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Abstract 
 

Although theoretical results have been established regarding the utility of pre-
emptive scheduling in reducing average job turn-around time, job suspension/restart is 
not much used in practice at supercomputer centers for parallel job scheduling. A number 
of questions remain unanswered regarding the practical utility of pre-emptive scheduling. 
We explore this issue through a simulation-based study, using job logs from a 
supercomputer center. We develop an adaptive and tunable selective-suspension strategy, 
and demonstrate its effectiveness. We also present new insights into the effect of pre-
emptive scheduling on different job classes. 
 
 
1. Introduction 

 
Although theoretical results on the effect of pre-emptive scheduling strategies in 

reducing average job turn-around time have been well established, pre-emptive 
scheduling is not currently being used for scheduling parallel jobs at supercomputer 
centers. Compared to the large number of studies that have investigated non-preemptive 
scheduling of scheduling parallel jobs, little research has been reported on empirical 
evaluation of preemptive scheduling strategies using real job logs [2,3,7,9].  

 
The basic idea behind preemptive scheduling is simple: if a long running job is 

temporarily suspended and a waiting short job is allowed to run to completion first, the 
wait time of the short job is significantly decreased, without much fractional increase in 
the turn-around time of the long job. Consider a long job with runtime Tl. If after time t, a 
short job arrives with runtime Ts. If the short job were run after completion of the long 
job, the average job turnaround time would be (Tl + (Tl+Ts-t))/2, or Tl + (Ts-t)/2. 
Instead, if the long job were suspended when the short job arrived, the turnaround times 
of the short and long jobs would be Ts and (Ts+Tl) respectively, giving an average of Ts 
+ Tl/2. The average turnaround time with suspension is less if Ts < Tl-t, i.e. the 
remaining runtime of the running job is greater than the runtime of the waiting job. 
However a simple preemptive scheduling strategy (that suspends a running job whenever 
a waiting job’s wait time goes above the wait time of the running job) may not always 
improve the average turnaround time. Consider a situation where a job with runtime T 
starts execution, and immediately another job with the same runtime arrives in the queue. 
Very soon, the wait time of the waiting job will go above that of the running job, causing 
the first job to be suspended to allow the other job to run. But the situation would reverse 
very soon after the waiting job starts running. The two jobs would keep alternating, with 
both finally completing around time 2T (assuming negligible overhead for job 
suspension/restart). The turnaround time for each job, and therefore the average 
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turnaround time would thus be 2T. Without preemption, the average turnaround time 
would have been (T+2T)/2, i.e. 1.5T. These simple examples show that the benefit of 
preemptive scheduling can be very dependent on the job mix being scheduled. Therefore 
it is important to perform evaluations of preemptive scheduling schemes using realistic 
job mixes derived from actual job logs from supercomputer centers. The primary 
contributions of this paper are: 

 
• The development of an adaptive, tunable selective-suspension strategy for pre-

emptive scheduling of parallel jobs, and  
• Characterization of the significant variability in the average job slowdown for 

different job categories, and 
 

We study the effect of preemption on the performance of various categories of 
jobs using the Maui scheduler [16] in its simulation mode. The rest of the paper is 
organized follows. Section 2 presents some basic background on scheduling of parallel 
jobs. Section 3 discusses the simulation environment we use. In Sections 4, a basic 
preemptive scheduling scheme is evaluated. In Sections 5, 6 and 7, enhancements to the 
basic strategy are proposed and evaluated. In Section 8, we evaluate the impact of job-
suspension overheads on pre-emptive scheduling. Section 9 reviews related work. Section 
10 presents our conclusions. 
 
2 Background 
 
 A number of approaches have been proposed in the past for scheduling parallel 
jobs on a cluster of workstations [11,12,13,14,15]. Scheduling is usually viewed using a 
2D chart with time along the horizontal axis and the number of processors along the 
vertical axis. Each job can be thought of as a rectangle whose length is the user estimated 
run time and width is the number of processors required. The simplest way to schedule 
jobs is to use the First-Come-First-Served (FCFS) policy. This approach suffers from low 
system utilization. Backfilling [5,10] was proposed to improve the system utilization and 
has been implemented is several production schedulers [6,8]. Backfilling works by 
identifying “holes” in the 2D chart and moving forward smaller jobs that fit those holes. 
There are two common variations to backfilling - conservative and  aggressive. In 
conservative backfilling, a smaller job is moved forward in the queue as long as it does 
not delay any previously queued job. In aggressive backfilling, a small job is allowed to 
leap forward as long as it does not delay the job at the head of the queue. The scheduler 
maintains the current list of running jobs along with their expected completion times and 
a list of queued jobs with the user estimated run times.  
 
