
1

1

An Overview of Trilinos

Heidi K. Thornquist
Sandia National Laboratories

ACTS Workshop
August 21-24, 2007

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

2

Trilinos Development Team
Ross Bartlett
Lead Developer of Thyra and Stratimikos
Developer of Rythmos

Pavel Bochev
Project Lead and Developer of Intrepid

Paul Boggs
Developer of Thyra

Eric Boman
Lead Developer of Isorropia
Developer of Zoltan

Todd Coffey
Lead Developer of Rythmos

Jason Cross
Developer of Jpetra

David Day
Developer of Komplex and Intrepid

Karen Devine
Lead Developer of Zoltan

Clark Dohrmann
Developer of CLAPS

Michael Gee
Developer of ML, NOX

Bob Heaphy
Lead Developer of Trilinos SQA

Mike Heroux
Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, Komplex, IFPACK, Thyra, Tpetra
Developer of Amesos, Belos, EpetraExt, Jpetra

Ulrich Hetmaniuk
Developer of Anasazi

Robert Hoekstra
Lead Developer of EpetraExt
Developer of Epetra, Thyra, Tpetra

Russell Hooper
Developer of NOX

Vicki Howle
Lead Developer of Meros
Developer of Belos and Thyra

Jonathan Hu
Developer of ML

Sarah Knepper
Developer of Komplex

Tammy Kolda
Lead Developer of NOX

Joe Kotulski
Lead Developer of Pliris

Rich Lehoucq
Developer of Anasazi and Belos

Kevin Long
Lead Developer of Thyra,
Developer of Belos and Teuchos

Roger Pawlowski
Lead Developer of NOX

Michael Phenow
Trilinos Webmaster
Lead Developer of New_Package

Eric Phipps
Developer of LOCA, NOX, and Sacado

Denis Ridzal
Lead Developer of Aristos and Intrepid

Marzio Sala
Lead Developer of Didasko and IFPACK
Developer of ML, Amesos

Andrew Salinger
Lead Developer of LOCA

Paul Sexton
Developer of Epetra and Tpetra

Bill Spotz
Lead Developer of PyTrilinos
Developer of Epetra, New_Package

Ken Stanley
Lead Developer of Amesos and New_Package

Heidi Thornquist
Lead Developer of Anasazi, Belos and Teuchos

Ray Tuminaro
Lead Developer of ML and Meros

Jim Willenbring
Developer of Epetra and New_Package.
Trilinos library manager

Alan Williams
Lead Developer of Isorropia
Developer of Epetra, EpetraExt, AztecOO, Tpetra

2

3

Outline of Talk

Background / Motivation / Evolution.

Trilinos Package Concepts.

Whirlwind Tour of Trilinos Packages.

Next Generation Iterative Solvers: Belos & Anasazi.

Solver Collaborations: ANAs, LALs and APPs.

Concluding remarks.

4

Sandia Physics Simulation Codes

Element-based
Finite element, finite volume,
finite difference, network, etc…

Large-scale
Billions of unknowns

Parallel
MPI-based SPMD
Distributed memory

C++
Object oriented
Some coupling to legacy Fortran
libraries

Fluids Combustion

Structures
Circuits

Plasmas

MEMS

3

5

Motivation For Trilinos
Sandia does LOTS of solver work.
7 years ago …

Aztec was a mature package. Used in many codes.
FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many
other codes were (and are) in use.
New projects were underway or planned in multi-level
preconditioners, eigensolvers, non-linear solvers, etc…

The challenges:
Little or no coordination was in place to:

• Efficiently reuse existing solver technology.
• Leverage new development across various projects.
• Support solver software processes.
• Provide consistent solver APIs for applications.

ASCI was forming software quality assurance/engineering
(SQA/SQE) requirements:

• Daunting requirements for any single solver effort to address alone.

6

Evolving Trilinos Solution
Trilinos1 is an evolving framework to address these challenges:

Fundamental atomic unit is a package.
Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).
Provides a common abstract solver API (Thyra package).
Provides a ready-made package infrastructure (new_package package):

• Source code management (cvs, bonsai).
• Build tools (autotools).
• Automated regression testing (queue directories within repository).
• Communication tools (mailman mail lists).

Specifies requirements and suggested practices for package SQA.
In general allows us to categorize efforts:

Efforts best done at the Trilinos level (useful to most or all packages).
Efforts best done at a package level (peculiar or important to a package).
Allows package developers to focus only on things that are unique to
their package.

1. Trilinos loose translation: “A string of pearls”

4

7

Evolving Trilinos Solution

Numerical math
Convert to models that
can be solved on digital

computers

Algorithms
Find faster and more
efficient ways to solve

numerical models

L(u)=f
Math. model

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

Lh(uh)=fh
Numerical model

uh=Lh
-1•fh

Algorithms

uh=Lh
-1•fh

Algorithms

physicsphysics

computationcomputation

Linear
Nonlinear

Eigenvalues
Optimization

Linear
Nonlinear

Eigenvalues
Optimization

Automatic diff.
Domain dec.

Mortar methods

Automatic diff.
Domain dec.

