A Versatile Vehicle

The first true aerospace vehicle, the Space
Shuttle, takes off like a rocket. The winged orbiter hen maneuvers around the Earth like aspacestip and lands on a runway, like an airplane.
The Space Shuttle is designed to carry large and heavy payloads into Earth orbit. But unlike earlier manned spacecraft, which were good for only one
flight, the Shuttle orbiter and solid rocket boosters can be used again and again.

The Shuttle also provides a new capability, to epair or service spacecraft in orbit, or return them to lath anch and and extensive overhaul and another
aunch. The Long Duration Exposure Facility (LDEF), a free-flying payload, remained in orbit almost six years before it was recovered and returned to Earth, where it yielded a wealth of new data on the space
environment. An INTELSAT commercial communicaenvironment. An in dramatic fashion by Shuttle astronauts, repaired and then re-boosted to its proper orbit to begin operation. The Hubble Space Telescope was success-

The Shuttle's usefulness as a plotrorm for on-orbit servic-
ing of
Hpacecratt was demonstrated during the ST-61 successtully completed repairs and upgrades to the Hubble Endeavour's payload bay.
the mysteries of the universe since the repairs and made
Satellites today play a major role in the fields of environmental protection, energy, weather forecast ing, navigation, fishing, farming, mapping, oceanog raphy and many other space-borne applications. Sat ing the people and nations of the world together. A single channel, one out of 24 on many communica tions satellites, can provide television coverage to most entire nations. Satellites have become an indis pensable part of the modern world.

All satellites released from a Space Shutlle initially enter low Earth orbit - about 115 to 250 miles
(185-402 meters) altitude. Some, such as Hubble or the environment-monitoring Upper Atmosphere Re search Satellite, remain there throughout their work ing lives.

Many spacecraft, such as the weather and comMany spacecraft, such as the weather and com-
munications satellites that can "see" a third of the world at once, operate at a much higher level know as geosynchronous orbit. This is a flight path abou
22,300 miles (35,888 kilometers) above and aligned with the equator, with a speed in orbit that matche that of the Earth's surface below. From the ground such satellites appear to hang motionless in the sky
Spacecraft reach this altitude by firing an attached Spacecraft reach this altitude by firing an attached
propulsion unit, such as an Inertial Upper Stage (US), or the smaller Payload Assist Module (PAM), afte deployment from the Shuttle orbiter. At altitud
on-board engine fires to "circularize"t the orbit.

Sometimes interplanetary explorers, such as the Mageliter are launched from the Space Shutle The also use the IUS to exit Earth orbit and begin the journey to Earth's planetary neighbors.

The ability of the Shuttle to land on a runway, ery at sea techniques used in descent and recov and Apollo human spaceflight programs, saves both time and money. In addition, again unlike prio manned spacecraft, the most expensive Shuttle com other launch. The complex and expensive orbiter is designed to last 100 flights minimum, and the solid rocket booster casings, engine nozzles, parachutes pended on each flight. The high cargo capacity and major component reusability of the Shuttle make unique among space vehicles. The orbiter is the only part of the Space Shuttle
which has a name in addition to a part number. The first orbiter built was the Enterprise, which was de
signed for flight tests in the atmosphere rather than operations in space. It is now at the Smithsonian Mu seum at Dulles Airport outside Washington, D.C. Five operational orbiters were built: (in order) Columbia
Challenger (lost in an accident Jan. 28, 1986), Dis

he orbiter Columbiar returns to Kennedy's Shuttle Landing facility, completing Mission STS-62 on March 18, 1994 .h
our orbiters in the Shuttle fleet are now equipped with pag chute that is deployed during landing to assist in stop steering problem.

covery

he Parts of the Space Shuttle

The flight components of the Space Shuttle are winged orbiter. The assembled Shuttle weighs abo The orbiter carries the crew and payload. It is high, has a wingspan of 78 feet (24 meters) and weighs from 168,000 to 175,000 pounds (76,000 to 79,000 kilograms) empty. It is about the size and general shape of a DC-9 commercial jet at.
The orbiter carries its cargo in a cavernous pay meters) wide. The bay is flexible enough to provid accommodations for unmanned spacecraft in a varientific laboratories such as the Spacelab or SPACEHAB. Depending on the requirements of the particular mission, a Space Shuttle can carry abou
An orhitor ic anuin

