
SAND2001–3788

Unlimited Release

Printed December 2001

UTILIB User Manual
Version 1.0

William E. Hart
Optimization and Uncertainty Estimation Dept

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM
http://www.cs.sandia.gov/∼wehart

wehart@sandia.gov

Abstract

This document provides a user manual for the UTILIB software library. UTILIB includes a variety of
generic components for C++ software development including abstract data types, I/O management, sorting
routines, and random number generators. The UTILIB library has been used by several software projects
at Sandia, including DAKOTA, PICO, SGOPT and NETV.

Contents

1 Introduction 1

2 Abstract Data Types 3

3 Input/Output Routines 7

4 Mathematical Routines 8

5 Random Number Generation 9

6 Sorting Routines 10

7 System Support 11

8 Installation 12

9 Acknowledgements 16

1 Introduction

UTILIB is a general-purpose C++ library that includes a variety of algorithmic utilities for software de-
velopment. These utilities define useful datatypes and classes as well as generic routines. In particular,
UTILIB provides a variety of services that facilitate the portability of codes, and in particular porting to
parallel computing platforms at Sandia. This library has proven useful in the development of several codes
at Sandia, including the SGOPT global optimization library, the PICO parallel branch-and-bound library,
and the DAKOTA optimization toolkit.

In its current form, this documentation provides more of a reference manual than a user’s guide. There
are several reasons for this:

• While documenting classes, I realized that there are many inconsistencies that need to be resolved
before a polished documentation can be created. For example:

– Although the format of the dynamic ADTs like heaps and splay trees is very similar, there are
subtle differences in the way that they manage keys versus associated data.

– Some I/O routines developed by Jonathan Eckstein (e.g. signalError) need to be resolved with
existing UTILIB routines.

• The support for vectors and matrices will change in the near future, as UTILIB provides more support
for the serial and parallel vectors and matrices in the Sandia Petra package. If I’m lucky, all numerical
vector/matrix operations will be removed from UTILIB.

• Similarly, the STL libraries in ANSI C++ may eliminate the need to support some of the ADT classes.

• Documentation is rather time consuming, and I felt that it was more important to get a reference guide
out soon rather than wait a much longer time period for a detailed user’s guide.

Consequently, the documentation provided in this document provides a sketch of the detail needed to fully
explain the functionality of this software. Further, some of the classes and functions are only partially
documented, which reflects the fact that I expect them to be revised in the future. However, I hope it will
be sufficient to get started using these libraries.

It is worth noting some points about the design philosophy for the classes in UTILIB:

• Encapsulation: One of the chief advantages for using UTILIB data types (e.g. arrays) is the en-
capsulation of memory allocation that they provide. This feature has been heavily exploited in my
subsequent code, and thus memory allocation is generally quite robust. Further, some classes (e.g.
LinkedList) include mechanisms for efficiently ’reallocating’ memory.

• Robustness: A related aspect of UTILIB’s design is robustness. I have almost always favored design
considerations that ensure robustness. For example, the default behavior for BasicArray’s is to
perform bounds checking. In practice, the performance hit that this causes has been far outweighed
by the hours saved tracking down obscure errors.

• Portability: Portability across many different architectures is another very important aspect of
UTILIB. For example, the common definitions for sorting in sort.h have proven very effective for
defining portable sorting routines. Similarly, the hard-coded template instantions have facilitated the
use of UTILIB on a wide range of parallel computing platforms, many of which support rudimentary
implementations of C++.

• Efficiency: There is generally no best way to implement many algorithms and datatypes, since there
invariably are performance/utility trade-offs that need to be made. In the design of UTILIB classes,
I have generally looked for solutions that admit a reasonably efficient capability while providing the
most general possible design. For example, ADT’s like splay trees are very general in their capabilities.
Still, they include methods that allow the user to track pointers to items in the tree, which can later
be used to efficiently remove those items from the tree.

• Parallelization: Support for parallelization is an important function for UTILIB. In particular,
UTILIB includes mechanisms for managing parallel I/O through the CommonIO class, and the uMPI
class provides wrappers for parallel communication with MPI.