Mortar methods
Time domain

Space domain

Time domain
Space domain

Petra
Utilities

Interfaces
Load Balancing

Petra
Utilities

Interfaces
Load Balancing

solvers

discretizations methods

core

Beyond a “solvers” framework
Natural expansion of capabilities to satisfy
application and research needs

Discretization methods, AD, Mortar methods, …

8

Trilinos Package Summary

RythmosTime Integration

AmesosDirect sparse linear solvers

Epetra, Teuchos, PlirisDirect dense linear solvers

AnasaziIterative eigenvalue solvers

Epetra, Jpetra, TpetraLinear algebra objects

Core
Thyra, Stratimikos, RTOpAbstract interfaces

Zoltan, IsorropiaLoad Balancing

PyTrilinos, WebTrilinos, Star-P, ForTrilinos“Skins”

Teuchos, EpetraExt, Kokkos, TriutilsC++ utilities, (some) I/O

MOOCHO, AristosOptimization (SAND)

NOX, LOCANonlinear system solvers

MerosBlock preconditioners

ML, CLAPSMultilevel preconditioners

AztecOO, IFPACKILU-type preconditioners

AztecOO, Belos, KomplexIterative (Krylov) linear solvers

Solvers

MoertelMortar Methods

SacadoAutomatic Differentiation
Methods

IntrepidSpatial Discretizations (FEM,FV,FD)
Discretizations

Package(s)Objective

5

9

Package Concepts

10

Interoperability vs. Dependence
(“Can Use”) (“Depends On”)

Although most Trilinos packages have no explicit
dependence, often packages must interact with some other
packages:

NOX needs operator, vector and solver objects.
AztecOO needs preconditioner, matrix, operator and vector objects.
Interoperability is enabled at configure time. For example, NOX:
--enable-nox-lapack compile NOX lapack interface libraries
--enable-nox-epetra compile NOX epetra interface libraries
--enable-nox-petsc compile NOX petsc interface libraries

Trilinos configure script is vehicle for:
Establishing interoperability of Trilinos components…
Without compromising individual package autonomy.

Trilinos offers seven basic interoperability mechanisms.

6

11

Trilinos Interoperability Mechanisms
(Acquired as Package Matures)

Package can be used with other
Trilinos packages via Python.⇒

Package available via
PyTrilinos

Package can be built as part of a
suite of packages; cross-package
interfaces enable/disable
automatically

⇒
Package builds under Trilinos
configure scripts.

Applications using Teuchos
ParameterLists can drive package⇒

Package accepts parameters
from Teuchos ParameterLists

⇒

⇒

⇒

⇒

Package can then use other
packages that implement Thyra
interfaces

Package accesses solver
services via Thyra interfaces

Package can then use other
packages that understand Epetra

Package can use Epetra for
private data.

Applications or other packages
using Thyra can use package

Package can be used via Thyra
abstract solver classes

Applications using Epetra/Thyra
can use package

Package accepts user data as
Epetra or Thyra objects

12

“Can Use” vs. “Depends On”
“Can Use”

Interoperable without dependence.
Dense is Good.
Encouraged.

“Depends On”
OK, if essential.
Epetra: 9 clients.
Thyra, Teuchos, NOX: 2 clients.
Discouraged.

7

13

What Trilinos is not …
Trilinos is not a single monolithic piece of software. Each package:

Can be built independent of Trilinos.
Has its own self-contained CVS structure.
Has its own Bugzilla product and mail lists.
Development team is free to make its own decisions about algorithms,
coding style, release contents, testing process, etc.

Trilinos top layer is not a large amount of source code:
Trilinos repository (6.0 branch) contains: 660,378 source lines of code
(SLOC).
Sum of the packages SLOC counts: 648,993.
Trilinos top layer SLOC count: 11,385 (1.7%).

Trilinos is not “indivisible”:
You don’t need all of Trilinos to get things done.
Any collection of packages can be combined and distributed.
Current public release contains only 26 of the 30+ Trilinos packages.

14

Whirlwind Tour of Packages
Discretizations Methods Core Solvers

8

15

Interoperable Tools for Rapid Development
of Compatible DiscretizationsIntrepidIntrepid

Intrepid offers an innovative software design for compatible discretizations:

allows access to FEM, FV and FD methods using a common API
supports hybrid discretizations (FEM, FV and FD) on unstructured grids
supports a variety of cell shapes:

standard shapes (e.g. tets, hexes): high-order finite element methods
arbitrary (polyhedral) shapes: low-order mimetic reconstructions

enables optimization, error estimation, V&V, and UQ using fast invasive techniques
(direct support for cell-based derivative computations or via automatic differentiation)

Direct: FV/DDirect: FV/D

ReconstructionReconstruction

Cell DataCell Data

ReductionReduction

Pullback: FEMPullback: FEM

Higher order General cells

Λk

Forms
Λk

Forms

d,d*, ,∧,(,)
Operations

d,d*, ,∧,(,)
Operations

{C0,C1,C2,C3}
Discrete forms

{C0,C1,C2,C3}
Discrete forms

D,D*,W,M
Discrete ops.
D,D*,W,M
Discrete ops.

Developers: Pavel Bochev, Denis Ridzal, David Day

16

Rythmos
Suite of time integration (discretization) methods

Includes: backward Euler, forward Euler, explicit Runge-
Kutta, and implicit BDF at this time.
Native support for operator split methods.
Highly modular.
Forward sensitivity computations will be included in the
first release with adjoint sensitivities coming in near future.