.   
Pseudo-code for aggressive backfilling : 

1. Given the current list of running jobs, find the earliest time that the job at the head 
of the queue can start executing.  

2. Make a reservation for the job at the head of the queue at the calculated time. 
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3. Iterate over each job in the idle queue to find jobs to backfill. A job is eligible for 
backfilling if it will fit in to one of the existing holes in the schedule without 
delaying the job at the head of the queue.  

 
Some of the common metrics used to evaluate the performance of scheduling 

schemes are the average turnaround time and the average bounded slowdown. We have 
used the bounded slowdown for our studies. The bounded slowdown of a job is defined 
as follows:   
 

Bounded Slowdown =  (Completion time  - Queue time)/ Max(Running time, 10) 
 

The threshold of 10 seconds is used to limit the influence of very short jobs on the 
metric. 
 

Pre-emptive scheduling aims at providing lower delay to short jobs relative to 
long jobs. Since long jobs have greater tolerance to delays as compared to short jobs, we 
assign priorities to jobs that adequately capture this. A suitable metric for the priority is 
the xfactor, which increases rapidly for short jobs and gradually for long jobs.  

 
xfactor = (Wait time + Estimated Run Time)/ Estimated Running Time 
 

3. Simulation Environment  
 

The Maui scheduler is a popular batch scheduler widely used in the HPC 
community. This scheduler allows configuration of parameters like Job Prioritization, 
Fair Share policies, and Backfill policies. The scheduler also supports 3 modes – Normal, 
Simulation and Test modes. The simulation mode was used for our studies. In the 
Simulation mode, the input to the scheduler is in the form of a workload trace file and a 
resource trace file. The workload trace file specifies for each job, parameters like queue 
time, start time, completion time, wall clock limit, number of nodes requested, the 
amount of memory it needs etc. The resource trace file models the resources in the 
system i.e. the number of nodes in the system, the amount of memory at each node etc. 
The EASY backfill policy [8] was used as the base scheduling scheme for this study.  
 
 
Workload Characterization: 
 

We studied the effect of suspension on the system performance under various loads, 
ranging from the actual load from the job trace to higher loads all the way up to system 
saturation. The impact of varying system load was modeled by simply changing the 
arrival times of the jobs in the workload file. From collection of workload logs available 
from Feitelson’s archive [17, the CTC workload trace, a commonly used trace [4,5], was 
used to evaluate the proposed schemes. As with all job logs, the trace contained 
information about all jobs submitted to the system, including a number of jobs that 
abnormally aborted. It is common practice to perform simulation-based studies of job 
scheduling using all jobs from a trace. While this is desirable from the point of view of 
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modeling an actual system workload, we believe that there is a serious problem that has 
been ignored by previous studies. Abnormally aborted jobs tend to excessively skew the 
average slowdown of jobs in a workload. Consider a job requesting a wall-clock limit of 
24 hours, that is queued for 1 hour, and then aborts within one minute due to some fatal 
exception. The slowdown of this job would be computed to be 60, whereas the average 
slowdown of normally completing long jobs is typically under 2. If even 5% of the jobs 
have a high slowdown of 60, while 95% of the normally completing jobs have a 
slowdown of 2, the average slowdown over all jobs would be around 5. Now consider a 
scheme such as the speculative backfilling strategy evaluated in [4]. With this scheme, a 
job is given a free timeslot to execute in, even if that slot is considerably smaller than the 
requested wall-clock limit. Aborting jobs will quickly terminate, and since they did not 
have to be queued till an adequately long window was available, their slowdown would 
decrease dramatically with the speculative backfilling scheme. As a result, the average 
slowdown of the entire trace would now be close to 2, assuming that the slowdown of the 
normally completing jobs does not change significantly. A comparison of the average 
slowdowns would seem to indicate that the speculative backfill scheme results in a 
significant improvement in job slowdown from 5 to 2. However, under the above 
scenario, the change is due only to the change for the small fraction of aborted jobs, and 
not due to any benefits to the normal jobs. In order to avoid this problem when evaluating 
our proposed strategies, we first removed all the aborted jobs from the trace. Further, in 
order to avoid any effects due to user inaccuracy in estimation of job runtimes, we used 
the actual recorded runtimes as the basis for all scheduling decisions. 

