§2.5 Mellin Transform Methods§2.7 Differential Equations

§ 2.6. Distributional Methods

Show Annotations
Keywords:
asymptotic approximations of integrals
Referenced by:
§2.3(ii)
Permalink:
http://dlmf.nist.gov/2.6
Contents

§ 2.6(i). Divergent Integrals

Show Annotations
Notes:
See Wong (1989, pp. 293–294).
Keywords:
asymptotic approximations and expansions, divergent integrals, generalized integrals
Permalink:
http://dlmf.nist.gov/2.6.SS1

Consider the integral

2.6.1 S(x)=\int _{{0}}^{{\infty}}\frac{1}{(1+t)^{{1/3}}(x+t)}dt,
Show Annotations
Defines:
S(x): integral
Referenced by:
§2.6(i)
Permalink:
http://dlmf.nist.gov/2.6.E1
Encodings:
TeX, pMathML, png

where x>0. For t>1,

2.6.2 (1+t)^{{-1/3}}=\sum _{{s=0}}^{{\infty}}\binom{-\frac{1}{3}}{s}t^{{-s-(1/3)}}.
Show Annotations
Referenced by:
§2.6(i)
Permalink:
http://dlmf.nist.gov/2.6.E2
Encodings:
TeX, pMathML, png

Motivated by Watson's lemma (§2.3(ii)), we substitute (2.6.2) in (2.6.1), and integrate term by term. This leads to integrals of the form

2.6.3 \int _{{0}}^{{\infty}}\frac{t^{{-s-(1/3)}}}{x+t}dt, s=1,2,3,\dots.
Show Annotations
Permalink:
http://dlmf.nist.gov/2.6.E3
Encodings:
TeX, pMathML, png

Although divergent, these integrals may be interpreted in a generalized sense. For instance, we have

2.6.4 \int _{{0}}^{{\infty}}\frac{t^{{\alpha-1}}}{(x+t)^{{\alpha+\beta}}}dt=\frac{\Gamma\!\left(\alpha\right)\Gamma\!\left(\beta\right)}{\Gamma\!\left(\alpha+\beta\right)}\frac{1}{x^{{\beta}}}, \realpart{\alpha}>0, \realpart{\beta}>0.
Show Annotations
Symbols:
\Gamma\!\left(z\right): Gamma function
Referenced by:
§2.6(i)
Permalink:
http://dlmf.nist.gov/2.6.E4
Encodings:
TeX, pMathML, png

But the right-hand side is meaningful for all values of \alpha and \beta, other than nonpositive integers. We may therefore define the integral on the left-hand side of (2.6.4) by the value on the right-hand side, except when \alpha,\beta=0,-1,-2,\dots. With this interpretation

2.6.5 \int _{{0}}^{{\infty}}\frac{t^{{-s-(1/3)}}}{x+t}dt=\frac{2\pi}{\sqrt{3}}\frac{(-1)^{s}}{x^{{s+(1/3)}}}, s=0,1,2,\dots.
Show Annotations
Permalink:
http://dlmf.nist.gov/2.6.E5
Encodings:
TeX, pMathML, png

Inserting (2.6.2) into (2.6.1) and integrating formally term-by-term, we obtain

2.6.6 S(x)\sim\frac{2\pi}{\sqrt{3}}\sum _{{s=0}}^{{\infty}}(-1)^{s}{\binom{-\frac{1}{3}}{s}}x^{{-s-(1/3)}}, x\to\infty.
Show Annotations
Defines:
S(x): integral
Symbols:
\sim: asymptotically equal
Referenced by:
§2.6(i)
Permalink:
http://dlmf.nist.gov/2.6.E6
Encodings:
TeX, pMathML, png

However this result is incorrect. The correct result is given by

2.6.7 S(x)\sim\frac{2\pi}{\sqrt{3}}\sum _{{s=0}}^{{\infty}}(-1)^{s}{\binom{-\frac{1}{3}}{s}}x^{{-s-(1/3)}}-\sum _{{s=1}}^{{\infty}}\frac{3^{s}(s-1)!}{2\cdot 5\cdots(3s-1)}x^{{-s}};
Show Annotations
Defines:
S(x): integral
Symbols:
\sim: asymptotically equal
Referenced by:
§2.6(i), §2.6(ii)
Permalink:
http://dlmf.nist.gov/2.6.E7
Encodings:
TeX, pMathML, png

see §2.6(ii).

The fact that expansion (2.6.6) misses all the terms in the second series in (2.6.7) raises the question: what went wrong with our process of reaching (2.6.6)? In the following subsections, we use some elementary facts of distribution theory (§Ch.1) to study the proper use of divergent integrals. An important asset of the distribution method is that it gives explicit expressions for the remainder terms associated with the resulting asymptotic expansions.