Developers: Todd Coffey, Roscoe Bartlett

9

17

Whirlwind Tour of Packages
Discretizations Methods Core Solvers

18

Moertel: Mortar Methods
Capabilities for nonconforming mesh tying and contact
formulations in 2 and 3 dimensions using Mortar methods.

Mortar methods are types of Lagrange Multiplier constraints that
can be used in contact formulations and in non-conforming or
conforming mesh tying as well as in domain decomposition
techniques.

Used in a large class of nonconforming situations such as the
surface coupling of different physical models, discretization
schemes or non-matching triangulations along interior interfaces
of a domain.

Developer: Michael Gee

10

19

Sacado: Automatic Differentiation

Efficient OO based AD tools optimized for element-level computations

Applies AD at “element”-level computation
“Element” means finite element, finite volume, network device,…

Template application’s element-computation code
Developers only need to maintain one templated code base

Provides three forms of AD
Forward Mode:

• Propagate derivatives of intermediate variables w.r.t. independent variables forward
• Directional derivatives, tangent vectors, square Jacobians, when m ≥ n.

Reverse Mode:

• Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
• Gradients, Jacobian-transpose products (adjoints), when n > m.

Taylor polynomial mode:

Basic modes combined for higher derivatives.

Developers: Eric Phipps, David Gay

20

Whirlwind Tour of Packages
Discretizations Methods Core Solvers

11

21

Portable utility package of commonly useful tools:

ParameterList class: key/value pair database, recursive capabilities.
LAPACK, BLAS wrappers (templated on ordinal and scalar type).
Dense matrix and vector classes (compatible with BLAS/LAPACK).
FLOP counters, timers.
Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.
Reference counted pointers / arrays, and more…

Takes advantage of advanced features of C++:
Templates
Standard Template Library (STL)

ParameterList:
Allows easy control of solver parameters.
XML format input/output.

Developers: Roscoe Barlett, Kevin Long, Heidi Thorquist, Mike Heroux,
Paul Sexton, Kris Kampshoff, Chris Baker

Teuchos

22

Kokkos

Developer: Mike Heroux

Collection of several sparse/dense kernels that affect the
performance of preconditioned Krylov methods
Goal:

Isolate key non-BLAS kernels for the purposes of optimization.

Kernels:
Dense vector/multivector updates and collective ops (not in
BLAS/Teuchos).
Sparse MV, MM, SV, SM.

Serial-only for now.
Reference implementation provided (templated).
Mechanism for improving performance:

Default is aggressive compilation of reference source.
BeBOP: Jim Demmel, Kathy Yelick, Rich Vuduc, UC Berkeley.
Vector version: Cray.

12

23

Zoltan
Data Services for Dynamic Applications

Dynamic load balancing
Graph coloring
Data migration
Matrix ordering

Partitioners:
Geometric (coordinate-based) methods:

• Recursive Coordinate Bisection (Berger, Bokhari)
• Recursive Inertial Bisection (Taylor, Nour-Omid)
• Space Filling Curves (Peano, Hilbert)
• Refinement-tree Partitioning (Mitchell)

Hypergraph and graph (connectivity-based) methods:
• Hypergraph Partitioning
• Hypergraph Repartitioning PaToH (Catalyurek)
• Zoltan Hypergraph Partitioning
• ParMETIS (U. Minnesota)
• Jostle (U. Greenwich)

Developers: Karen Devine, Eric Boman, Robert Heaphy

24

1Petra is Greek for “foundation”.

Trilinos Common Language: Petra
Petra provides a “common language” for distributed
linear algebra objects (operator, matrix, vector)

Petra1 provides distributed matrix and vector services.
Exists in basic form as an object model:

Describes basic user and support classes in UML,
independent of language/implementation.

Describes objects and relationships to build and use
matrices, vectors and graphs.

Has 3 implementations under development.

13

25

Petra Implementations

Epetra (Essential Petra):
Current production version.
Restricted to real, double precision arithmetic.
Uses stable core subset of C++ (circa 2000).
Interfaces accessible to C and Fortran users.

Tpetra (Templated Petra):
Next generation C++ version.
Templated scalar and ordinal fields.
Uses namespaces, and STL: Improved usability/efficiency.

Jpetra (Java Petra):
Pure Java. Portable to any JVM.
Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces.

Developers: Mike Heroux, Rob Hoekstra, Alan Williams, Paul Sexton

26

EpetraExt: Extensions to Epetra

Library of useful classes not needed by everyone

Most classes are types of “transforms”.
Examples:

Graph/matrix view extraction.
Epetra/Zoltan interface.
Explicit sparse transpose.
Singleton removal filter, static condensation filter.
Overlapped graph constructor, graph colorings.
Permutations.
Sparse matrix-matrix multiply.
Matlab, MatrixMarket I/O functions.

Most classes are small, useful, but non-trivial to write.

