (1) Rapid transport
 - (2) Appropriate mode
 - (3) Appropriate facility
 - g) Psychological support/ communication strategies
- F. Neoplasms of the lung
 - Epidemiology
 - a) Incidence
 - (1) 150,000 have cancer
 - (2) Typical age between 55 to 65
 - (3) Morbidity/ mortality
 - (a) Most die within one year
 - (b) 20% local lung involvement
 - (c) 25% spread to lymph
 - (d) 55% distant metastatic cancer
 - b) Prevention
 - (1) Prevent starting smoking in youth
 - (2) Smoking cessation in smokers
 - (3) Avoidance of environmental hazards, particularly asbestos
 - (4) Cancer screening programs
 - 2. Anatomy and physiology review
 - 3. Pathophysiology

- a) Significant variety in the cell types, and the growth rates associated with each type
- 4. Assessment findings
 - a) Signs of severe distress
 - (1) Altered mentation
 - (2) 1-2 word dyspnea
 - (3) Severe or uncontrollable hemoptysis
 - b) Chief complaints
 - (1) Cough
 - (2) Hemoptysis
 - (3) Dyspnea
 - (4) Hoarseness or voice change
 - (5) Dysphagia
 - c) History
 - (1) Diagnosed history of cancer
 - Physical findings
 - Signs and symptoms vary according to location of the tumor
- 5. Management

d)

- a) Airway and ventilation
 - (1) Intubation if required
 - (2) Assisted ventilation if necessary
 - (3) Oxygen flow rate based on symptoms and pulse oximetry
 - (4) Supportive care
- b) Circulation
 - (1) Many patients with diagnosed lung cancer with have an indwelling catheter in place. Local protocols vary regarding whether this catheter may be used for IV infusion in the field.
 - (2) IV infusion may be required to improve hydration or thin/ mobilize sputum
- c) Pharmacological
 - (1) Out-of-hospital therapy for lung cancer patients is symptomatic, and may include the following
 - (a) Bronchodilators
 - (b) Corticosteroid
 - (c) Continuation of hospital-initiated antibiotics
- d) Transport considerations
 - (1) End stage patients may have advance directives or DNR
 - (2) Supportive care
- e) Psychological support/ communication strategies
 - (1) If diagnosed end stage
 - (a) Death and dying patient
 - (b) Family support
- G. Upper respiratory infection
 - Epidemiology
 - a) Incidence
 - (1) 80 million cases in 1975
 - b) Morbidity/ mortality
 - (1) Rarely life threatening
 - (2) Often exacerbates underlying pulmonary conditions
 - (3) Often become significant infections in patients with suppressed immune

function (such as HIV)

- c) Risk factors
 - (1) Avoidance of exposure is nearly impossible because of the prevalence of causative agents
 - (2) Severity increases in patients with underlying pulmonary conditions
- d) Prevention strategies
 - (1) Handwashing and covering the mouth during sneezing and coughing are essential in preventing spread
- 2. Anatomy and physiology review
 - a) Nasopharynx
 - b) Oropharynx
 - c) Paranasal sinus
 - d) Inner ear
 - e) Middle ear
 - f) Outer ear
 - g) Eustachian tubes
 - h) Epiglottis
 - i) Respiratory epithelium
 - j) Lymphatic system
 - k) Secretory antibody IgA
- 3. Pathophysiology
 - a) A variety of bacteria and virus cause URI
 - b) 20-30% are Group A streptococci
 - c) 50% of pharyngitis have no demonstrated bacterial or viral cause
 - d) Most are self-limiting diseases
- 4. Assessment findings
 - a) Chief complaints
 - (1) Sore throat
 - (2) Fever
 - (3) Chills
 - (4) Headache
 - b) Physical findings
 - (1) Cervical adenopathy
 - (2) Erthyematous pharynx
 - (3) Positive throat culture
- 5. Management
 - a) Airway and ventilation
 - (1) Typically no intervention required
 - Oxygen administration may be appropriate in patients with underlying pulmonary conditions (administer based on symptoms and pulse oximetry)
 - b) Pharmacological
 - (1) Out-of-hospital care is symptomatic, and based in part on the presence of underlying pulmonary conditions
 - (2) Interventions which may be appropriate include
 - (a) Bronchodilators
 - (b) Continuation of prescribed antibiotics
 - (c) Corticosteroid
 - c) Non-pharmacological