The components of the UTILIB library include

• Abstract Data Types: standard abstract data types like trees and arrays

• Input/Output Routines: facilities for encapsulating error routines as well as redirecting I/O through
user-defined streams

• Mathematical Routines: commonly used mathematical routines, especially array operations

• Random Number Generation: generators for commonly used probability distributions and a
portable random number generator

• Sorting: a variety of common sorting routines, as well as a portable definition of sorting methods

• System Support: miscellaneous routines, especially to support portability between different operating
systems

These components of the libraries are described in greater detail in the following sections.

2 Abstract Data Types

The utilib/src/adt directory contains definitions for the following abstract datatypes:

• Arrays

– 1D Array
– 2D Array
– 3D Array
– Bit Array
– Sparse Matrix

• Character String
• Dynamic Data Types

– Hash Table
– Linked List
– Heap
– Ordered List
– Queue
– Stack
– Splay Tree

These data types are defined as templates.

2.1 Arrays

The array classes provide a nice level of encapsulation for array data types. The main distinction between
the Basic, Simple and Num array types is that the Basic array types do not include I/O operations, the
Simple arrays add I/O operations, and the Num arrays add numerical vector operations. The following
is a brief tutorial on how to use array-type classes in utilib. This is just what you need to get up and
running. I’ll touch on implementation where necessary to explain behavior and where useful for debugging.
The primary advantage of using these classes is extra safety features such as runtime bounds checking and
reference counting. Also bit arrays can save a lot of space.

2.2 One-Dimensional Arrays

The most commonly used 1D arrays are BitArray’s, IntVector’s and RealVector’s. The syntax for doubles
and ints is the same, so we only include examples for IntVector’s, indicating where BitArray syntax differs.
To use these arrays, you need to include the appropriate header files:

#include "BitArray.H"

#include "DoubleVector.H"

#include "IntVector.H"

You can then declare variables as usual:

IntVector IntTester;

BitArray BitTester;

All of these ArrayData classes have a pointer to the data in the field Data . You can get this pointer using
the data() function.

int *intarray = IntTester.data();

Ordinarily, you will not need to do this, but it can be useful for debugging. Inside a debugger like dbx,
typing

print *IntTester

will return useful information like the data location, size, etc, and

print IntTester.Data[i]

allows you to view the ith entry in the IntVector.

The declarations above (no arguments) construct an object with a NULL data pointer. One can also
specify the initial content of the IntVector:

int array-of-ints[20];

IntVector IntTester(20, array-of-ints);

The first argument is the length of the array and the second is a pointer to an array of the appropriate
type. The data field in the IntVector will point to this array. One can also construct a copy of an existing
IntVector:

IntVector CopiedVector(IntTester);

This will allocate a new integer vector and initialize it with the contents of IntTester. The Data field in
CopiedVector points to the new copy.

Frequently, one will need to use an empty constructor (i.e. start with a size-zero vector) and then put in
the true data. More generally, you may want to grow and shrink the vector dynamically:

IntTester.resize(100);

This will allocate a new array of 100 integers and copy the old data (if any) into the beginning of the array.
For example, if a 30-element array is resized to 70, the first 30 elements of the new array will be the values
from the old array. For BasicArray and SimpleArray objects, you cannot assume anything about the next
40 values (initialize or set them yourself), but for NumArray objects these array elements will be initialized
to zero. If an array of size 70 is resized to 30, then the last 40 elements are truncated.

IntTester.size()

returns the length of IntTester (in integers [more generally, array elements], not bytes).

The equals (=) operator allocates new space. Thus

CopiedVector = IntTester;

creates a new integer array and copies the contents of IntTester into that array. The Data field of Copied-
Vector points to the new space. If the vector already exists and you want to reuse the already-allocated
space, use the << operator:

ExistingIntVector << IntTester;

This copies the contents of the Data array from IntTester into the array for ExistingIntVector. The
allocated arrays must be of the same size or you will get an error. To copy by reference, use the &= operator.
Thus

Intvector SharedVector &= IntTester;

will have the data of SharedVector point to the same array that the data of IntTester points to (reference
counts are properly updated).

The equals (=) operator is overloaded to allow(re)initialization of a vector that has already been created.

intTester = 15;

This sets every element of IntTester to 15 (or obviously some other integer).