An orbiter is equipped for flight with three main ngines, each producing 400,500 pounds (1.781 m
on newtons) of thrust when operating at 104 pe cent at liftoff (at sea level). This figure is derived from the required design minimum. The engines burn for over eight minutes, while together drawing 64,000 gallons (242,240 inters) of propelanis each minut hen at full power.
The orbiter is mated to the huge external tank
standing 154 feet (47 meters) long and 28 feet (8.5
meters) in diameter. The tank weighs a total of 1.68 million pounds (762,048 kilograms) at liftoff. Two inner tanks provide a maximum of 145,000 gallons
659,170 liters) of liquidid oxygen and 390,000 gallons 1.773 million liters) of liquid hydrogen. The tank feeds these propelants to the main engines of the orbiter
throughout the ascent into orbit, and is then discarded.
Most of the Shuttle's power at liftoff is provided by its two solid rocket boosters. Each booster is 149.1 eet (45.4 meters) high and 12.2 feet (3.7 meters) in (589,670 kilograms). Their solid propellant consists of a mixture of aluminum powder as the fuel, alumi-
num perchlorate as the oxidizer and iron num perchlorate as the oxidizer and iron oxide as a experience indicates they produce about 2.908 million pounds (12.935 million newtons) of thrust each or the first few seconds after ignition, before graduTogether with the orbiter's three main engines firing at 104 percent, total thrust of the Space Shuttle at In-orbit maneuvering capability is provided by gines located on the orbiter. They burn nitrogen tetroxde as the oxidizer and monomethyl hydrazine as the fuel, from on-board tanks carried in two pods at the upper ers in ond to slow the vehicle for re-entry at the end of the mission.

Crew Accommodations

Nominal crew size for a Shuttle flight is up to seven people; 10 could be carried in an emergency. The crew occupies a two-level cabin at the forward
end of the orbiter. They operate the vehicle from the upper level, the flight deck, with the flight controls for he mission commander and pilot located in the front. A station at the rear, overlooking the payload bay
through two windows, contains the controls a mission specialist astronaut uses to operate the Remote Manipulator System arm which handles elements in the payload bay. Mission operations displays and concontrols on the left. The latter are often operated by paylooad specialists, who are usually not career NASA
astronauts. The living, eating and sleeping area for
 On the first Space Shutlle flight - STS-1 in 1981 - Pilo
Robert r Crippen floats effortlessly in the microgravity o
space inside the middeck of the o
off-duty crew members, called the middeck, is located below the flight deck. It contains pre-packaged food a toilet, bunks and other amenities. Experiments for A typical Shuttle crew includes a commander and
mission specialists and sometimes payload spe cialists. The commander and pilot are selected from the pilot astronaut corps, highly qualified individuals aircraft who also must meet other rigorous qualifica tions. Mission specialists are scientists, physicians or other highly qualified specialists.

Payload specialists are persons other than NASA astronialized ond ord duties Thizens - who have Shuttle crews if activities that have unique require ments are involved.

Orbiter Insulation
A special silicon-based insulation in the form of 100 square-inch (average) tiles serves as the pri mary heat shield for the orbiter. This material sheds heat so readily that one side can be held in bare hands while the opposite side is red-hot. These lightweight tiles are made to survive temperatures of up to 1,260 flaked away in small pieces to carry off heat from the surface - during the fiery entry into Earth's atmosphere. They tended to be heavy and were not reusable

Shuttle crews experience a designed maximum gravity load of 3 g during launch, and less than 1.5 g
during re-entry. These accelerations are about oneduring re-entry. These accelerations are about one-
third the levels experienced on previous U.S. human spaceflights. Many other features of the Space make spaceflight more comfortable for the astronaut.

Typical Shuttle Mission

The rotation of the Earth has a significant effect on the payload capabilities of the Space Shuttle. A due east launch from the Kennedy Space Center in Florida uses the Earth's rotation as a launch assist,
since the ground is turning to the east at that point at since the ground is turning to the east at that point at
a speed of 915 miles $(1,473$ kilometers) per hour.
Spacecraft and other payload items arrive at the Kennedy Space Center and are assembled and checked out in special buildings before being loaded ponent parts. The solid rocket booster propellant segments are received and checked out in a special facility, then taken to the Vehicle Assembly Building
(VAB) and stacked on a mobile launcher platform to (VAB) and stacked on a mobile launcher platform to
form two complete rockets. The external tank is received and prepared for flight in the VAB, then mated to the solid rockets. An orbiter is checked out in the Orbiter Processing Facility, then moved to the VAB
and attached to the external tank. A giant crawlertransporter picks up the mobile launcher platform and the assembled Shuttle and takes them to the pad.

