
1

Trilinos Advanced Capabilities,
Extensibility and Future Directions

Michael A. Heroux
Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Trilinos Contributors (past 3 years)
Chris Baker
Developer of Anasazi, RBGen

Ross Bartlett
Lead Developer of MOOCHO, Stratimikos, RTOp,
Thyra
Developer of Rythmos

Pavel Bochev
Lead Developer Intrepid

Paul Boggs
Developer of Thyra

Erik Boman
Lead Developer Isorropia
Developer Zoltan

Todd Coffey
Lead Developer of Rythmos

Karen Devine
Lead Developer Zoltan

Clark Dohrmann
Lead Developer of CLAPS

Carter Edwards
Lead Developer phdMesh

Michael Gee
Developer of ML, Moertel, NOX

Bob Heaphy
Lead developer of Trilinos SQA
Developer Zoltan

Mike Heroux
Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, IFPACK, Tpetra
Developer of Amesos, Belos, EpetraExt

Ulrich Hetmaniuk
Developer of Anasazi

Robert Hoekstra
Lead Developer of EpetraExt
Developer of Epetra

Russell Hooper
Developer of NOX

Vicki Howle
Lead Developer of Meros

Jonathan Hu
Developer of ML

Joe Kotulski
Lead Developer of Pliris

Rich Lehoucq
Developer of Anasazi and Belos

Kevin Long
Developer of Thyra

Roger Pawlowski
Lead Developer of NOX

Michael Phenow
Trilinos Webmaster
Developer WebTrilinos

Eric Phipps
Lead developer Sacado
Developer of LOCA, NOX

Dennis Ridzal
Lead Developer of Aristos, Intrepid

Marzio Sala
Lead Developer of Didasko, Galeri, IFPACK, WebTrilinos
Developer of ML, Amesos

Andrew Salinger
Lead Developer of LOCA, Capo

Paul Sexton
Developer of Epetra and Tpetra

Bob Shuttleworth
Developer of Meros.

Chris Siefert
Developer of ML

Bill Spotz
Lead Developer of PyTrilinos
Developer of Epetra, New_Package

Ken Stanley
Lead Developer of Amesos and New_Package

Heidi Thornquist
Lead Developer of Anasazi, Belos, RBGen and Teuchos

Ray Tuminaro
Lead Developer of ML and Meros

Jim Willenbring
Developer of Epetra and New_Package.
Trilinos library manager

Alan Williams
Lead Developer Isorropia, FEI
Developer of Epetra, EpetraExt, AztecOO, Tpetra

3

Take Home Messages

Trilinos is both:
A development community
A collection of software

OO techniques lead to:
Extensibility at many levels.
Scalable infrastructure.
Interoperability of independently developed capabilities.
Ability to adjust to architecture changes.

Project is growing:
Including more of “vertical software stack”.
Adapting to broader user base.

We are seeking collaborations with broader DOE
community.

4

Background/Motivation

5

Target Problems: PDES and more…

PDES

Circuits

Inhomogeneous
Fluids

And More…

6

Target Platforms: Any and All
(Now and in the Future)

Desktop: Development and more…
Capability machines:

Redstorm (XT3), Clusters
Roadrunner (Cell-based).
Large-count multicore nodes.

Parallel software environments:
MPI of course.
UPC, CAF, threads, vectors,…
Combinations of the above.

User “skins”:
C++/C, Python
Fortran.
Web, CCA.

7

Motivation For Trilinos
Sandia does LOTS of solver work.
When I started at Sandia in May 1998:

Aztec was a mature package. Used in many codes.
FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many
other codes were (and are) in use.
New projects were underway or planned in multi-level
preconditioners, eigensolvers, non-linear solvers, etc…

The challenges:
Little or no coordination was in place to:

• Efficiently reuse existing solver technology.
• Leverage new development across various projects.
• Support solver software processes.
• Provide consistent solver APIs for applications.

ASCI (now ASC) was forming software quality
assurance/engineering (SQA/SQE) requirements:

• Daunting requirements for any single solver effort to address alone.

8

Evolving Trilinos Solution
Trilinos1 is an evolving framework to address these challenges:

Fundamental atomic unit is a package.
Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).
Provides a common abstract solver API (Thyra package).
Provides a ready-made package infrastructure (new_package package):

• Source code management (cvs, bonsai).
• Build tools (autotools).
• Automated regression testing (queue directories within repository).
• Communication tools (mailman mail lists).

Specifies requirements and suggested practices for package SQA.
In general allows us to categorize efforts:

Efforts best done at the Trilinos level (useful to most or all packages).
Efforts best done at a package level (peculiar or important to a package).
Allows package developers to focus only on things that are unique to
their package.

1. Trilinos loose translation: “A string of pearls”

9

Evolving Trilinos Solution

Numerical math
Convert to models that
can be solved on digital

computers

Algorithms
Find faster and more
efficient ways to solve

numerical models

L(u)=f
Math. model

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

Lh(uh)=fh
Numerical model

uh=Lh
-1•fh

Algorithms

uh=Lh
-1•fh

Algorithms

physicsphysics

computationcomputation

Linear
Nonlinear

Eigenvalues
Optimization

Linear
Nonlinear

Eigenvalues
Optimization

Automatic diff.
Domain dec.

Mortar methods

Automatic diff.
Domain dec.

Mortar methods
Time domain

Space domain

Time domain
Space domain

Petra
Utilities

Interfaces
Load Balancing

Petra
Utilities

Interfaces
Load Balancing

solvers

discretizations methods

core

Beyond a “solvers” framework
Natural expansion of capabilities to satisfy
application and research needs

Discretization methods, AD, Mortar methods, …

10

Trilinos Package Concepts

Package: The Atomic Unit

11

Trilinos Packages
Trilinos is a collection of Packages.
Each package is:

Focused on important, state-of-the-art algorithms in its problem
regime.
Developed by a small team of domain experts.
Self-contained: No explicit dependencies on any other software
packages (with some special exceptions).
Configurable/buildable/documented on its own.

Sample packages: NOX, AztecOO, ML, IFPACK, Meros.
Special package collections:

Petra (Epetra, Tpetra, Jpetra): Concrete Data Objects
Thyra: Abstract Conceptual Interfaces
Teuchos: Common Tools.
New_package: Jumpstart prototype.