 
Table 1 summarizes a 3-week workload trace obtained from system logs starting July 

1996, modified as stated above, to remove all aborted jobs. There were 430 processors in 
the system. Under normal load, with the standard non-preemptive aggressive backfilling 
strategy, using xfactor as the scheduling priority, the utilization was 46 percent. Traces 
corresponding to higher offered loads were created by compressing the arrival times of 
jobs without changing their runtimes. Thus a high load trace corresponding to double the 
actual load was created by changing all arrival times to half the actual value. This 
modified trace was used as the high load workload. Although it is known that user 
estimates are quite inaccurate in practice, as explained above, we first studied the effect 
of preemptive scheduling under the idealized assumption of exact estimation, before 
studying the effect of inaccuracies in user estimates of job run time. Also, we first studied 
the impact of pre-emption under the assumption that the overhead for the suspension and 
restart is negligible and then studied the influence of the overhead. 

 
Job classification 

Any analysis that is based on the aggregate slowdown of the system as a whole 
does not provide insights into the variability within different job categories. Therefore in 
our discussion, we classify the jobs into various categories based on the runtime and the 
number of processors requested, and analyze the slowdown for each category. The 
distribution of the jobs from the trace are shown in Table 1, on the basis of number of 
processors requested, the run-times for the jobs, as well as processor-time product.  
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Job classification based on the Processor-Seconds utilized 
  0-10 11-100 102 -103 103- 104 104 - 105 105 - 106 106 - 107  > 107 
#jobs 0 355 981 1048 1292 518 69 2 
percentage 0 8 23 25 30 12 2 0 
  

Job classification based on the number of processors 
  1 2 3-4 5-8 9-16 17-32 33-64 >64 
#jobs 1951 303 565 412 535 277 134 88 
percentage 46 7 13 10 13 6 3 2 
  

Job classification based on the run time 

  0-1min 
1-
10min 10-60min 1-2hrs 2-4hrs 4-8hrs 8-16hrs  >24 hrs 

#jobs 366 1186 814 466 505 321 447 160 
percentage 9 28 19 11 12 8 10  4 

 
Table 1: Job Distribution in Workload Trace 

 
 
 
To analyze the performance of jobs of different sizes and lengths, jobs were classified 

into 16 categories: four categories based on their run time – very short, short, long and 
very long and four categories based on the number of processors requested – sequential, 
narrow, wide and very wide. The criteria used for job classifications is shown in Table 2. 

 
 

 
 
 

 
 
 

Table 2:  
Job Categories based on processors and time required 

 
 The distribution of jobs in the trace, corresponding to the sixteen categories is 
given in Table 3. 
 

 
 
 
 
 

Job Percentage 

  
0-

10Mins 
10Min - 

1Hr 
1Hr - 8 

Hr > 8Hr 
1 Processor VS S VS N VS W VS VW 
2-8 Processors S S S N S W S VW 
9-32 Processors L S L N L W L VW 
>32 Processors VL S VL N VL W VL VW 

Job Categories 
  0-10Mins 10Min - 1Hr 1Hr - 8 Hr > 8Hr 

1 Processor 581 699 221 51 
2-8 Processors 418 208 115 73 
9-32 Processors 571 266 400 55 
>32 Processors 381 107 76 43 
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  0-10Mins 10Min - 1Hr 1Hr - 8 Hr > 8Hr 
1 Processor 14 16 5 1 
2-8 Processors 10 5 3 2 
9-32 Processors 13 6 9 1 
>32 Processors 9 3 2 1 

 
Table 3: 

Category based distribution of jobs 
 

4. A Selective Suspension Scheme 
 

In a study presented at this year’s IPDPS conference [3], a pre-emptive 
scheduling strategy called the “Immediate Service (IS)” scheme was evaluated. With this 
scheme, each arriving job was given an immediate time-slice of 10 minutes, by 
suspending one or more running jobs if needed. The selection of jobs for suspension was 
based on their instantaneous-xfactor, defined as (wait time + total accumulated run time)/ 
(total accumulated run time). Jobs with the lowest instantaneous-xfactor were suspended. 
Jobs that did not complete within their immediate service period were placed in the 
waiting queue, sorted by the instantaneous-xfactor. The instantaneous-xfactor was also 
used as the priority for backfill scheduling of queued jobs. The IS strategy was shown to 
significantly decrease the average job slowdown for the traces simulated. However, no 
information was provided on how different job categories were affected. As with the 
speculative backfilling scheme discussed earlier, the IS scheme can also be expected to 
provide significant improvement to the slowdown of aborted jobs in the trace. So it is 
unclear how much, if any, of the improvement in slowdown was experienced by the jobs 
that completed normally.  