Developer: Robert Hoekstra, Alan Williams, Mike Heroux

14

27

Thyra
High-performance, abstract interfaces for linear algebra

Offers flexibility through abstractions to algorithm developers
Linear solvers (Direct, Iterative, Preconditioners)

Abstraction of basic vector/matrix operations (dot, axpy, mv).
Can use any concrete linear algebra library (Epetra, PETSc, BLAS).

Nonlinear solvers (Newton, etc.)
Abstraction of linear solve (solve Ax=b).
Can use any concrete linear solver library:

• AztecOO, ML, PETSc, LAPACK

Transient/DAE solvers (implicit)
Abstraction of nonlinear solve.
… and so on.

Developers: Roscoe Bartlett, Kevin Long

28

PyTrilinos
PyTrilinos provides Python access to Trilinos packages.

Uses SWIG to generate bindings.

Epetra, AztecOO, IFPACK,
ML, NOX, LOCA, Amesos
and NewPackage are support.

Possible to:
Define RowMatrix implementation in Python.
Use from Trilinos C++ code.

Performance for large grain is equivalent to C++.

Several times hit for very fine grain code.

Developer: Bill Spotz

15

29

WebTrilinos
WebTrilinos: Web interface to Trilinos

Generate test problems or read from file.
Generate C++ or Python code fragments and click-run.
Hand modify code fragments and re-run.
Will use during hands-on.

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala

30

Whirlwind Tour of Packages
Discretizations Methods Core Solvers

16

31

IFPACK: Algebraic Preconditioners
Overlapping Schwarz preconditioners with incomplete
factorizations, block relaxations, block direct solves.

Accept user matrix via abstract matrix interface (Epetra
versions).

Uses Epetra for basic matrix/vector calculations.

Supports simple perturbation stabilizations and condition
estimation.

Separates graph construction from factorization, improves
performance substantially.

Compatible with AztecOO, ML, Amesos. Can be used by
NOX and ML.

Developers: Marzio Sala, Mike Heroux

32

: Multi-level Preconditioners
Smoothed aggregation, multigrid and domain decomposition
preconditioning package

Critical technology for scalable performance of some key
apps.
ML compatible with other Trilinos packages:

Accepts user data as Epetra_RowMatrix object (abstract interface).
Any implementation of Epetra_RowMatrix works.

Implements the Epetra_Operator interface. Allows ML preconditioners
to be used with AztecOO, Belos, Anasazi.

Can also be used completely independent of other Trilinos
packages.

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala

17

33

Interface to direct solvers for distributed sparse linear
systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

Challenges:
No single solver dominates
Different interfaces and data formats, serial and parallel
Interface often changes between revisions

Amesos offers:
A single, clear, consistent interface, to various packages
Common look-and-feel for all classes
Separation from specific solver details
Use serial and distributed solvers; Amesos takes care of data
redistribution
Native solvers: KLU and Paraklete

Developers: Ken Stanley, Marzio Sala, Tim Davis

Amesos

34

AztecOO
Krylov subspace solvers: CG, GMRES, Bi-CGSTAB,…
Incomplete factorization preconditioners

Aztec is the workhorse solver at Sandia:
Extracted from the MPSalsa reacting flow code.
Installed in dozens of Sandia apps.
1900+ external licenses.

AztecOO improves on Aztec by:
Using Epetra objects for defining matrix and RHS.
Providing more preconditioners/scalings.
Using C++ class design to enable more sophisticated use.

AztecOO interfaces allows:
Continued use of Aztec for functionality.
Introduction of new solver capabilities outside of Aztec.

Developers: Mike Heroux, Alan Williams, Ray Tuminaro

18

35

Belos and Anasazi
Next generation linear solvers (Belos) and eigensolvers
(Anasazi) libraries, written in templated C++.

Provide a generic interface to a collection of algorithms for
solving large-scale linear problems and eigenproblems.
Algorithm implementation is accomplished through the use
of abstract base classes (mini interface) and traits classes.
Interfaces are derived from these base classes to:

operator-vector products
status tests
orthogonalization
any arbitrary linear algebra library.

Includes block linear solvers and eigensolvers.

Developers: Heidi Thornquist, Mike Heroux, Chris Baker,
Rich Lehoucq, Ulrich Hetmaniuk

36

NOX: Nonlinear Solvers
Suite of nonlinear solution methods

NOX uses abstract vector and “group” interfaces:
Allows flexible selection and tuning of various strategies:

• Directions.
• Line searches.

Epetra/AztecOO/ML, LAPACK, PETSc implementations of
abstract vector/group interfaces.

Designed to be easily integrated into existing applications.

Developers: Tammy Kolda, Roger Pawlowski

19

37

LOCA
Library of continuation algorithms

Provides
Zero order continuation
First order continuation
Arc length continuation
Multi-parameter continuation (via Henderson's MF Library)
Turning point continuation
Pitchfork bifurcation continuation
Hopf bifurcation continuation
Phase transition continuation
Eigenvalue approximation (via ARPACK or Anasazi)

Developers: Andy Salinger, Eric Phipps

38

MOOCHO & Aristos
MOOCHO: Multifunctional Object-Oriented arCHitecture
for Optimization

Large-scale invasive simultaneous analysis and design
(SAND) using reduced space SQP methods.

Aristos: Optimization of large-scale design spaces

Invasive optimization approach based on full-space SQP
methods.
Efficiently manages inexactness in the inner linear system
solves.