Trilinos Package Summary

RythmosTime Integration

AmesosDirect sparse linear solvers

Epetra, Teuchos, PlirisDirect dense linear solvers

AnasaziIterative eigenvalue solvers

Epetra, Jpetra, TpetraLinear algebra objects

Core
Thyra, Stratimikos, RTOpAbstract interfaces

Zoltan, IsorropiaLoad Balancing

PyTrilinos, WebTrilinos, Star-P, ForTrilinos“Skins”

Teuchos, EpetraExt, Kokkos, TriutilsC++ utilities, (some) I/O

MOOCHO, AristosOptimization (SAND)

NOX, LOCANonlinear system solvers

MerosBlock preconditioners

ML, CLAPSMultilevel preconditioners

AztecOO, IFPACKILU-type preconditioners

AztecOO, Belos, KomplexIterative (Krylov) linear solvers

Solvers

MoertelMortar Methods

SacadoAutomatic Differentiation
Methods

phdMesh, IntrepidMeshing & Spatial Discretizations
Discretizations

Package(s)Objective

13

What Trilinos is not
Trilinos is not a single monolithic piece of software. Each package:

Can be built independent of Trilinos.
Has its own self-contained CVS structure.
Has its own Bugzilla product and mail lists.
Development team is free to make its own decisions about algorithms, coding
style, release contents, testing process, etc.

Trilinos top layer is not a large amount of source code: < 2% total SLOC.

Trilinos is not “indivisible”:
You don’t need all of Trilinos to get things done.
Any collection of packages can be combined and distributed.
Current public release contains only 30 of the 40+ Trilinos packages.

14

Insight from History
A Philosophy for Future Directions

In the early 1800’s U.S. had many new territories.
Question: How to incorporate into U.S.?

Colonies? No.
Expand boundaries of existing states? No.
Create process for self-governing regions. Yes.
Theme: Local control drawing on national resources.

Trilinos package architecture has some similarities:
Asynchronous maturation.
Packages decide degree of interoperations, use of Trilinos
facilities.

Strength of each: Scalable growth with local control.

15

Trilinos Strategic Goals
Scalable Computations: As problem size and processor counts
increase, the cost of the computation will remain nearly fixed.
Hardened Computations: Never fail unless problem essentially
intractable, in which case we diagnose and inform the user why the
problem fails and provide a reliable measure of error.
Full Vertical Coverage: Provide leading edge enabling technologies
through the entire technical application software stack: from problem
construction, solution, analysis and optimization.

Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of packages that
makes sense algorithmically will be possible within Trilinos and with
compatible external software.
Universal Accessibility: All Trilinos capabilities will be available to
users of major computing environments: C++, Fortran, Python and the
Web, and from the desktop to the latest scalable systems.
Universal Solver RAS: Trilinos will be:

Integrated into every major application at Sandia (Availability).
The leading edge hardened, efficient, scalable solution for each of these
applications (Reliability).
Easy to maintain and upgrade within the application environment
(Serviceability).

Algorithmic
Goals

Software
Goals

Trilinos Statistics

Stats: Trilinos Download Page 10/16/2007.

Registered Users by Region (1985 Total)

703

638

223

274

97

28

22

Europe
US (except Sandia)
Sandia (includes unregistered)
Asia
Americas (except US)
Australia/NZ
Africa

Registered Users by Type (1985 Total)

1121

365

232

219
48

University
Government
Personal
Industry
Other

Trilinos Statistics by Relea

22

22

16

5.48

4.40

9

27

26

26

17

7.16

7.36

11

30

29

27

18

8.95

10.21

19

33

32

30

27

9.54

19.25

28

35

38

33

31

10.0

3.91

33

36

0 5 10 15 20 25 30 35 40

Packages in
repository

Limited release
packages

General release
packages

Source lines (100K)

Downloads (100s)

Automated
Regression Tested

packages

Developers

Counts

Release 8.0 (9/07
Release 7.0 (9/06
Release 6.0 (9/05
Release 5.0 (3/05
Release 4.0 (6/04

17

External Visibility
Awards: R&D 100, HPC SW Challenge (04).
www.cfd-online.com:

Industry Collaborations: Boeing, Goodyear, ExxonMobil.
Linux distros: Debian, Mandriva.
Star-P Interface.
SciDAC TOPS-2 partner.
Over 5000 downloads since March 2005.
Occasional unsolicited external endorsements such as the following two-person exchange on
mathforum.org:

> The consensus seems to be that OO has little, if anything, to offer
> (except bloat) to numerical computing.
I would completely disagree. A good example of using OO in numerics is
Trilinos: http://software.sandia.gov/trilinos/

Trilinos
A project led by Sandia to develop an object-oriented software framework for scientific computations.
This is an active project which includes several state-of-the-art solvers and lots of other nice things a
software engineer writing CFD codes would find useful. Everything is freely available for download once
you have registered. Very good!

18

Trilinos Presentation Forums

Next Trilinos User Group Meeting:
Nov 6-8, 2007.
At Sandia National Laboratories, Albuquerque, NM,
USA.

ACTS “Hands-on” Tutorial:
Aug 19-21, 2008.
At Lawrence Berkeley Lab, Berkeley, CA, USA.

19

Website

http:trilinos.sandia.gov
Developer content on
software.sandia.gov.
Always looking to
improve layout, content.
Site was recently
redesigned.

20

Whirlwind Tour of Packages
Discretizations Methods Core Solvers

21

Interoperable Tools for Rapid Development
of Compatible DiscretizationsIntrepidIntrepid

Intrepid offers an innovative software design for compatible discretizations:

allows access to FEM, FV and FD methods using a common API
supports hybrid discretizations (FEM, FV and FD) on unstructured grids
supports a variety of cell shapes:

standard shapes (e.g. tets, hexes): high-order finite element methods
arbitrary (polyhedral) shapes: low-order mimetic reconstructions

enables optimization, error estimation, V&V, and UQ using fast invasive techniques
(direct support for cell-based derivative computations or via automatic differentiation)

Direct: FV/DDirect: FV/D

ReconstructionReconstruction

Cell DataCell Data

ReductionReduction

Pullback: FEMPullback: FEM

Higher order General cells

Λk

Forms
Λk

Forms

d,d*, ,∧,(,)
Operations

d,d*, ,∧,(,)
Operations

{C0,C1,C2,C3}
Discrete forms

{C0,C1,C2,C3}
Discrete forms

D,D*,W,M
Discrete ops.

D,D*,W,M
Discrete ops.