For an introduction to distribution theory, see Wong (1989, Chapter 5). For more advanced discussions, see Gel'fand and Shilov (1964) and Rudin (1973).

§ 2.6(ii). Stieltjes Transform

Show Annotations
Notes:
See Wong (1989, pp. 295–312).
Keywords:
asymptotic approximations of integrals, Dirac delta distribution, distributions, Stieltjes transform, symmetric elliptic integrals, tempered distribution
Referenced by:
§2.6(i)
Permalink:
http://dlmf.nist.gov/2.6.SS2

Let f(t) be locally integrable on [0,\infty). The Stieltjes transform of f(t) is defined by

2.6.8 \mathcal{S}\left(f;z\right)=\int _{{0}}^{{\infty}}\frac{f(t)}{t+z}dt.
Show Annotations
Defines:
f(t): locally integrable function
Referenced by:
§2.6(ii)
Permalink:
http://dlmf.nist.gov/2.6.E8
Encodings:
TeX, pMathML, png

To derive an asymptotic expansion of \mathcal{S}\left(f;z\right) for large values of |z|, with |\mathrm{ph}z|<\pi, we assume that f(t) possesses an asymptotic expansion of the form

2.6.9 f(t)\sim\sum _{{s=0}}^{{\infty}}a_{s}t^{{-s-\alpha}}, t\to+\infty,
Show Annotations
Defines:
f(t): locally integrable function and a_{n}: coefficients
Symbols:
\sim: asymptotically equal
Referenced by:
§2.6(iii), §2.6(ii), §2.6(iii), §2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E9
Encodings:
TeX, pMathML, png

with 0<\alpha\leq 1. For each n=1,2,3,\dots, set

2.6.10 f(t)=\sum _{{s=0}}^{{n-1}}a_{s}t^{{-s-\alpha}}+f_{n}(t).
Show Annotations
Defines:
f(t): locally integrable function, a_{n}: coefficients, n: nonnegative integer and f_{{n,n}}(t): nth repeated integral
Referenced by:
§2.6(iii), §2.6(ii)
Permalink:
http://dlmf.nist.gov/2.6.E10
Encodings:
TeX, pMathML, png

To each function in this equation, we shall assign a tempered distribution (i.e., a continuous linear functional) on the space \mathcal{T} of rapidly decreasing functions on \Real. Since f(t) is locally integrable on [0,\infty), it defines a distribution by

2.6.11 \left\langle f,\phi\right\rangle=\int _{{0}}^{{\infty}}f(t)\phi(t)dt, \phi\in\mathcal{T}.
Show Annotations
Defines:
f(t): locally integrable function and \mathcal{T}: space of decreasing functions
Referenced by:
§2.6(ii)
Permalink:
http://dlmf.nist.gov/2.6.E11
Encodings:
TeX, pMathML, png

In particular,

2.6.12 \left\langle t^{{-\alpha}},\phi\right\rangle=\int _{{0}}^{{\infty}}t^{{-\alpha}}\phi(t)dt, \phi\in\mathcal{T},
Show Annotations
Defines:
\mathcal{T}: space of decreasing functions
Referenced by:
§2.6(iii), §2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E12
Encodings:
TeX, pMathML, png

when 0<\alpha<1. Since the functions t^{{-s-\alpha}}, s=1,2,\dots, are not locally integrable on [0,\infty), we cannot assign distributions to them in a similar manner. However, they are multiples of the derivatives of t^{{-\alpha}}. Motivated by the definition of distributional derivatives, we can assign them the distributions defined by

2.6.13 \left\langle t^{{-s-\alpha}},\phi\right\rangle=\frac{1}{\left(\alpha\right)_{{s}}}\int _{{0}}^{{\infty}}t^{{-\alpha}}\phi^{{(s)}}(t)dt, \phi\in\mathcal{T},
Show Annotations
Defines:
\mathcal{T}: space of decreasing functions
Symbols:
\left(a\right)_{{n}}: Pochhammer's symbol
Referenced by:
§2.6(ii), §2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E13
Encodings:
TeX, pMathML, png

where \left(\alpha\right)_{{s}}=\alpha(\alpha+1)\cdots(\alpha+s-1). Similarly, in the case \alpha=1, we define

2.6.14 \left\langle t^{{-s-1}},\phi\right\rangle=-\frac{1}{s!}\int _{{0}}^{{\infty}}(\ln t)\phi^{{(s+1)}}(t)dt, \phi\in\mathcal{T}.
Show Annotations
Defines:
\mathcal{T}: space of decreasing functions
Referenced by:
§2.6(ii), §2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E14
Encodings:
TeX, pMathML, png