A potential shortcoming of the IS scheme is that its scheduling decisions are not 
in any way reflective of the expected runtime of a job. Thus a 20-minute job and a 24-
hour job that arrive at the same time will both have the same priority after completing 
their initial immediate service period. Since the expected slowdown of the 20-minute job 
will rise at a much faster rate than that of the 24-hour job, it would be desirable to give 
higher priority to the 20-minute job. 

We first propose a simple preemptive scheduling scheme, called the Selective 
Suspension (SS) scheme, which seeks to be discriminative in situations such as that 
exemplified above. With this scheme, an idle job can pre-empt a running job if its priority 
is sufficiently higher than the running job, and its required time is less than or equal to the 
remaining running time for the running job. The latter constraint is imposed in order to 
preserve any reservations beyond the completion point of the running job. An idle 
attempts to suspend a collection of running jobs so as to obtain enough free processors. In 
order to control the rate of suspensions, a suspension factor (SF) is used. This specifies 
the minimum ratio of the priority of a candidate idle job to the priority of a running job 
for preemption to occur. The priority used is the xfactor of the job. With a suspension 
factor of 1, a very large number of suspensions can occur and may lead to thrashing. 
Consider two jobs x and y of the same length that arrive at the same time. Assume that 
both of them require all the processors in the system. Initially, both of them will have a 
priority of 1 and say x gets in first. In the next scheduling iteration, y will have a higher 
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priority than x and will suspend x. This will repeat at every iteration and both x and y will 
complete nearly at the same time. Thus, both of them will have a slowdown of 2. This 
will not happen with a suspension factor of 2 since job x would have completed by the 
time the priority of job y becomes twice the priority of job x. In order to avoid thrashing 
and to reduce the number of suspensions, we use different suspension factors between 2 
and 10 in evaluating our schemes. Thus an idle job can preempt a running job only if its 
priority is at least SF times greater than the priority of the running job. All the idle jobs 
that are able to find the required number of processors by suspending lower priority 
running jobs are selected for execution by preempting the corresponding job. The 
scheduler periodically invokes the preemption routine. 
 
Pseudo code:  

1. Sort the list of running jobs in ascending order of priority and sort the idle jobs in 
descending order of priority. 

2.  For each job in the idle queue do the following  
a. Traverse the list of running jobs  
b. If  the  priority of the idle job < Suspension factor * Priority of the running 

job at the head of the run queue, then Exit. 
c. If a set of one or more jobs that satisfy the following criteria is found, then 

go to step 2d. 
i. Number of processors requested by the idle job <= Sum of the 

processors used by each job in the set 
ii. User estimated runtime of the idle job < Remaining runtime of 

each job in the set 
iii. Priority of the idle job > Suspension factor * Priority of each job in 

the set. 
d. Suspend the running job(s) selected in step 2c. 

End For 
 

 
We compare the SS scheme run under various suspension factors with the No-

Suspension (NS) scheme and the IS scheme. Fig1 shows the results under normal load 
and fig.2 shows the results under high load. The trends are similar under both the loads 
except for the fact that the effects are more pronounced with the high load. Considering 
first the normal-load case, we can see that the SS scheme provides significant 
improvement for the Very-Short (VS) and Short (S) length categories and Wide(W) and 
Very-Wide (VW) width categories. For example, for the VS-VW category, slowdown is 
reduced from 8 for the NS scheme to under 2 for SS with SF=2. For VS and S length 
categories, a decrease in SF results in lowered slowdown. This is because a lower SF 
increases the probability that a job in these categories will suspend a job in the Long (L) 
or Very-Long (VL) category. The same is also true for the L length category, but the 
effect of change in SF is less pronounced. For the VL length category, there is an 
opposite trend with decreasing SF, i.e. the slowdown worsens. This is due to the 
increasing probability that a Long job will be suspended by a job in a shorter category as 
SF decreases. In comparison to the base NS scheme, the SS scheme provides significant 
benefits for VS and S categories, a slight improvement for most of the Long categories 
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(except Sequential), but is slightly worse for the VL categories. The same is true also for 
the IS scheme. 
 

 
 
 
 

Fig.1 : Selective Suspension with Reservation under Normal Load 
  
 
 
 

The performance of the IS scheme is very good for the normal-load case. It is 
slightly better than the SS scheme for the VS length category and slightly worse for the 
VL length category.  