Developers: Pavel Bochev, Denis Ridzal, David Day

22

Rythmos
Suite of time integration (discretization) methods

Includes: backward Euler, forward Euler, explicit Runge-Kutta,
and implicit BDF at this time.
Native support for operator split methods.
Highly modular.
Forward sensitivity computations will be included in the first
release with adjoint sensitivities coming in near future.

Developers: Todd Coffey, Roscoe Bartlett

23

Whirlwind Tour of Packages
Discretizations Methods Core Solvers

24

Moertel: Mortar Methods
Capabilities for nonconforming mesh tying and contact formulations in 2
and 3 dimensions using Mortar methods.

Mortar methods are types of Lagrange Multiplier constraints that can be
used in contact formulations and in non-conforming or conforming
mesh tying as well as in domain decomposition techniques.

Used in a large class of nonconforming situations such as the surface
coupling of different physical models, discretization schemes or non-
matching triangulations along interior interfaces of a domain.

Developer: Michael Gee

25

Sacado: Automatic Differentiation

Efficient OO based AD tools optimized for element-level computations

Applies AD at “element”-level computation
“Element” means finite element, finite volume, network device,…

Template application’s element-computation code
Developers only need to maintain one templated code base

Provides three forms of AD
Forward Mode:

• Propagate derivatives of intermediate variables w.r.t. independent variables forward
• Directional derivatives, tangent vectors, square Jacobians, when m ≥ n.

Reverse Mode:

• Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
• Gradients, Jacobian-transpose products (adjoints), when n > m.

Taylor polynomial mode:

Basic modes combined for higher derivatives.

Developers: Eric Phipps, David Gay

26

Whirlwind Tour of Packages
Discretizations Methods Core Solvers

27

Portable utility package of commonly useful tools:

ParameterList class: key/value pair database, recursive capabilities.
LAPACK, BLAS wrappers (templated on ordinal and scalar type).
Dense matrix and vector classes (compatible with BLAS/LAPACK).
FLOP counters, timers.
Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.
Reference counted pointers / arrays, and more…

Takes advantage of advanced features of C++:
Templates
Standard Template Library (STL)

ParameterList:
Allows easy control of solver parameters.
XML format input/output.

Developers: Roscoe Barlett, Kevin Long, Heidi Thorquist, Mike Heroux,
Paul Sexton, Kris Kampshoff, Chris Baker

Teuchos

28

Kokkos

Developer: Mike Heroux

Collection of several sparse/dense kernels that affect the
performance of preconditioned Krylov methods
Goal:

Isolate key non-BLAS kernels for the purposes of optimization.

Kernels:
Dense vector/multivector updates and collective ops (not in BLAS/Teuchos).
Sparse MV, MM, SV, SM.

Serial-only for now.
Reference implementation provided (templated).
Mechanism for improving performance:

Default is aggressive compilation of reference source.
BeBOP: Jim Demmel, Kathy Yelick, Rich Vuduc, UC Berkeley.
Vector version: Cray.

29

Zoltan
Data Services for Dynamic Applications

Dynamic load balancing
Graph coloring
Data migration
Matrix ordering

Partitioners:
Geometric (coordinate-based) methods:

• Recursive Coordinate Bisection (Berger, Bokhari)
• Recursive Inertial Bisection (Taylor, Nour-Omid)
• Space Filling Curves (Peano, Hilbert)
• Refinement-tree Partitioning (Mitchell)

Hypergraph and graph (connectivity-based) methods:
• Hypergraph Partitioning
• Hypergraph Repartitioning PaToH (Catalyurek)
• Zoltan Hypergraph Partitioning
• ParMETIS (U. Minnesota)
• Jostle (U. Greenwich)

Developers: Karen Devine, Eric Boman, Robert Heaphy

30

1Petra is Greek for “foundation”.

Trilinos Common Language: Petra
Petra provides a “common language” for distributed
linear algebra objects (operator, matrix, vector)

Petra1 provides distributed matrix and vector services.
Exists in basic form as an object model:

Describes basic user and support classes in UML,
independent of language/implementation.

Describes objects and relationships to build and use
matrices, vectors and graphs.

Has 3 implementations under development.

31

Petra Implementations

Epetra (Essential Petra):
Current production version.
Restricted to real, double precision arithmetic.
Uses stable core subset of C++ (circa 2000).
Interfaces accessible to C and Fortran users.

Tpetra (Templated Petra):
Next generation C++ version.
Templated scalar and ordinal fields.
Uses namespaces, and STL: Improved usability/efficiency.

Jpetra (Java Petra):
Pure Java. Portable to any JVM.
Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces.

Developers: Mike Heroux, Rob Hoekstra, Alan Williams, Paul Sexton

32

EpetraExt: Extensions to Epetra

Library of useful classes not needed by everyone

Most classes are types of “transforms”.
Examples:

Graph/matrix view extraction.
Epetra/Zoltan interface.
Explicit sparse transpose.
Singleton removal filter, static condensation filter.
Overlapped graph constructor, graph colorings.
Permutations.
Sparse matrix-matrix multiply.
Matlab, MatrixMarket I/O functions.

Most classes are small, useful, but non-trivial to write.

Developer: Robert Hoekstra, Alan Williams, Mike Heroux

33

Thyra
High-performance, abstract interfaces for linear algebra

Offers flexibility through abstractions to algorithm developers
Linear solvers (Direct, Iterative, Preconditioners)

Abstraction of basic vector/matrix operations (dot, axpy, mv).
Can use any concrete linear algebra library (Epetra, PETSc, BLAS).

Nonlinear solvers (Newton, etc.)
Abstraction of linear solve (solve Ax=b).
Can use any concrete linear solver library:

• AztecOO, ML, PETSc, LAPACK
Transient/DAE solvers (implicit)

Abstraction of nonlinear solve.
… and so on.

Developers: Roscoe Bartlett, Kevin Long

34

PyTrilinos
PyTrilinos provides Python access to Trilinos packages.

Uses SWIG to generate bindings.

Epetra, AztecOO, IFPACK,
ML, NOX, LOCA, Amesos
and NewPackage are support.

Possible to:
Define RowMatrix implementation in Python.
Use from Trilinos C++ code.

Performance for large grain is equivalent to C++.

Several times hit for very fine grain code.

Developer: Bill Spotz

35

WebTrilinos
WebTrilinos: Web interface to Trilinos

Generate test problems or read from file.
Generate C++ or Python code fragments and click-run.
Hand modify code fragments and re-run.