To assign a distribution to the function f_{n}(t), we first let f_{{n,n}}(t) denote the nth repeated integral (§Ch.1) of f_{n}:

2.6.15 f_{{n,n}}(t)=\frac{(-1)^{n}}{(n-1)!}\int _{{t}}^{{\infty}}(\tau-t)^{{n-1}}f_{n}(\tau)d\tau.
Show Annotations
Defines:
n: nonnegative integer and f_{{n,n}}(t): nth repeated integral
Referenced by:
§2.6(ii), §2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E15
Encodings:
TeX, pMathML, png

For 0<\alpha<1, it is easily seen that f_{{n,n}}(t) is bounded on [0,R] for any positive constant R, and is O\!\left(t^{{-\alpha}}\right) as t\to\infty. For \alpha=1, we have f_{{n,n}}(t)=O\!\left(t^{{-1}}\right) as t\to\infty and f_{{n,n}}(t)=O\!\left(\ln t\right) as t\to 0+. In either case, we define the distribution associated with f_{n}(t) by

2.6.16 \left\langle f_{n},\phi\right\rangle=(-1)^{n}\int _{{0}}^{{\infty}}f_{{n,n}}(t)\phi^{{(n)}}(t)dt, \phi\in\mathcal{T},
Show Annotations
Defines:
n: nonnegative integer, \mathcal{T}: space of decreasing functions and f_{{n,n}}(t): nth repeated integral
Referenced by:
§2.6(ii)
Permalink:
http://dlmf.nist.gov/2.6.E16
Encodings:
TeX, pMathML, png

since the nth derivative of f_{{n,n}} is f_{n}.

We have now assigned a distribution to each function in (2.6.10). A natural question is: what is the exact relation between these distributions? The answer is provided by the identities (2.6.17) and (2.6.20) given below.

For 0<\alpha<1 and n\geq 1, we have

2.6.17 {\left\langle f,\phi\right\rangle}=\sum _{{s=0}}^{{n-1}}a_{s}\left\langle t^{{-s-\alpha}},\phi\right\rangle-\sum _{{s=1}}^{{n}}c_{s}\left\langle\delta^{{(s-1)}},\phi\right\rangle+\left\langle f_{n},\phi\right\rangle
Show Annotations
Symbols:
c\ne 0: real, f(t): locally integrable function, a_{n}: coefficients, n: nonnegative integer and f_{{n,n}}(t): nth repeated integral
Referenced by:
§2.6(ii), §2.6(ii), §2.6(ii), §2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E17
Encodings:
TeX, pMathML, png

for any \phi\in\mathcal{T}, where

2.6.18 c_{s}=\frac{(-1)^{s}}{(s-1)!}\mathscr{M}\left(f;s\right),
Show Annotations
Symbols:
c\ne 0: real and f(t): locally integrable function
Referenced by:
§2.6(ii)
Permalink:
http://dlmf.nist.gov/2.6.E18
Encodings:
TeX, pMathML, png

\mathscr{M}\left(f;z\right) being the Mellin transform of f(t) or its analytic continuation (§2.5(ii)). The Dirac delta distribution in (2.6.17) is given by

2.6.19 \left\langle\delta^{{(s)}},\phi\right\rangle=(-1)^{s}\phi^{{(s)}}(0), s=0,1,2,\dots;
Show Annotations
Permalink:
http://dlmf.nist.gov/2.6.E19
Encodings:
TeX, pMathML, png

compare §Ch.1.

For \alpha=1

2.6.20 {\left\langle f,\phi\right\rangle}=\sum _{{s=0}}^{{n-1}}a_{s}\left\langle t^{{-s-1}},\phi\right\rangle-\sum _{{s=1}}^{{n}}d_{s}\left\langle\delta^{{(s-1)}},\phi\right\rangle+\left\langle f_{n},\phi\right\rangle
Show Annotations
Defines:
d_{s}: coefficients
Symbols:
f(t): locally integrable function, a_{n}: coefficients, n: nonnegative integer and f_{{n,n}}(t): nth repeated integral
Referenced by:
§2.6(ii), §2.6(ii), §2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E20
Encodings:
TeX, pMathML, png

for any \phi\in\mathcal{T}, where

2.6.21 (-1)^{{s+1}}d_{{s+1}}=\frac{a_{s}}{s!}\sum _{{k=1}}^{{s}}\frac{1}{k}+\frac{1}{s!}\lim _{{z\to s+1}}\left(\mathscr{M}\left(f;z\right)+\frac{a_{s}}{z-s-1}\right),
Show Annotations
Defines:
d_{s}: coefficients
Symbols:
f(t): locally integrable function and a_{n}: coefficients
Permalink:
http://dlmf.nist.gov/2.6.E21
Encodings:
TeX, pMathML, png

for s=0,1,2,\dots.