The orbiter's main engines ignite first and build to full power before the huge solid rockets ignite and
iftoff occurs. The solid rockets burn out after about wo minutes, are separated from the tank, and para-
hute into the ocean about 160 miles (258 kilome ters) from the launch site. Two special recovery ships
pull the parachutes out of the water and tow the rocke casings to land, where they are refurbished and sen ack to the manufacturer to be refilled with propel lant

The orbiter continues into space - a total o over eight minutes of burn-time on the three main engines-and then separates from the external tank over an uninhabited area of the Indian Ocean

On most missions the orbiter enters an elliptical side. The OMS engines then fire long enough to stabilize and circularize the orbit. On some missions the OMS engines also are fired soon after the exter nal tank separates if more velocity is needed to reach
the desired altitude for the burn that circularizes the orbit. Later OMS burns can raise or adjust this orbit if required by the needs of the mission. A typical now being performed will enable some orbiters to now being performed will enab
stay in space for up to 16 days.
After completing mission objectives, which migh nclude deploying a spacecraft, operating onboar orbiter re-enters the atmosphere and lands. Kennedy Space Center is considered the prime end-of-mis sion landing site, while Edwards Air Force Base Calif., is the alternate. Unlike prior crewed space entry, the orbiter has a cross range capability (can move to the right or left off the straight line of its entry path) of about 1,270 miles (2,045 kilometers). The landing speed is from about 212 to 226 miles
(341 to 364 kilometers) per hour. The orbiter is im mediately "safed" by a ground crew with specia

Improved Space Suit and Unique Rescue System Developed for Shuttle

An improved space suit and an independent rescue unit have been developed for the Shuttle by control and support during each flight. The space suit is for use when a crew member is working outside the pressurized crew cabin, Spacelab or SPACEHAB modules

Unlike earlier suits, each of which was tailored to an astronaut's specific measurements, the Shuttle era space suits come in small, medium and large sizes, and can be adjusted to fit both men and women. suit comes in two parts - upper torso and pants - and each part is pressure-sealed, unlike previous suits
that were zipper-sealed at the waist. The material used for the elbow, knee and other joints is a fabric that allows easier movement, and costs and weighs less than the neoprene rubber joints of earlier units. Each suit has an integral
carried on the back.

A Simplified Aid for Extravehicular Activity Rescue (SAFER) has been developed by Johnson for emergency situations. A scaled-down version of the Manned Maneuvering Unit (MMU) flown aboard Shuttl|
missions in 1984, the SAFER is designed for self-rescue use by a space walker in the event the Shutle i unable or unavailable to retrieve a detached, driting crew member. Examples of such times may include a
mission where the Shuttle is docked to the Russian Mir space station or to the international space station. mission where the Shuttle in docked to the Russian Mir space station or to the international space station.
The SAFER was first flown on STS-64 in September 1994.

During the first untethered space walk in 10 years, Mission
Specialist Mark Lee tests the new Simplified Aid for Extravehiaular Rescue (SAFFER) system. The 28th space walk
of the Shutle program took place on Mission STS-64 in september 1994
equipment, the first step in the process which will

Spacelab and SPACEHAB

Science in Orbit

Periodically the Shuttle is scheduled to carry a onfigurations are available, the Spacelab and the SPACEHAB. These modules are similar to a sma or zero-gravity operation. They provide a shirt-sleeve pressurized environment where crew members can perform scientific tests utilizing the high vacuum and ronomical observations above the Earth's obscuring atmosphere

Two complete Spacelabs (plus instrument-carying platforms exposed to space, called "pallets") ave been built by the European Space Agency manufacturing costs of the first one. NASA purchased he second unit

Spacelab experiments for a particular missio say be sponsored and/or organized by a nation, such J mission jointly sponsored by Japan and NASA. O hey may be oriented around a particular field, suc as the Spacelab Life Sciences-1 and -2 missions Sometimes Spacelab flies as an all-pallet configur tion, where all the instruments are exposed to space , perated from inside the orbite

The SPACEHAB module was commercially de nder contract to SPACEHAB, Inc. The module fers up to 61 standard lockers, such as those found
in the orbiter middeck, and two single or double racks or experior of the modul for experime posure to the space environment. Two SPACEHAB modules have been built
The Spacelab or SPACEHAB remain in the orbiter payload bay throughout the mission. After landgin to configure it for its next flight.

Space Station and Space

Applications
The Space Shuttle is scheduled to carry many of the component parts of the international space
station into orbit and to provide an initial base for assembly operations. At 290 feet (88.4 meters) long and 361 feet (110 meters) across, the space station also represents the largest cooperative scientific program in space history, and will include contributions rom NASA, Japan, Canada, the member nations of the European Space Agency and Russia
People operating inside the microgravity of a possible to make on Earth, such as power generation from sunlight. In addition, such an orbiting platorm can provide astronomers and other scientists with an excellent vantage point above the distorting
atmosphere from which they can study the composition and structures of our universe in ways not possible on the ground
Other applications are the economical manufacuring in zero gravity of presently very expensive medical drugs, or giarst fortenses, or electronic crys-
als of unrivaled purity and size, as well as various alloys, composites and metallic materials impossible
to produce on Earth. Drugs, metals, glass, and proop produce on Earth. Drugs, metals, glass, and proin pilot programs on board various Shuttle missions, proving the concept before larger scale operations egin.

The Space Shutle is overall the most capable vehicle built since the space program began, and the major means of providing humanity with the limitless zation.

Information Summaries
Space Shuttle