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala

36

Whirlwind Tour of Packages
Discretizations Methods Core Solvers

37

IFPACK: Algebraic Preconditioners
Overlapping Schwarz preconditioners with incomplete
factorizations, block relaxations, block direct solves.

Accept user matrix via abstract matrix interface (Epetra versions).

Uses Epetra for basic matrix/vector calculations.

Supports simple perturbation stabilizations and condition
estimation.

Separates graph construction from factorization, improves
performance substantially.

Compatible with AztecOO, ML, Amesos. Can be used by NOX
and ML.

Developers: Marzio Sala, Mike Heroux

38

: Multi-level Preconditioners
Smoothed aggregation, multigrid and domain decomposition
preconditioning package

Critical technology for scalable performance of some key
apps.
ML compatible with other Trilinos packages:

Accepts user data as Epetra_RowMatrix object (abstract interface).
Any implementation of Epetra_RowMatrix works.

Implements the Epetra_Operator interface. Allows ML preconditioners
to be used with AztecOO, Belos, Anasazi.

Can also be used completely independent of other Trilinos
packages.

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala

39

Interface to direct solvers for distributed sparse linear systems
(KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

Challenges:
No single solver dominates
Different interfaces and data formats, serial and parallel
Interface often changes between revisions

Amesos offers:
A single, clear, consistent interface, to various packages
Common look-and-feel for all classes
Separation from specific solver details
Use serial and distributed solvers; Amesos takes care of data redistribution
Native solvers: KLU and Paraklete

Developers: Ken Stanley, Marzio Sala, Tim Davis

Amesos

40

AztecOO
Krylov subspace solvers: CG, GMRES, Bi-CGSTAB,…
Incomplete factorization preconditioners

Aztec is the workhorse solver at Sandia:
Extracted from the MPSalsa reacting flow code.
Installed in dozens of Sandia apps.
1900+ external licenses.

AztecOO improves on Aztec by:
Using Epetra objects for defining matrix and RHS.
Providing more preconditioners/scalings.
Using C++ class design to enable more sophisticated use.

AztecOO interfaces allows:
Continued use of Aztec for functionality.
Introduction of new solver capabilities outside of Aztec.

Developers: Mike Heroux, Alan Williams, Ray Tuminaro

41

Belos and Anasazi
Next generation linear solvers (Belos) and eigensolvers
(Anasazi) libraries, written in templated C++.

Provide a generic interface to a collection of algorithms for
solving large-scale linear problems and eigenproblems.
Algorithm implementation is accomplished through the use
of abstract base classes (mini interface) and traits classes.
Interfaces are derived from these base classes to:

operator-vector products
status tests
orthogonalization
any arbitrary linear algebra library.

Includes block linear solvers and eigensolvers.

Developers: Heidi Thornquist, Mike Heroux, Chris Baker,
Rich Lehoucq, Ulrich Hetmaniuk

42

NOX: Nonlinear Solvers
Suite of nonlinear solution methods

NOX uses abstract vector and “group” interfaces:
Allows flexible selection and tuning of various strategies:

• Directions.
• Line searches.

Epetra/AztecOO/ML, LAPACK, PETSc implementations of
abstract vector/group interfaces.

Designed to be easily integrated into existing applications.

Developers: Tammy Kolda, Roger Pawlowski

43

LOCA
Library of continuation algorithms

Provides
Zero order continuation
First order continuation
Arc length continuation
Multi-parameter continuation (via Henderson's MF Library)
Turning point continuation
Pitchfork bifurcation continuation
Hopf bifurcation continuation
Phase transition continuation
Eigenvalue approximation (via ARPACK or Anasazi)

Developers: Andy Salinger, Eric Phipps

44

MOOCHO & Aristos
MOOCHO: Multifunctional Object-Oriented arCHitecture for
Optimization

Large-scale invasive simultaneous analysis and design (SAND)
using reduced space SQP methods.

Aristos: Optimization of large-scale design spaces

Invasive optimization approach based on full-space SQP methods.
Efficiently manages inexactness in the inner linear system solves.

Developer: Denis Ridzal

Developer: Roscoe Bartlett

45Full “Vertical” Solver Coverage Trilinos Packages

· Transient Problems:

· DAEs/ODEs: Rythmos0 0

Solve ((), (),) 0
[0,], (0) , (0)

for () , [0,]n

f x t x t t
t T x x x x

x t t T

=
′∈ = =

∈ℜ ∈

&

&

· Nonlinear Problems:

· Nonlinear equations:

· Stability analysis:

NOX

LOCA

Given nonlinear op (,)
Solve () 0 for

For (,) 0 find space singular

n m n

n

c x u
c x x

cc x u u U
x

+∈ℜ → ℜ
= ∈ℜ

∂= ∈ ∋
∂

· Explicit Linear Problems:

· Matrix/graph equations:

· Vector problems:

Epetra, Tpetra
Compute ; (); ,
Compute ; , ; ,

m n m n

n

y Ax A A G A G
y x w x y x yα β α

× ×= = ∈ℜ ∈
= + =< > ∈ℜ

Anasazi

· Implicit Linear Problems:

· Linear equations:

· Eigen problems:

AztecOO, Belos,
Ifpack,ML,etc.

Given linear ops (matrices) ,
Solve for
Solve for (all) ,

n n

n

n

A B
Ax b x
Av Bv vλ λ

×∈ℜ
= ∈ℜ
= ∈ℜ ∈ℜ

· Optimization Problems:

· Unconstrained:

· Constrained:

MOOCHO,

Aristos
Find that minimizes ()
Find and that
minimizes (,) s.t. (,) 0

n

m n

u f u
y u

f y u c y u

∈ℜ
∈ℜ ∈ℜ

=

46Algorithms Research:
Truly Useful Multi-level Methods
Fly-through of next 4 slides.
Theme:
Multi-level preconditioning has come of age
across broad spectrum of problems.

1542/1414 (Gee,Heinstein,Key,Pierson,Tuminaro)

Novel nonlinear AMG

ML, NOX, Epetra, Amesos, AztecOO

Constraints projected out in F(x)

Improved coloring performance by 10x

Initial testing ⇒ excellent convergence

Pressurize tire with 5 loadsteps

Nonlinear AMG/ADAGIO

13

22

its

Jacobi

MG

14559

251241

232331

303925

1391

its# elmts

356119

• Large reduction in iteration count.
• Slow growth as size increases.