- d) Transport considerations
 - (1) Appropriate mode
 - (2) Appropriate facility
- e) Psychological support/ communication strategies
 - Collected throat cultures require family notification of results and followup care
- H. Spontaneous pneumothorax
 - 1. Epidemiology
 - a) Incidence
 - (1) 18 per 100,000
 - b) Morbidity/ mortality
 - (1) 15-20% partial pneumothorax may be well tolerated
 - c) Risk factors
 - (1) Males
 - (2) Younger age
 - (3) Thin body mass
 - (4) History of COPD (secondary spontaneous pneumothorax)
 - 2. Assessment findings
 - a) Chief complaint
 - (1) Shortness of breath
 - (2) Chest pain
 - (3) Sudden onset
 - b) Physical findings
 - (1) Typically minor
 - (a) Pallor
 - (b) Diaphoresis
 - (c) Tachypnea
 - (2) Severe
 - (a) Altered mentation
 - (b) Cyanosis
 - (c) Tachycardia
 - (d) Decreased breath sounds
 - (e) Local hyperresonance to percussion
 - (f) Subcutaneous emphysema
 - 3. Management
 - a) Airway and ventilation
 - (1) Intubation as required
 - (2) Assisted ventilation if necessary
 - (3) Oxygen administration levels based on symptoms and pulse oximetry
 - b) Circulation
 - (1) IV initiation if severe symptoms present
 - c) Pharmacological
 - (1) Not typically necessary; treat symptomatically
 - d) Non-pharmacological
 - (1) Position of comfort/ best ventilation
 - e) Transport considerations
 - (1) Appropriate mode
 - (2) Appropriate facility
 - f) Psychological support/ communication strategies

- I. Hyperventilation syndrome
 - Multiple causes
 - a) Hypoxia
 - b) High altitude
 - c) Pulmonary disease
 - d) Pulmonary disorders
 - e) Pneumonia
 - f) Interstitial pneumonitis, fibrosis, edema
 - g) Pulmonary emboli, vascular disease
 - h) Bronchial asthma
 - i) Cardiovascular disorders
 - j) Congestive heart failure
 - k) Hypotension
 - I) Metabolic disorders
 - m) Acidosis
 - n) Hepatic failure
 - o) Neurologic disorders
 - p) Psychogenic or anxiety hypertension
 - q) Central nervous system infection, tumors
 - r) Drug-induced
 - s) Salicylate
 - t) Methylxanthine derivatives
 - u) Beta-adrenergic agonists
 - v) Progesterone
 - w) Fever, sepsis
 - x) Pain
 - y) Pregnancy
 - Assessment findings
 - a) Chief complaint
 - (1) Dyspnea
 - (2) Chest pain
 - (3) Other symptoms based on etiology
 - (4) Carpopedal spasm
 - b) Physical findings
 - (1) Rapid breath with high minute volume
 - (2) Varying depending on cause of syndrome
 - (3) Carpopedal spasms
 - 3. Pathophysiology
 - a) Depends on cause of syndrome
 - 4. Management
 - a) Depends on cause of syndrome, discussed elsewhere
 - (1) Airway and ventilation
 - (a) Oxygen rate of administration based on symptoms and pulse oximetry
 - (2) If anxiety hyperventilation is confirmed (especially based on patient's prior history) coached ventilation/ rebreathing techniques might be considered
 - b) Circulation
 - (1) Intervention rarely required

- c) Pharmacological
 - (1) Intervention rarely required
- d) Non-pharmacological
 - (1) Intervention rarely required
 - Patients with anxiety hyperventilation will require psychological approaches to calm them
 - (3) Have them mimic your respiratory rate and volume
 - (4) Do not place bag over mouth and nose
- e) Transport considerations
 - (1) Appropriate mode
 - (2) Appropriate facility
- f) Psychological support/ communication strategies
 - (1) Depend on cause of hyperventilation

National Highway Traffic Safety Administration **Paramedic:** National Standard Curriculum