Developer: Denis Ridzal

Developer: Roscoe Bartlett

20

39Full “Vertical” Solver Coverage Trilinos Packages

· Transient Problems:

· DAEs/ODEs: Rythmos0 0

Solve ((), (),) 0
[0,], (0) , (0)

for () , [0,]n

f x t x t t
t T x x x x

x t t T

=
′∈ = =

∈ℜ ∈

&

&

· Nonlinear Problems:

· Nonlinear equations:

· Stability analysis:

NOX

LOCA

Given nonlinear op (,)
Solve () 0 for

For (,) 0 find space singular

n m n

n

c x u
c x x

cc x u u U
x

+∈ℜ →ℜ

= ∈ℜ
∂

= ∈ ∋
∂

· Explicit Linear Problems:

· Matrix/graph equations:

· Vector problems:

Epetra, Tpetra
Compute ; (); ,
Compute ; , ; ,

m n m n

n

y Ax A A G A G
y x w x y x yα β α

× ×= = ∈ℜ ∈

= + =< > ∈ℜ

�

Anasazi

· Implicit Linear Problems:

· Linear equations:

· Eigen problems:

AztecOO, Belos,
Ifpack,ML,etc.

Given linear ops (matrices) ,
Solve for
Solve for (all) ,

n n

n

n

A B
Ax b x
Av Bv vλ λ

×∈ℜ

= ∈ℜ

= ∈ℜ ∈ℜ

· Optimization Problems:

· Unconstrained:

· Constrained:

MOOCHO,

Aristos
Find that minimizes ()
Find and that
minimizes (,) s.t. (,) 0

n

m n

u f u
y u

f y u c y u

∈ℜ

∈ℜ ∈ℜ
=

40

Next Generation
Iterative Solvers:
Belos & Anasazi

21

41

Background
Several iterative linear solver / eigensolver libraries
exist:

PETSc, SLAP, LINSOL, Aztec(OO), …
SLEPc, PRIMME, LOBPCG (hypre / BLOPEX),
ARPACK, …

None are (completely) written in C++
None of the linear solver libraries can efficiently deal
with multiple right-hand sides
Stopping criteria are predetermined for most libraries
The underlying linear algebra is (usually) static

42

AztecOO Linear Solver Library
A C++ wrapper around Aztec library written in C.
Algorithms: GMRES, CG, CGS, BiCGSTAB,
TFQMR.
Offers status testing capabilities.
Output verbosity level can be determined by user.
Uses Epetra to perform underlying vector space
operations.
Interface to matrix-vector product is defined by the
user through the Epetra_Operator.

22

43

ARnoldi PACKage (ARPACK)
Written in Fortran 77.
Algorithms: Implicitly Restarted Arnoldi/Lanczos
Static convergence tests.
Output formatting, verbosity level is determined by
user.
Uses LAPACK/BLAS to perform underlying vector
space operations.
Offers abstract interface to matrix-vector products
through reverse communication.

44

Scalable Library for Eigenvalue
Problem Computations (SLEPc)

Written in C (Hernández, Román, and Vidal, 2003).
Provides some basic eigensolvers as well as wrappers around:

ARPACK (Lehoucq, Maschhoff, Sorensen, and Yang, 1998)
BLZPACK (Marques, 1995)
PLANSO (Wu and Simon 1997)
TRLAN (Wu and Simon, 2001)

Native Algorithms: Power/Subspace Iteration, RQI, Arnoldi
Wrapped Algorithms: IRAM/IRLM (ARPACK), Block Lanczos
(BLZPACK), and Lanczos (PLANSO / TRLAN)
Static/limited convergence tests.
Uses PETSc to perform underlying vector space operations,
matrix-vector products, and linear solves.
Allows the creation / registration of new matrix-vector products.

23

45

Why not create a solver library that:
1. Provides an abstract interface to an operator-vector

products, scaling, and preconditioning.
2. Allows the user to enlist any linear algebra package for the

elementary vector space operations essential to the
algorithm. (Epetra, PETSc, etc.)

3. Allows the user to define convergence of any algorithm
(a.k.a. status testing).

4. Allows the user to determine the verbosity level, formatting,
and processor for the output.

5. Allows these decisions to be made at runtime.
6. Allows for easier creation of new solvers through

“managers” using “iterations” as the basic kernels.

Linear / Eigensolver
Software Design

46

AlgorithmA(…)
while (myStatusTest.CheckStatus(…)

== Unconverged)
…
…
% Compute operator-vector product
myProblem.ApplyOp(NOTRANS,v,w);
α = w.dot(v);
…

end
myOM.print(something);
return (solution);

end

Generic Iterative Method
Status Test

Generic Operator
Interface

Generic Linear
Algebra Interface Output Manager

Linear/Eigen
Problem

24

47

Benefits of
Generic Programming

1) Generic programming techniques ease the
implementation of complex algorithms.

2) Developing algorithms with generic programming
techniques is easier on the developer, while still allowing
them to build a flexible and powerful software package.

3) Generic programming techniques also allow the user to
leverage their existing software investment.