Helium plume V&V Project

260K, 16 processor run

ML/GMRES is ~25% faster than without ML

As problem size increase, ML expected to be more beneficial

ASC SIERRA Applications

SIERRA/Fuego/Syrinx

SIERRA/Aria Multiphysics
coupled potential/thermal/displacement DP MEMS problem
ML reduced solve time (40%) from ~20 minutes to ~12 minutes

compared to actual ANSYS runs & ARIA re-creation ANSYS scheme

49

Premo
premo (Latin) – to squeeze (compress)

Compressible flow to determine aerodynamic characteristics
for the Nuclear Weapons Complex

Additional Issues that have been addressed
FEI/Nox/Trilinos interface development
Block Algorithm Improvements
Block Gauss-Seidel, Block Grid Transfers

Numerical Issues
nonlinear path, time step path, setup time, linear sys. difficulty

B61 problem (6.5 million dofs, 64 procs)
Pseudo-transient + Newton
Euler flow, Mach .8
Linear solver: 173 solves, tolerance= 10-4

GMRES/ILU 7494 sec
GMRES/MG 3704 sec

50

Premo
premo (Latin) – to squeeze (compress)

Falcon problem (13+ Million dofs, 150 procs)
Pseudo-transient + Newton
Euler flow, Mach .75
Linear solver: 109 solves, tolerance= 10-4

GMRES/ILU 7620 sec
GMRES/MG 3787 sec
10x improvement on final linear solve.
> 5x gains on some problems

over entire sequence

New Grid Transfers (220+K Falcon, 1 proc)
Pseudo-transient + Newton, Euler flow @ Mach .75
Last linear solve, tolerance= 10-9

GMRES/MG/old transfers 47 its, 49 sec
GMRES/MG/new transfers 24 its, 26 sec

51

Multi-level Methods Summary
Solving hard, real problems fast, scalably.
Still need more…

52

Algorithms Research:
Specialized Solvers

Next wave of capabilities: Specialized solvers.
Examples in Trilinos:

Optimal domain decomposition preconditioners for structures:
CLAPS
Mortar methods for interface coupling: Moertel.
Segregated Preconditioners for Navier-Stokes: Meros.

Examples in Applications:
EMU (with Boeing).
Tramonto.

53
Lipid Bi-Layer Problem:

One example
(of many variations)

0
0 00 0

0 0
0

F0 0 0
0

0

0 0

0
0 0

0

0

0

0

0

0

19n

19n

3n

3n

0

0 0
0 0

2n A11 A12

A21 A22

•A11 solve easily applied in parallel.
•Apply GMRES to S = A22 – A21*inv(A11)*A12
•Need a preconditioner for S.

54

Preconditioner for S

FA22 = D11

D21 D21

FA22 A22 =
D11

0 D21

• D11, D22 = O(1), D21 = O(1e-10)
• Ignore D21 for preconditioning.
• P(S) requires

• 2 diagonal scalings,
• matvec with F.

• All distributed operations.

55

Tramonto Solver Summary
3-level linear operator structure.
Matlab to fully parallel: 1 month.
Complex orchestration:

Preconditioner: 100+ distributed Epetra matrices used in sequence.
ML, IFPACK, Amesos used on subproblems.

Utilizes 8 Trilinos packages in total.
566 Lines of Code (Polymer Solver).
Polymorphic Design.

3D Polymer Results

Same Iteration Counts as
Processor Count Increases

Approximately Linear Performance
Improvement For Fixed Size Problem

57

Properties of New Solver

Uniform distributed mesh → uniform distributed work.
Preconditioner sub-steps naturally parallel:
→ Results invariant to processor count up to round-off.

Preconditioner requires almost no extra memory:
→ 4-10X reduction over previous approach.

GMRES subspace and storage reduced 6X-10X or more.
Speedup 20-2X.
Solver has:

No tuning parameters.
Near linear scaling.

Laurie’s Favorite Properties!

Michael A. Heroux, Laura J. D. Frink, and Andrew G. Salinger.
Schur complement based approaches to solving density functional theories for inhomogeneous fluids
on parallel computers. SIAM J. Sci. Comput. 2007.

58

Extending Capabilities:
Preconditioners, Operators, Matrices

Illustrated using AztecOO as example

59

Epetra User Class Categories
Sparse Matrices: RowMatrix, (CrsMatrix, VbrMatrix, FECrsMatrix, FEVbrMatrix)

Linear Operator: Operator: (AztecOO, ML, Ifpack)

Dense Matrices: DenseMatrix, DenseVector, BLAS, LAPACK,
SerialDenseSolver

Vectors: Vector, MultiVector

Graphs: CrsGraph

Data Layout: Map, BlockMap, LocalMap

Redistribution: Import, Export, LbGraph, LbMatrix

Aggregates: LinearProblem

Parallel Machine: Comm, (SerialComm, MpiComm, MpiSmpComm)

Utilities: Time, Flops

60

LinearProblem Class

A linear problem is defined by:
Matrix A :

• An Epetra_RowMatrix or Epetra_Operator object.
(often a CrsMatrix or VbrMatrix object.)

Vectors x, b : Vector objects.

To call AztecOO, first define a LinearProblem:
Constructed from A, x and b.
Once defined, can:

• Scale the problem (explicit preconditioning).
• Precondition it (implicitly).
• Change x and b.

61

AztecOO

Aztec is the previous workhorse solver at Sandia:
Extracted from the MPSalsa reacting flow code.
Installed in dozens of Sandia apps.

AztecOO leverages the investment in Aztec:
Uses Aztec iterative methods and preconditioners.

AztecOO improves on Aztec by:
Using Epetra objects for defining matrix and RHS.
Providing more preconditioners/scalings.
Using C++ class design to enable more sophisticated use.

AztecOO interfaces allows:
Continued use of Aztec for functionality.
Introduction of new solver capabilities outside of Aztec.