Getting array elements works looks like normal array references (at least for 1D arrays):

int index, newvalue;

IntTester[index] = newvalue;

newvalue = IntTester[index];

Here’s where BitArray syntax varies slightly. Instead of typing

BitTester[index] = 1; // wrong

you should use

BitTester.set(index); // turns the (index)th bit on

BitTester.reset(index); // turns the (index)th bit off

There are ways to manipulate consecutive subvectors. I haven’t needed them, so I’m omitting them for now.

Finally, note that the BitArray class is derived from BitArrayBase. This class can be used to define
compact representations for user-defined enumeration types. For example, see the TwoBitArray and Enum-
BitArray classes.

2.3 Dynamic Abstract Data Types

Two different classes of templates have been defined for hash tables, heaps and splay trees. The first is a
simple template, which uses a simple data type to define the key used by these data structures. The second
is a generic template, which uses a generic class to define the key. These two classes are derived from from
an abstract datatype class that defines the basic operations of the class using abstract operations on the
keys.

2.4 Splay Trees

Splay trees, or self-adjusting search trees, are a simple and efficient data structure for storing an ordered
set. The data structure consists of a binary tree, with no additional fields. It allows searching, insertion,
deletion, deletemin, deletemax, splitting, joining, and many other operations, all with amortized logarithmic
performance. Since the trees adapt to the sequence of requests, their performance on real access patterns is
typically even better. Splay trees are described in a number of texts and papers [3, 4, 5, 6].

2.5 Heaps

See Cormen, Leiserson and Rivest [1] for more details about heaps. The design of the UTILIB heap classes
is similar to the heap classes developed for the PICO software library.

2.6 Hash Tables

See Cormen, Leiserson and Rivest [1] for more details about hash tables. UTILIB provides several default
hash functions.

3 Input/Output Routines

The utilib/src/io directory contains definitions for the following classes:

• CommonIO
• PackBuffer and UnPackBuffer
• uMPI
• parameter

Additional functions are defined in the following header files:

• comments.h
• nicePrint.h

4 Mathematical Routines

The utilib/src/math directory contains definitions for a variety of mathematical and array functions, which
are defined in the following header files:

• math.h
• linpack.h

5 Random Number Generation

The utilib/src/ranlib directory contains definitions for datatypes that define random variables. The
basic datatype for random number generators is RNG, and two classes are provided for encapsulating linear
congruential generators: LCG, which encapsulates the unix random number generator, and PM LCG, which
encapsulates a portable random number generator.

A variety of types are defined for generating random variables using a random number generator. In
particular, classes are defined for the Cauchy, Normal, Uniform and Triangular distributions. These distri-
butions are described in detail in a variety of texts (e.g. Evans, Hastings and Peacock [2]). The MNormal
and MUniform provide multivariate versions of some of these distributions, and the DUniform class provides
the discrete uniform distribution.

6 Sorting Routines

The utilib/src/sort directory contains definitions for a variety of sorting and ordering functions, which
are defined in the following header files:

• sort.h

6.1 Comparison Semantics

Many routines in UTILIB perform a comparison between two objects and return an integer flag. If we are
evaluating how A relates to B, then the standard comparison semantics for the return value x is that x is
less than zero if A is before B in the order, x is greater than zero if A is after B in the order, and x is zero if
they are equal. In the context of numerical values, A is before B if A is less than B. Finally, note that if the
comparison function is a method of an object, like

A.compare(B)

then the comparison is evaluating how A relates to B (and not how B relates to A).

7 System Support

The utilib/src/sys directory contains definitions for a variety of support functions, including functions
that are system-specific. These functions are defined in the following header files:

• generic.h
• alloc.h
• errmsg.h
• general.h
• real.h
• seconds.h
• signalError.h
• stdlibmpi.h
• utilib dll.h

8 Installation

8.1 Downloading

The UTILIB software can be downloaded either as a compressed tar file or directly from the UTILIB
Concurrent Version System (CVS) repository. The latest release of UTILIB is available at

http://www.cs.sandia.gov/~wehart/UTILIB

and earlier versions are available in the same directory.