Caveat: It’s not as easy as taking a piece of code and adding:
template <typename OT, typename ST>

More work has to be done to handle “numeric traits”

48

Teuchos Numeric Traits

OrdinalTraits
zero & one
int & long int

ScalarTraits
zero, one, magnitude type, absolute value, conjugate,
square root, random number generator, …
std::numeric_limits
float, double, complex<float>, and complex<double>

Arbitrary precision arithmetic (ARPREC, GMP)
Templated BLAS/LAPACK wrappers, serial dense matrix/vector

Generic programming technique that
uses templated interfaces to define the

standard behavior of datatypes.

25

49

Teuchos Templated BLAS Example
double DNRM2(const int n, const double* x, const int incx) const
{
int i, ix = 0;
double result 0.0;
if (n > 0)
{
// Set the initial index.
if (incx < 0) { ix = (-n+1)*incx; }

for(i = 0; i < n; ++i)
{
result += x[ix] * x[ix];
ix += incx;

}
result = std::sqrt(result);

}
return result;

} /* end NRM2 */

50

Teuchos Templated BLAS Example
typedef ScalarTraits<ScalarType>::magnitudeType MagnitudeType
template<typename OrdinalType, typename ScalarType>
MagnitudeType BLAS<OrdinalType, ScalarType>::NRM2(const OrdinalType n,

const ScalarType* x,
const OrdinalType incx) const

{
OrdinalType izero = OrdinalTraits<OrdinalType>::zero();
OrdinalType ione = OrdinalTraits<OrdinalType>::one();
MagnitudeType result = ScalarTraits<MagnitudeType>::zero();
OrdinalType i, ix = izero;
if (n > izero)
{
// Set the initial index.
if (incx < izero) { ix = (-n+ione)*incx; }

for(i = izero; i < n; i++)
{
result += ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::conjugate(x[ix]) * x[ix]);
ix += incx;

}
result = ScalarTraits<MagnitudeType>::squareroot(result);

}
return result;

} /* end NRM2 */

26

51

Belos and Anasazi
Next generation eigensolvers library, written in templated C++.
Provide a generic interface to a collection of algorithms for
solving large-scale linear problems / eigenproblems.
Algorithm implementation is accomplished through the use of
traits classes and abstract base classes:

e.g.: MultiVecTraits, OperatorTraits
e.g.: SolverManager, Eigensolver / Iteration, Eigenproblem /
LinearProblem, StatusTest, OrthoManager, OutputManager

Includes block linear solvers / eigensolvers:
Higher operator performance.
More reliable.

Solves:
AX = XΛ or AX = BXΛ (Anasazi)
AX = B (Belos)

52

Why are Block Solvers Useful?

Block Solvers (in general):
Achieve better performance for operator-vector products.

Block Eigensolvers (Op(A)X = ΛX):

Block Linear Solvers (Op(A)X = B):

Reliably determine multiple and/or clustered eigenvalues.
Example applications: Modal analysis, stability analysis,
bifurcation analysis (LOCA)

Useful for when multiple solutions are required for the same
system of equations.

Example applications:
• Perturbation analysis
• Optimization problems
• Single right-hand sides where A has a handful of small eigenvalues
• Inner-iteration of block eigensolvers

27

53

Anasazi / Belos Classes
Eigenproblem / LinearProblem Class

Describes the problem and stores the answer
Eigensolver / Linear Solver Manager (SolverManager) Class

Parameter list driven strategy object describing behavior of solver
Eigensolver / Iteration Class

Provide basic iteration interface.
MultiVecTraits and OperatorTraits

Traits classes for interfacing linear algebra
SortManager Class [Anasazi only]

Allows selection of desired eigenvalues
OrthoManager Class

Provide basic interface for orthogonalization
StatusTest Class

Control testing of convergence, etc.
OutputManager Class

Control verbosity and printing in a MP scenario

54

Linear Algebra Interface
MultiVecTraits

Abstract interface to define the linear algebra required by
most iterative eigensolvers / linear solvers:

• creational methods
• dot products, norms
• update methods
• initialize / randomize

OperatorTraits

Abstract interface to enable the
application of an operator to a multivector.

28

55

Three approaches for using your own linear algebra:
Specialize the traits classes for the multivector and operator:

• Fill out MultiVecTraits<ST,MyMV>
• Fill out OperatorTraits<ST,MyMV,MyOP>

Subclass abstract base classes, for which traits
specializations are already defined:
• class MyMV : public MultiVec<ST>

• class MyOP : public Operator<ST>

Implement your linear algebra in the Thyra framework:
• Then use the adapter to Thyra.

Test your own linear algebra interfaces using:
TestMultiVecTraits<ST,MV>(…)

TestOperatorTraits<ST,MV,OP>(…)

Or you can simply use Epetra!

Interfacing Your LAL

56

Eigenproblem / LinearProblem
Interface

Provides an interface between the basic iterations and the
problem to be solved.
Anasazi:

Abstract base class Anasazi::Eigenproblem

• Allows spectral transformations to be removed from the algorithm.
• Differentiates between standard and generalized eigenproblems.
• Stores initial vector, stiffness/mass matrix, operator, eigensolution.

Concrete class Anasazi::BasicEigenproblem

• Describes standard or general, Hermitian or non-Hermitian
eigenproblems.