For the high-load case, the general trends with SS are similar to the normal-load 
case, but the effects are more pronounced. The factor of improvement for the VS-VW 
case is now over 5 with SF=2, but now the degree of worsening for the VL-Seq case is 
over 2 for all values of SF. The performance of IS however deteriorates considerably for 
the L and VL length categories. This is due to the fact that the number of suspensions 
with IS grows rather uncontrollably as load increases. 
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Fig 2: Selective Suspension with Reservation under High Load 
 
 
 
A primary reason for the poor performance of SS for the VL categories and some 

L categories is that a long job with a high xfactor may have difficulty getting in because 
of the difficulty in finding running jobs with remaining runtime greater than its remaining 
runtime. This restriction for the preemption was imposed by the need to preserve 
reservations. All backfill scheduling schemes use job reservations for one or more jobs at 
the head of the idle queue as a means of guaranteeing finite progress and thus avoidance 
of starvation. 
 
5. Selective Suspension with No Reservations (SSNR) 

 
Since the SS strategy uses the expected slowdown as the priority mechanism, 

there is an automatic guarantee of freedom from starvation – ultimately any job’s 
expected slowdown factor will get large enough that it will be able to preempt some 
running job and begin execution. Therefore, it is possible to run the backfill algorithm 
without the usual reservation guarantees. This allows us to remove the restriction that 
preempted jobs have longer remaining runtimes than suspending jobs. Due to space 
limitations, for the rest of the paper, we only present data for the high-load case. 
Simulations have been run for various loads including the normal trace load, and the 
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trends are qualitatively similar, with the differences being magnified for the high-load 
case. 

 
 
 

 
Fig 3: Selective Suspension without Reservation under High Load 

 
From fig.3, it is clear that the removal of the reservation in the SS scheme helps 

the long jobs. There seems to be an overall improvement for most of the cases when 
compared to the SS scheme with reservations. This is because, with reservation the holes 
in the schedule are filled by backfilling and there is a good possibility for holes even after 
backfilling. When the reservation is removed, it is possible to do more effective 
backfilling, without leaving as many holes in the schedule. The trend across various 
suspension factors remains the same as that of the earlier scheme. Now, the suspension 
factor of 10 performs better than the no suspension scheme for all the Long categories 
except for VL-Seq, which too is very close to the base value. But with SF = 10, the 
slowdowns for some of the short categories are now more than 10. An SF of 2 does 
performs very well for the short categories but for some of the long categories, the 
slowdown is double that of the base value. An SF value of 5 performs quite well for the 
short cases without affecting the long ones much. 
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6. Adaptive Selective Suspension with No Reservations (ASSNR) 
 
 From the graphs from the previous sections, it can be observed that the job 
categories with the highest slowdowns (e.g. VS-VW) with the NS schedule achieve 
significant reductions in their slowdowns. However, even with the SS scheme, their 
slowdown is still considerably higher than most of the other job categories. This is 
because, job in some categories inherently have a higher probability of waiting longer in 
the queue than another job with comparable xfactor from another job category. For 
example, consider a VS-VW job needing 300 processors, and a VS-Seq job in the queue 
at the same time. If both jobs have the same xfactor, the probability that the VS-Seq finds 
a running job to suspend is higher than the probability that the VS-VW job finds enough 
lower-pririty running jobs to suspend. Therefore, the average slowdown of  the VS-VW 
category tends to be higher than the VS-Seq category. This suggests that an approach to 
redress this inequity is to selectively increase the priority of jobs in those categories that 
end up with high slowdowns. This is implemented by boosting a job’s priority based on 
the previous history of job slowdowns from that category. In this scheme, the priority of a 
job is dynamically boosted by the current average slowdown of jobs in that category. 
This reduces the slowdown of jobs in that category. If the average slowdown of the jobs 
in that category reduces sufficiently, the boost factor will decrease and the slowdowns 
increase. The boost factor thus changes dynamically until a steady state is reached. From 
fig.4, it can be observed that the slowdowns of the VS-VW jobs and S-VW jobs, which 
had the highest slowdowns, are reduced significantly compared to the previous SSNR 
scheme.  
 