62

A Simple Epetra/AztecOO Program

// Header files omitted…
int main(int argc, char *argv[]) {

MPI_Init(&argc,&argv); // Initialize MPI, MpiComm
Epetra_MpiComm Comm(MPI_COMM_WORLD);

// ***** Create x and b vectors *****
Epetra_Vector x(Map);
Epetra_Vector b(Map);
b.Random(); // Fill RHS with random #s

// ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

Epetra_CrsMatrix A(Copy, Map, 3);
double negOne = -1.0; double posTwo = 2.0;

for (int i=0; i<NumMyElements; i++) {
int GlobalRow = A.GRID(i);
int RowLess1 = GlobalRow - 1;
int RowPlus1 = GlobalRow + 1;
if (RowLess1!=-1)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);
if (RowPlus1!=NumGlobalElements)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

}
A.FillComplete(); // Transform from GIDs to LIDs

// ***** Map puts same number of equations on each pe *****

int NumMyElements = 1000 ;
Epetra_Map Map(-1, NumMyElements, 0, Comm);
int NumGlobalElements = Map.NumGlobalElements();

// ***** Report results, finish ***********************
cout << "Solver performed " << solver.NumIters()

<< " iterations." << endl
<< "Norm of true residual = "
<< solver.TrueResidual()
<< endl;

MPI_Finalize() ;
return 0;

}

// ***** Create/define AztecOO instance, solve *****
AztecOO solver(problem);
solver.SetAztecOption(AZ_precond, AZ_Jacobi);
solver.Iterate(1000, 1.0E-8);

// ***** Create Linear Problem *****
Epetra_LinearProblem problem(&A, &x, &b);

63

AztecOO Extensibility

AztecOO is designed to accept externally defined:
Operators (both A and M):

• The linear operator A is accessed as an Epetra_Operator.
• Users can register a preconstructed preconditioner as an

Epetra_Operator.
RowMatrix:

• If A is registered as a RowMatrix, Aztec’s preconditioners are
accessible.

• Alternatively M can be registered separately as an Epetra_RowMatrix,
and Aztec’s preconditioners are accessible.

StatusTests:
• Aztec’s standard stopping criteria are accessible.
• Can override these mechanisms by registering a StatusTest Object.

64

AztecOO understands
Epetra_Operator

Epetra_Operator Methods Documentation

AztecOO is designed to
accept externally defined:

Operators (both A and M).
RowMatrix (Facilitates use
of AztecOO preconditioners
with external A).
StatusTests (externally-
defined stopping criteria).

65

AztecOO Understands
Epetra_RowMatrix

Epetra_RowMatrix Methods

66

AztecOO UserOp/UserMat
Recursive Call Example

Trilinos/packages/aztecoo/example/AztecOO_RecursiveCall

1. Poisson2dOperator A(nx, ny, comm); // Generate nx by ny Poisson operator
2. Epetra_CrsMatrix * precMatrix = A.GeneratePrecMatrix(); // Build tridiagonal approximate Poisson

3. Epetra_Vector xx(A.OperatorDomainMap()); // Generate vectors (xx will be used to generate RHS b)
4. Epetra_Vector x(A.OperatorDomainMap());
5. Epetra_Vector b(A.OperatorRangeMap());

6. xx.Random(); // Generate exact x and then rhs b
7. A.Apply(xx, b);

8. // Build AztecOO solver that will be used as a preconditioner
9. Epetra_LinearProblem precProblem;
10. precProblem.SetOperator(precMatrix);
11. AztecOO precSolver(precProblem);
12. precSolver.SetAztecOption(AZ_precond, AZ_ls);
13. precSolver.SetAztecOption(AZ_output, AZ_none);
14. precSolver.SetAztecOption(AZ_solver, AZ_cg);
15. AztecOO_Operator precOperator(&precSolver, 20);

16. Epetra_LinearProblem problem(&A, &x, &b); // Construct linear problem
17. AztecOO solver(problem); // Construct solver

18. solver.SetPrecOperator(&precOperator); // Register Preconditioner operator

19. solver.SetAztecOption(AZ_solver, AZ_cg);
20. solver.Iterate(Niters, 1.0E-12);

67

Ifpack/AztecOO Example
Trilinos/packages/aztecoo/example/IfpackAztecOO

1. // Assume A, x, b are define, LevelFill and Overlap are specified

2. Ifpack_IlukGraph IlukGraph(A.Graph(), LevelFill, Overlap);
3. IlukGraph.ConstructFilledGraph();
4. Ifpack_CrsRiluk ILUK (IlukGraph);
5. ILUK.InitValues(A);
6. assert(ILUK->Factor()==0); // Note: All Epetra/Ifpack/AztecOO method return int err codes
7. double Condest;
8. ILUK.Condest(false, Condest); // Get condition estimate
9. if (Condest > tooBig) {
10. ILUK.SetAbsoluteThreshold(Athresh);
11. ILUK.SetRelativeThreshold(Rthresh);
12. Go back to line 4 and try again
13. }
14. Epetra_LinearProblem problem(&A, &x, &b); // Construct linear problem
15. AztecOO solver(problem); // Construct solver

16. solver.SetPrecOperator(&ILUK); // Register Preconditioner operator

17. solver.SetAztecOption(AZ_solver, AZ_cg);
18. solver.Iterate(Niters, 1.0E-12);

19. // Once this linear solutions complete and the next nonlinear step is advanced,
20. // we will return to the solver, but only need to execute steps 5 on down…

68

Multiple Stopping Criteria

Possible scenario for stopping an iterative solver:
Test 1: Make sure residual is decreased by 6 orders of magnitude.

And
Test 2: Make sure that the inf-norm of true residual is no more
1.0E-8.

But
Test 3: do no more than 200 iterations.

Note: Test 1 is cheap. Do it before Test 2.

69

AztecOO StatusTest classes
AztecOO_StatusTest:

Abstract base class for defining stopping
criteria.
Combo class: OR, AND, SEQ

AztecOO_StatusTest Methods

70

AztecOO/StatusTest Example
Trilinos/packages/aztecoo/example/AztecOO

1. // Assume A, x, b are define

2. Epetra_LinearProblem problem(&A, &x, &b); // Construct linear problem
3. AztecOO solver(problem); // Construct solver

4. AztecOO_StatusTestResNorm restest1(A, x, bb, 1.0E-6);
5. restest1.DefineResForm(AztecOO_StatusTestResNorm::Implicit, AztecOO_StatusTestResNorm::TwoNorm);
6. restest1.DefineScaleForm(AztecOO_StatusTestResNorm::NormOfInitRes, AztecOO_StatusTestResNorm::TwoNorm);

7. AztecOO_StatusTestResNorm restest2(A, x, bb, 1.0E-8);
8. restest2.DefineResForm(AztecOO_StatusTestResNorm::Explicit, AztecOO_StatusTestResNorm::InfNorm);
9. restest2.DefineScaleForm(AztecOO_StatusTestResNorm::NormOfRHS, AztecOO_StatusTestResNorm::InfNorm);

10. AztecOO_StatusTestCombo comboTest1(AztecOO_StatusTestCombo::SEQ, restest1, restest2);

11. AztecOO_StatusTestMaxIters maxItersTest(200);
12. AztecOO_StatusTestCombo comboTest2(AztecOO_StatusTestCombo::OR, maxItersTest1, comboTest1);
13. solver.SetStatusTest(&comboTest2);

14. solver.SetAztecOption(AZ_solver, AZ_cg);
15. solver.Iterate(Niters, 1.0E-12);

71

Summary: Extending Capabilities

Trilinos packages are designed to interoperate.
All packages (ML, IFPACK, AztecOO, …) that can
provide linear operators:

Implement the Epetra_Operator interface.
Are available to any package that can use an linear operator.