The CVS repository for UTILIB can be accessed by executing

cvs -d :ext:GEUutili@gaston.cs.sandia.gov:/usr/local/cvs/cvsroot checkout utilib

The password for this repository is ’anonymous’. The developer’s password for this repository is restricted;
please contact Bill Hart at wehart@sandia.gov to request the password to commit changes to this repository.
If you are accessing this repository throught a firewall (e.g. Sandia’s SRN firewall), or you expect to checkout
updates frequently, then the script cvs-u can be used to encapsulate the access to the CVS repository. The
cvs-u script can be downloaded at

ftp://ftp.cs.sandia.gov/pub/papers/wehart/src/cvs-shells.tar

Note that this script uses the ssh command, version 1.x.

8.2 Installation on Unix

Installation of UTILIB on UNIX systems is performed by the following steps:

1. Unpack the archive, unless you have already done that

gunzip utilib-$VERSION.tar.gz # uncompress the archive

tar xf utilib-$VERSION.tar # unpack it

2. Move into the utilib directory and run the configure script.

./configure

The configure script automates much of the setup activity associated with building large suites of
programs like UTILIB on various hardware platforms. This includes

(a) making symbolic links so that files used for configuration can be accessed from one location

(b) generating Makefiles so that objects, libraries, executables and other ’targets’ can be created for
specific and unique hardware platforms

(c) calling itself recursively so that sub-directories can also be configured

By default, the configure script does not assume that UTILIB relies on any other software libraries.
There are a number of configuration options that can be used to customize the installation. The full
parameter list for the configure script is:

configure hosttype [--target=target] [--srcdir=dir] [--rm]

[--site=site] [--prefix=dir] [--exec-prefix=dir]

[--program-prefix=string] [--tmpdir=dir]

[--with-package[=yes/no]] [--without-package]

[--enable-feature[=yes/no]] [--disable-feature]

[--norecursion] [--nfp] [-s] [-v] [-V | --version]

[--help]

Many of these options are not necessary since system information can be often acquired from
your local machine. Refer to the Cygnus configure documentation for complete information (see
utilib/doc/configure.ps). The following options are either commonly used or specific to UTILIB (ex-
amples of arguments are provided):

[–with-compiler=<gcc,CC>] Sets up a specific compiler; The native compiler
is the default.

[–target=<solaris>] Optional flag to specify the target machine that
you are cross-compiling for.

[–site=<snl980>] Specifies the site-specific locations for MPI, etc.

[–with-debugging] Turns on the OPTIMIZATION macro (code is
compiled with the -g flag).

[–with-mpi] Turns on the use of the MPI package.

[–with-mpe] Turns on the use of the MPE package.

[–with-swig] Enables the use of swig to wrap UTILIB for use
with the Python scripting language.

[–with-static] Enables the compilation of statically linked
libraries (the default).

[–with-insure] Enables the compilation with the insure++
debugging tool.

[–with-shared] Enables the compilation of dynamically linked
libraries, which can be shared.

[–with-optimization=<level>] Sets the optimization level used when compiling
the source files.

[–with-ansi] Sets up the compiler to use ANSI standard
constructs for C++. (the default)

[–with-ansiheaders] Creates flags that force the use of ANSI
standard C++ header conventions. (the dfault)

The configure script creates Makefiles from Makefile.in template files, which outline the basic ‘targets’
that need to get built. Variables that are package, site or hardware dependent are stored in individual
‘fragment’ files. These ‘fragment’ files are added to the custom created Makefiles when users and
code developers (recursively) configure this repository with specific host, target, package and/or site
parameters.

Running configure takes a while, so be patient. Verbose output will always be displayed unless the

user/developer wishes to silence it by specifying the parameter, ‘–silent’. If you wish to configure
only one level/directory, remember to use the option ‘–norecursion’. All generated ”config.status” files
include this parameter as a default for easy makefile re-generation; after editing a Makefile.in file, you
can construct the associate Makefile file by typing config.status.

After the configure command is completed, three files will be generated in each configured directory
(specified by the file, ‘configure.in’).

(a) Makefile-${target}
The suffix, ${target}, will depend on the target specified. Native builds have identical host and
target values.

(b) Makefile
This will be a symbolic link to the file mentioned above. A user or developer will simply type
make and the last generated Makefile-${target} will then be referenced.

(c) config.status
A ‘recording’ of the configuration process (i.e., what commands were executed to generate the
makefile). It can be used by the custom makefile to re-generate itself with a command such as
this

make Makefile.