Boost Factor = Current Category-Slowdown ^ Adaptivity Factor 
 
Priority = Xfactor * Boost Factor 
 

The boost factor was set to some power of the current slowdown of the job 
category. We experimented with an adaptive Power Factor of 1 and 2. In both cases, there 
was an improvement in slowdowns of the job categories that had the highest slowdowns 
with the SSNR scheme, with the improvement for AF=2 being slightly higher than for 
AF=1. At the same time, the slowdowns of the categories with the lowest slowdowns 
with the SSNR scheme became slightly worse, with AF=2 causing a greater deterioration 
than AF=1. We only present data for the case of AF=1 here. 
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Fig 4: Adaptive Selective Suspension 

 
 
7. Tuned Adaptive Selective Suspension with No Reservations (TASSNR)  
 
 With the schemes proposed so far, the implicit goal has been to minimize the 
slowdowns of all job categories to the extent possible. This assumes that in fact it is 
desirable to strive for equal slowdowns for all job categories. This is not necessarily the 
case in practice. It is very likely that supercomputer center policies are set up with the  
intent of ensuring that very long jobs have lower slowdowns than short jobs. This is 
because, a slowdown of 4 is much more likely to be tolerable for a 30 minute job than a 
30-hour job. We next enhance the ASSNR scheme to incorporate selective tuning of 
slowdowns for specific job categories. This is done by appropriately scaling the current 
average slowdown of the targeted job categories by a tuning factor. The larger the tuning 
factor, the larger the boost to the priority of that job category. Thus, the the boost factor is 
now given by 
 
Boost Factor = (Tuning Factor * Current Slowdown) ^ Adaptivity Factor 
    
 Suppose for example that a supercomputer center decides that the VS-VW 
category is especially important since many prototype runs for large production runs are 

Very Short

0

5

10

15

20

25

30

35

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n SF = 5 Adaptive

SF = 5

No Suspension

Imm. Service

Short

0

2

4

6

8

10

12

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n SF = 5 Adaptive

SF = 5

No Suspension

Imm. Service

Long

0

1

2

3

4

5

6

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n SF = 5 Adaptive

SF = 5

No Suspension

Imm. Service

Very Long

0

1

2

3

4

5

6

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n SF = 5 Adaptive

SF = 5

No Suspension

Imm. Service



 13

tried out in that category. This might represent jobs that cannot be tested on smaller 
numbers of processors due to memory limitations. However, the total required runtimes 
are very short, and very quick turnaround is demanded. In such a case, a tuning factor 
such as 2 or 4 can be applied to the VS-VW job category. Fig.5 shows the impact of 
tuning. Note that the TASSNR scheme is being compared with the ASSNR scheme and 
not the SSNR scheme. It can be observed that the slowdown of the very short very wide 
jobs decrease by up to 40% without significant adverse effects on the other categories. 
 
 
 

 
 

Fig 5: Tuned Adaptive Selective Suspension 
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 We have so far assumed no overhead for pre-emption of jobs. In this section, we 
report on simulation results that incorporate overheads for job suspension. Since the job 
trace did not have information about job memory requirements, we considered the 
memory requirement of  jobs to be random and uniformly distributed between 100MB 
and 1GB. The overhead for suspension  is calculated as the time taken to write the main 
memory used by the job to the disk. Two memory transfer rates were considered, based 
on the following two extreme scenarios: 

a) With a high-speed local disk for every node and every node consists of 
a single processor. In this case, the transfer rate for the processor was 
assumed to be 20 MBps. 

b) With a commodity local disk for every node, with each node being a 
quad, the transfer rate per processor was assumed to be only  2 MBps. 

 
 

 
 

Fig 6: Suspension Overhead of 20 Mbps 
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generally increase slightly when overhead is modeled, it is still considerably better than 
NS even with an assumed data rate of only 2 MBps.  
 
 
 

 
 

Fig 7: Suspension Overhead of 2 Mbps 
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suspended. Deng et al [1] present a theoretical analysis of the performance of the DEQ 
scheme by doing a comparative analysis based on the mean completion time. Also in 
each of these papers the metric used to study the system performance is the overall mean 
response time, the overall average slowdown and the overall mean completion time 
respectively. In this paper we have studied performance with respect to different job 
categories rather than simply the overall average slowdown over all jobs. 
 
8. Conclusions 
 
 In this paper, we have explored the issue of pre-emptive scheduling of parallel 
jobs, using a job trace from a supercomputer center. We have proposed a tunable, 
adaptive selective suspension scheme and demonstrated that it provides significant 
improvement in the average slowdown of several job categories. It was also shown to 
provide better slowdown for most job categories over a previously proposed Immediate 
Service scheme. We also modeled the effect of overheads for job suspension, showing 
that even under stringent assumptions about available bandwidth to disk, the proposed 
scheme provides significant benefits over non-preemptive scheduling and the Immediate 
Service strategy. 
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