All packages (ML, AztecOO, NOX, Belos, Anasazi, …)
that can use linear operators:

Accept linear operator via Epetra_Operator interface.
Support easy user extensions.

All packages (ML, IFPACK, AztecOO, …) that need
matrix coefficient data:

Can access that data from Epetra_RowMatrix interface.
Can use any concrete Epetra matrix class, or any user-provided
adapter.

72

Summary: Extending Capabilities

AztecOO is one example:
Flexibility comes from abstract base classes:

• Epetra_Operator:
– All Epetra matrix classes implement.
– Best way to define A and M when coefficient info not needed.

• Epetra_RowMatrix:
– All Epetra matrix classes implement.
– Best way to define A and M when coefficient info is needed.

• AztecOO_StatusTest:
– A suite of parametrized status tests.
– An abstract interface for users to define their own.
– Ability to combine tests for sophisticated control of stopping.

73

A Few More Useful Things

74

Fortran Interface

Presently Trilinos has no full-featured Fortran interface.
Plans in place to develop OO Fortran interface.
Developed as part of SciDAC TOPS-2 effort.
Just ramping up now.

75

Stratimikos

New package in Trilinos 7.0.
Single point of access to Trilinos preconditioners/solvers:

Common interface all preconditioners.
Common interface to all solvers.
Selection of preconditioner/solver via parameter list.

Simplest way to access the suite of Trilinos capabilities.
Simple driver code available on website.
Will be the focus of Fortran access to Trilinos.

76

Dynamic External Package Support

New directory Trilinos/packages/external.
Supports seamless integration of externally developed
packages via package registration.
Your package: “WorldsBestPreconditioner”

Understands configure/make.
Can have its own options: --enable-superfast-mode

Copy source into Trilinos/packages/external.
In Trilinos/packages/external, type:
./CustomizeExternal.csh WorldsBestPreconditioner
Build Trilinos in the usual way using configure/make.

Include arguments such as --enable-superfast-mode: They will be
passed down to your package.

77

Software Quality

78

SQA/SQE

Software Quality Assurance/Engineering is important.
Not sufficient to say, “We do a good job.”
Trilinos facilitates SQA/SQE development/processes for
packages:

10 of 30 ASC SQE practices are directly handled by Trilinos (no
requirements on packages).
Trilinos provides infrastructure support for the remaining 20.
Trilinos Dev Guide Part II: Specific to ASC requirements.
Trilinos software engineering policies provide a ready-made
infrastructure for new packages.
Trilinos philosophy:
Few requirements. Instead mostly suggested practices. Provides
package with option to provide alternate process.

—Source management.
—Versioning.
—Third-party software management.

Trilinos and Trilinos3PL source repositories:
All source code, development and user documentation is retained and
tracked. In addition, reference versions of all external software, including
BLAS, LAPACK, Umfpack, etc. are retained in Trilinos3PL.

SQE Practices ImpactTrilinos Service

—Pre-checkin and regression testing.
—Software metrics.

Trilinos test harness:
Trilinos provides a base testing plan and automated testing across
multiple platforms, plus creation of testing artifacts. Test harness results
are used to derive a variety of metrics for SQE.

—Portability.
—Software release.

Trilinos configure script and M4 macros:
The Trilinos configure script and related macros support portable
installation of Trilinos and its packages

—Requirements/faults capturing and
tracking.

Bugzilla Products:
Each package has its own Bugzilla Product with standard components.

—Developer/user/client communication.
—Requirements/design/testing artifacts.
—Announcement/documenting of releases.

Trilinos and package mail lists:
Trilinos lists for leaders, announcements, developers, users, checkins and
similar lists at the package level support a variety of communication. All
lists are archived, providing critical artifacts for assessments and audits.

—Developer Training.
—Design reviews.
—Policy decisions across all development

phases.

Monthly Trilinos leaders meetings:
Trilinos leaders, including package development leaders, key managers,
funding sources and other stakeholders participate in monthly phone
meetings to discuss any timely issues related to the Trilinos Project.

— All Requirements steps: gathering,
derivation, documentation, feasibility,etc.

— User and Developer training.

Yearly Trilinos User Group Meeting (TUG) and Developer Forum:
Once a year gathering for tutorials, package feature updates,
user/developer requirements discussion and developer training.

80

Software Lifecycles

81

(Typical) Project Lifecycle

Project
Conception

Support &
Maintenance

Research &
Development Production

End
of

Life

Consider this lifecycle

82

Scientific Research and Life Cycle
Models

Life Cycle Models are generally developed from the point
of view of business software.

Little consideration is given to algorithmic development.

Traditional business execution environment is traditional
mainframe or desktop, not parallel computers.

Traditional development “techniques” are assumed.

83

Research Software needs a different
model

Research should be “informal”:
Allow external collaborators, students, post-docs, etc.
Allow changes of direction without seeking permission
Should use modern software development paradigms

• i.e. Lean/Agile methods
Must be verified more than validated

Production code must:
Have formality appropriate to risks,
Be Complete (documentation, testing, …),
Be “user proofed”,
Be platform independent (as necessary),
Be validated not just verified.

84

“Promotional” Model

Phase k Phase k+1Promotional
Event

•Lower formality
•Fewer Artifacts
•Lean/Agile

•Higher formality
•Sufficient Artifacts
•Bullet proof
•Maintainable

85

Trilinos Software Lifecycle Model

The Trilinos Software Lifecycle Model, James M. Willenbring and
Michael A. Heroux and Robert T. Heaphy, Proceeding of the 29th
International Conference on Software Engineering, May 2007

86

Trilinos Lifecycle Phases

Three phases:
Research.
Production Growth.
Production Maintenance.