Fragment files exist so that configure can support multi-platform environments. UTILIB can be
configured for code development and execution on the following platforms :

SPARC-SUN-SOLARIS2.5.1 (Sun ULTRAsparc)

MIPS-SGI-IRIX6.4 (SGI Octane)

HPPA1.1-HP-HPUX9.05 (HP 9000/700 series)

PENTIUM-INTEL-COUGAR (Intel TFLOP supercomputer at SNL)

i686-UNKNOWN-LINUX (Red Hat 7.1)

The fragment files for these platforms and for the packages that UTILIB relies on are located in the
utilib/config directory. There are five types of files in this directory:

mf-<host>-<target>-<site>

Automatically generated by the configure scripts.

mh-<host>

Fragments that define the utilities provided by the host (e.g. the

definition of MAKE.

mp-<target>-<site>

Fragments that define information for the packages that are used by

UTILIB (e.g. MPI).

ms-<site>

Fragments that define the site-specific general configuration

information. If this does not exist for a given site, then the

default ms-default fragment is used.

mt-<target>

Fragments needed to specfy how to compile code for a target

architecture (e.g. compiler name/location).

3. Compile the program by running make.

make

Note that the makefiles in UTILIB may not be portable to all make commands. However, they do work
with the GNU gmake command. The latest file Makefile-${target} generated by configure will be
referenced by this command. The target directory for the library is created for the particular target
platform as a subdirectory of utilib/lib.

Prior to making object files header files are linked into the directory utilib/include.

4. Optional: Generate the html library documentation.

make html

This requires the doxygen utility.

5. Optional: Generate the postscript version of the user manual.

make ps

This requires the doxygen, latex, and dvips.

6. Optional: Generate the PDF version of the user manual.

make pdf

This requires the doxygen, latex, dvips and ghostscript packages.

8.3 Installation on Windows

UTILIB was originally developed under UNIX, but it has been ported to Windows NT using Microsoft’s
Visual C++ (version 6.0). A MSVC++ project is provided in utilib/src/vcpp. This project defines a
DLL that will be compiled for UTILIB, and it can be easily included in a user’s workspace. The project file
relies on the environmental variable ‘UTILIB’, which is defined from the MS Windows Control Panel under
System/Environment. This variable should be set to the path of the utilib directory. Note: this project
file is out of date.

9 Acknowledgements

The genesis of the UTILIB library is in the BBUMS library developed by Bill Hart and Brian Bartell while
graduate students at U.C. San Diego. Although Brian would probably not recognize any othe the UTILIB
software, the design of some of the most widely used software, like array classes, is due to him. The BBUMS
library was subsequently reorganized and renamed the SGOPT library, which focuses on a methods for global
optimization. UTILIB was the stdlib subdirectory in SGOPT, which was extracted from SGOPT when it
became clear that several groups at Sandia would be interested in using the UTILIB components without
the additional baggage of the optimizers in SGOPT.

I would like to thank Cindy Phillips, Jonathan Eckstein and Mike Eldred for their input on this software.
Each of them has identified numerous bugs, and refinements in the configuration process are largely due to
the demands that their uses of UTILIB have made.

The UTILIB library includes several files taken from the RANLIB.C library of C routines for random
number generation, which was developed by Barry W. Brown and James Lovato, Dept of Biomathematics
at the University of Texas, Houston.

This document was prepared using the Doxygen software documentation tool, developed by Dimitri van
Heesch, copyright 1997-2001.

This work was supported in part by the Mathematics, Information and Computational Science program,
U.S. Department of Energy, Office of Energy Research. This work was performed at Sandia National Labo-
ratories. Sandia is a multiprogram laboratory operated by Sandia corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract DE-AC04-94AL85000.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, 1996.

[2] M. Evans, N. Hastings, and B. Peacock. Statistical Distributions, Second Ed. John Wiley and Sons, Inc.,
New York, 1993.

[3] Lewis and Denenberg. Data Structures and Their Algorithms. Harper Collins, 1991.

[4] Sleator and Tarjan. Self-adjusting binary search trees. JACM, 32(3):652–686, July 1985.

[5] M. Weiss and B. Cummins. Data Structure and Algorithm Analysis. 1992.

[6] D. Wood. Data Structures, Algorithms, and Performance. Addison-Wesley, 1993.