Belos:
Concrete class Belos::LinearProblem
Allows preconditioning to be removed from the algorithm.
Initial vector, left/right preconditioner, left/right scaling, operator,
solution vectors.

29

57

StatusTest Interface
Informs eigensolver / linear solver iteration of change in state, as
defined by user.
Similar to NOX / AztecOO.
Multiple criterion can be logically connected.
Abstract base class Anasazi::StatusTest / Belos::StatusTest

TestStatus checkStatus(Anasazi::Eigensolver<…>* solver);
TestStatus checkStatus(Belos::Iteration<…>* solver);
TestStatus getStatus() const;
void clearStatus();
void reset();
ostream& print(ostream& os, int indent = 0) const;

Concrete classes:
StatusTestMaxIters
StatusTestResNorm
StatusTestOrderedResNorm [Anasazi only]

StatusTestOutput
StatusTestCombo

58

Abstract interface to orthogonalization / orthonormalization routines
for multivectors.
Abstract base class OrthoManager/MatOrthoManager

Inner product
Multivector norm
Project multivector
Normalize multivector
Project and normalize multivector
Orthogonalization error
Orthonormalization error

Concrete classes: Anasazi
Anasazi::BasicOrthoManager (DGKS)
Anasazi::SVQBOrthoManager

Concrete classes: Belos
Belos::DGKSOrthoManager
Belos::ICGSOrthoManager
Belos::IMGSOrthoManager

Orthogonalization Manager
Interface

30

59

Sort Manager Interface
[Anasazi only]

Abstract interface for managing the sorting of the eigenvalues
computed by the eigensolver.
Important tool to complement spectral transformations.
Only two methods:

ReturnType sort(Eigensolver<ST,MV,OP>* solver,
int n, ST *evals,
std::vector<int> *perm=0);

ReturnType sort(Eigensolver<ST,MV,OP>* solver,
int n, ST *r_evals, ST *i_evals,
std::vector<int> *perm=0);

Concrete class Anasazi::BasicSort
Provides basic sorting methods:

• largest/smallest magnitude
• largest/smallest real part
• largest/smallest imaginary part

60

Output Manager Interface
Allows user to control which processor will handle output from
the solver and the verbosity.
Default is lowest verbosity, outputting on proc 0.
Methods:

Get/Set Methods:
• void setVerbosity(int vbLevel);
• int getVerbosity();
• ostream& stream(MsgType type);

Query Methods:
• bool isVerbosity(MsgType type);

Print Methods:
• void print(MsgType type, const string output);

For Anasazi, this is an abstract base class
Concrete Class Anasazi::BasicOutputManager

• Default is lowest verbosity (errors), output on one processor.

31

61

Eigensolver / Iteration Interface
Provides an abstract interface to basic iterations.
Abstract base class Anasazi::Eigensolver / Belos::Iteration

get / reset number of iterations
native residuals
current / maximum subspace size
set / get auxiliary vectors [Anasazi only]
problem
initialize / iterate

Anasazi concrete iterations:
Anasazi::BlockDavidson
Anasazi::LOBPCG
Anasazi::BlockKrylovSchur

Belos concrete iterations:
Belos::CGIter, Belos::BlockCGIter
Belos::BlockGmresIter, Belos::PseudoBlockGmresIter
Belos::GCRODRIter

Requires these classes:
Eigenproblem / LinearProblem
OutputManager
OrthoManager
StatusTest
SortManager [Anasazi only]

62

Provides an abstract interface to solver managers (strategies)

Abstract base class SolverManager
Access to the eigenproblem / linear problem
Solve the eigenproblem / linear problem

Solvers are parameter list driven, take two arguments:
Anasazi::Eigenproblem / Belos::LinearProblem
Teuchos::ParameterList

Anasazi concrete solver managers:
Anasazi::BlockDavidsonSolMgr
Anasazi::LOBPCGSolMgr
Anasazi::BlockKrylovSchurSolMgr

Belos concrete solver managers:
Belos::BlockCGSolMgr
Belos::BlockGmresSolMgr
Belos::PseudoBlockGmresSolMgr
Belos::GCRODRSolMgr

Eigensolver / LinearSolver
Manager Interface

32

63

Anasazi / Belos Status
Anasazi (Trilinos Release 7.0):

Solvers: Block Krylov-Schur, Block Davidson, LOBPCG
Can solve standard and generalized eigenproblems
Can solve Hermitian and non-Hermitian eigenproblems
Can target largest or smallest eigenvalues
Block size is independent of number of requested eigenvalues

Belos (Trilinos Release 8.0):
Solvers: BlockCG, BlockGMRES, Pseudo-block GMRES,
Recycled Krylov (GCRO-DR)
Belos::EpetraOperator and Thyra::LOWS interface allows for
integration into other codes
Block size is independent of number of right-hand sides

Linear algebra adapters for Epetra, NOX/LOCA, and Thyra
Epetra interface accepts Epetra_Operators, so can be used with
ML, AztecOO, Ifpack, Belos, etc…
Configurable via Teuchos::ParameterList

64

Trilinos Availability / Information
Trilinos and related packages are available via LGPL.