Each phase contains its own lifecycle model.
Promotional events:

Required for transition from one phase to next.
Signify change in behaviors and attitude.

Phase assigned individually to each package.

87

Lifecycle Phase 1: Research

Conducting research is the primary goal.
Producing software is potentially incidental to
research.
Any software that is produced is typically a “proof
of concept” or prototype.
Software that is in this phase may only be released
to selected internal customers to support their
research or development and should not be treated
as production quality code.

88

Phase 1 Required Practices

The research proposal is the project plan.
Software is placed under configuration control as
needed to prevent loss due to disaster.
Peer reviewed published papers are primary
verification and validation.
The focus of testing is a proof of correctness, not
software.
Periodic status reports should be produced,
presentation is sufficient.
A lab notebook, project notebook, or equivalent is
the primary artifact.

89

Multicore Efforts

90

Test Platform: Clovertown

• Intel: Clovertown, Quad-core (actually two dual-cores)
• Performance results are based on 1.86 GHz version

91

LAMMPS Strong Scaling

LAMMPS Strong Scaling Speedup

0

1

2

3

4

5

6

7

8

1 2 4 8

of MPI tasks (cores)

strong eam
strong lj
strong rhodo

92

HPC Conjugate Gradient

HPCCG-0.2 on Intel Clovertown (Quad-core)
(MFLOPS increase)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 4 8

of mpi tasks

Total(MF)
DDOT(MF)
WAXPBY(MF)
SPARSEMV(MF)

93

Trilinos/Epetra MPI Results
Bandwidth Usage vs. Core Usage

Solver Kernel Performance: Clovertown
490K Eq, 12.25M NZ per core

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

1 2 4 8

Number of Cores

SpMV

SpMM2

SpMM4

SpMM8

NORM

DOT

AXPY

94

SpMV MPI+pthreads
Theme: Programming model doesn’t matter

if algorithm is the same.

CR4 MXV N=1e5, NZR=2

0.038
0.039
0.04

0.041
0.042
0.043
0.044
0.045
0.046
0.047
0.048
0.049

mpi*p
1*2

mpi*p
1*4

mpi*p
1*8

mpi*p
2*1

mpi*p
2*2

mpi*p
2*4

mpi*p
4*1

mpi*p
4*2

mpi*p
8*1

MPI*pthread

95
DOUBLE-DOUBLE DOT1 N=

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

mpi*p
1*2

mpi*p
1*4

mpi*p
1*8

mpi*p
2*1

mpi*p
2*2

mpi*p
2*4

mpi*p
4*1

mpi*p
4*2

mpi*p
8*1

MPI*pthread

Double-double dot product MPI+pthreads
Same theme.

96

Classical DFT code.
Parts of code: Speedup is great.
Parts: Speedup negligible.

0

50

100

150

200

250

300

Time (sec)

1 2 4 6 8
Number of Cores

Tramonto Timings: Clovertown
MPI, INTEL Compilers

2-k_linsolv_time
First_linsolv_time
2-k_manager_time
First_manager_time
2-k_fill_time
First_fill_time

97

Closer look: 4-8 cores.
1 core: Solver is 12.7 of 289 sec (4.4%)
8 cores: Solver is 7.5 of 16.8 sec (44%).

0

5

10

15

20

25

30

Time (sec)

4 6 8
Number of Cores

Tramonto Timings: Clovertown
MPI, INTEL Compilers
Zoom in: 4, 6, 8 cores

2-k_linsolv_time
First_linsolv_time
2-k_manager_time
First_manager_time
2-k_fill_time
First_fill_time

98

Summary: Multicore

MPI-only is sometimes enough:
LAMMPS
Tramonto (at least parts), and threads might not help solvers.

Introducing threads into MPI:
Not useful if using same algorithms.
Same conclusion as 12 years ago.

Increase in bandwidth requirements:
Decreases effective core use.
Independent of programming model.

Opportunities for effective use of threading:
Change of algorithm.
Better load balancing.

99

Solver Algorithms for Multicore

Block Krylov methods: Belos, Anasazi
Block data structures: VbrMatrix
Hybrid DMP/SMP preconditioners: Another talk.
Tpetra focus:

Hybrid data strucures.
Hybrid parallel machine model.

100

To Come

Opportunities and Challenges

101

Themes for FY08/09

Redefinition of Trilinos scope beyond solvers.
Next steps in packaging and distribution.
Continued outreach to other communities
Rethinking source management.

102

Scope of Trilinos

Addition of Sacado, Zoltan, FEI, Intrepid,
phdMesh: Not solvers.
Framework support natural.
Rephrasing of project goals, descriptions
underway.
Grouping of packages into meta-packages: At
least conceptually.

103

Packaging and Distribution

Mac and Windows are ever more popular
development environments.
Goal: Provide click-install capabilities for Mac
OS, MS Visual Studio, Linux COE.

104

Outreach

Trilinos packages part of SciDAC:
ITAPS, CSCAPES, TOPS-2.
Opportunity to serve broader DOE community.

Trilinos popular in universities:
Single largest sector of users.

Trilinos part of several industrial efforts.
Improves capabilities.
Amortizes costs over broader funding sources.

Elevates certain activities:
Fortran accessibility.
Packaging & distribution.

105

Source Management

Think of repository as a database.
Logical collections gathered dynamically.
Consider use of multiple source management
tools:

Local vs. global management.
Fully distributed.

Certainly svn is option, but looking at all options.

106

Take Home Messages

Trilinos is both:
A development community
A collection of software

OO techniques lead to:
Extensibility at many levels.
Scalable infrastructure.
Interoperability of independently developed capabilities.
Ability to adjust to architecture changes.

Project is growing:
Including more of “vertical software stack”.
Adapting to broader user base.

We are seeking collaborations with broader DOE
community.

107

Trilinos Availability/Information
Trilinos and related packages are available via LGPL.
Current release (8.0) is “click release”. Unlimited availability.
More information:

http://trilinos.sandia.gov
http://software.sandia.gov
Additional documentation at my website:
http://www.cs.sandia.gov/~mheroux.

5th Annual Trilinos User Group Meeting:

November 6-8, 2007 at
Sandia National Laboratories, Albuquerque, NM, USA.