Current release (7.0) is “click release”. Unlimited availability.
1800+ Downloads since 3/05 (not including internal Sandia users).
750 registered users:

• 57% university, 11% industry, 20% gov’t.
• 35% European, 35% US, 10% Asian.

Trilinos Release 8: September 2007.

Trilinos Awards:
2004 R&D 100 Award.
SC2004 HPC Software Challenge Award.
Sandia Team Employee Recognition Award.
Lockheed-Martin Nova Award Nominee.

More information and downloads:
http://trilinos.sandia.gov

5th Annual Trilinos User Group Meeting: November 6-8, 2007 at SNL.

33

65

Solver Collaborations:
ANAs, LALs and APPs

66Categories of Abstract Problems
and Abstract Algorithms

· Linear Problems:

· Linear equations:

· Eigen problems:

· Nonlinear Problems:

· Nonlinear equations:

· Stability analysis:

· Transient Nonlinear Problems:

· DAEs/ODEs:

· Optimization Problems:

· Unconstrained:

· Constrained:

Trilinos Packages

Belos

Anasazi

NOX

LOCA

MOOCHO

Rythmos

34

67Introducing
Abstract Numerical Algorithms

An abstract numerical algorithm (ANA) is a numerical algorithm that can be
expressed solely in terms of vectors, vector spaces, and linear operators

Example Linear ANA (LANA) : Linear Conjugate Gradients

scalar product
<x,y> defined by
vector space

vector-vector
operations

linear operator
applications

Scalar operations

Types of operations Types of objectsLinear Conjugate Gradient Algorithm

68

ANA Linear
Operator
Interface

Solver Software Components
and Interfaces

2) LAL : Linear Algebra Library (e.g. vectors, sparse matrices, sparse factorizations,
preconditioners)

ANA

APP

ANA/APP
Interface

ANA Vector
Interface

1) ANA : Abstract Numerical Algorithm (e.g. linear solvers, eigensolvers, nonlinear
solvers, stability analysis, uncertainty quantification, transient solvers,
optimization etc.)

3) APP : Application (the model: physics, discretization method etc.)

Example Trilinos Packages:
• Belos (linear solvers)
• Anasazi (eigensolvers)
• NOX (nonlinear equations)
• Rhythmos (ODEs,DAEs)
• MOOCHO (Optimization)
• …

Example Trilinos Packages:
• Epetra/Tpetra (Mat,Vec)
• Ifpack, AztecOO, ML (Preconditioners)
• Meros (Preconditioners)
• Pliris (Interface to direct solvers)
• Amesos (Direct solvers)
• Komplex (Complex/Real forms)
• …Types of Software Components

Thyra
ANA Interfaces to
Linear Algebra

FEI/Thyra
APP to LAL Interfaces Custom/Thyra

LAL to LAL
Interfaces

Thyra::Nonlin

Examples:
• SIERRA
• NEVADA
• Xyce
• Sundance
• …

LAL

Matrix Preconditioner

Vector

35

69Examples of Nonlinear
Abstract Numerical Algorithms

Class of Numerical Problem Example ANA
Nonlinear equations Newton’s method (e.g. NOX, MOOCHO)

Initial Value DAE/ODE Backward Euler method (e.g. Rythmos?)

Linear equations GMRES (e.g. Belos)

Requires

Requires

70

Basic Thyra Vector and
Operator Interfaces

A linear operator is
a kind of operator

LinearOps apply
to Vectors

An operator knows
its domain and
range spacesA Vector knows

its VectorSpace

<<create>>

VectorSpaces
create Vectors!

36

71

Basic Thyra Vector and
Operator Interfaces

What is a multi-vector?
• An m multi-vector V is a tall thin

dense matrix composed of m
column vectors vj

What ANAs can exploit
multi-vectors?
• Block linear solvers
• Block eigensolvers
• Compact limited memory quasi-
Newton
• Tensor methods for nonlinear
equations

Why are multi-vectors important?
• Cache performance
• Reduce global communication

72

Basic Thyra Vector and
Operator Interfaces

A MultiVector is
a linear operator

A MultiVector has a
collection of column
vectors

A MultiVector is a tall
thin dense matrix

VectorSpaces create
MultiVectors

A Vector is a
MultiVector

<<create>>

LinearOps apply
to MultiVectors

37

73

Basic Thyra Vector and
Operator Interfaces

Reduction/Transformation Operators
• Supports all needed vector operations
• Data / parallel independence
• Optimal performance

R. A. Bartlett, B. G. van Bloemen Waanders and M. A. Heroux. Vector Reduction/Transformation Operators, ACM
TOMS, March 2004

74

Trilinos Availability / Information
Trilinos and related packages are available via LGPL.

Current release (7.0) is “click release”. Unlimited availability.
1800+ Downloads since 3/05 (not including internal Sandia users).
750 registered users:

• 57% university, 11% industry, 20% gov’t.
• 35% European, 35% US, 10% Asian.

Trilinos Release 8: September 2006.

Trilinos Awards:
2004 R&D 100 Award.
SC2004 HPC Software Challenge Award.
Sandia Team Employee Recognition Award.
Lockheed-Martin Nova Award Nominee.

More information:
http://trilinos.sandia.gov

5th Annual Trilinos User Group Meeting: November 6-8, 2007 at SNL.