To apply the results (2.6.17) and (2.6.20) to the Stieltjes transform (2.6.8), we take a specific function \phi\in\mathcal{T}. Let \varepsilon be a positive number, and

2.6.22 \phi _{{\varepsilon}}(t)=\frac{e^{{-\varepsilon t}}}{t+z}, t\in(0,\infty).
Show Annotations
Defines:
\varepsilon: small positive number
Permalink:
http://dlmf.nist.gov/2.6.E22
Encodings:
TeX, pMathML, png

From (2.6.13) and (2.6.14)

2.6.23 \lim _{{\varepsilon\to 0}}\left\langle t^{{-s-\alpha}},\phi _{{\varepsilon}}\right\rangle=\frac{\pi}{\sin\!\left(\pi\alpha\right)}\frac{(-1)^{s}}{z^{{s+\alpha}}},
Show Annotations
Defines:
\varepsilon: small positive number
Permalink:
http://dlmf.nist.gov/2.6.E23
Encodings:
TeX, pMathML, png
2.6.24 \lim _{{\varepsilon\to 0}}\left\langle t^{{-s-1}},\phi _{{\varepsilon}}\right\rangle=\frac{(-1)^{{s+1}}}{z^{{s+1}}}\sum _{{k=1}}^{{s}}\frac{1}{k}+\frac{(-1)^{s}}{z^{{s+1}}}\ln z,
Show Annotations
Defines:
\varepsilon: small positive number
Permalink:
http://dlmf.nist.gov/2.6.E24
Encodings:
TeX, pMathML, png

with s=0,1,2,\dots. From (2.6.11) and (2.6.16), we also have

2.6.25 \lim _{{\varepsilon\to 0}}\left\langle f,\phi _{{\varepsilon}}\right\rangle=\mathcal{S}\left(f;z\right),
Show Annotations
Defines:
\varepsilon: small positive number
Symbols:
f(t): locally integrable function
Permalink:
http://dlmf.nist.gov/2.6.E25
Encodings:
TeX, pMathML, png
2.6.26 \lim _{{\varepsilon\to 0}}\left\langle f_{n},\phi _{{\varepsilon}}\right\rangle=n!\int _{{0}}^{{\infty}}\frac{f_{{n,n}}(t)}{(t+z)^{{n+1}}}dt.
Show Annotations
Defines:
\varepsilon: small positive number
Symbols:
n: nonnegative integer and f_{{n,n}}(t): nth repeated integral
Referenced by:
§2.6(ii)
Permalink:
http://dlmf.nist.gov/2.6.E26
Encodings:
TeX, pMathML, png

On substituting (2.6.15) into (2.6.26) and interchanging the order of integration, the right-hand side of (2.6.26) becomes

\frac{(-1)^{n}}{z^{n}}\int _{{0}}^{{\infty}}\frac{\tau^{n}f_{n}(\tau)}{\tau+z}d\tau.

To summarize,

2.6.27 \mathcal{S}\left(f;z\right)=\frac{\pi}{\sin\!\left(\pi\alpha\right)}\sum _{{s=0}}^{{n-1}}(-1)^{s}\frac{a_{s}}{z^{{s+\alpha}}}-\sum _{{s=1}}^{{n}}(s-1)!\frac{c_{s}}{z^{s}}+R_{n}(z),
Show Annotations
Defines:
R_{n}(z): remainder
Symbols:
c\ne 0: real, f(t): locally integrable function, a_{n}: coefficients and n: nonnegative integer
Referenced by:
§2.6(ii)
Permalink:
http://dlmf.nist.gov/2.6.E27
Encodings:
TeX, pMathML, png

if \alpha\in(0,1) in (2.6.9), or

2.6.28 \mathcal{S}\left(f;z\right)=\ln z\sum _{{s=0}}^{{n-1}}(-1)^{s}\frac{a_{s}}{z^{{s+1}}}+\sum _{{s=0}}^{{n-1}}(-1)^{s}\frac{\widetilde{d}_{s}}{z^{{s+1}}}+R_{n}(z),
Show Annotations
Defines:
R_{n}(z): remainder
Symbols:
f(t): locally integrable function, a_{n}: coefficients and n: nonnegative integer
Permalink:
http://dlmf.nist.gov/2.6.E28
Encodings:
TeX, pMathML, png

if \alpha=1 in (2.6.9). Here c_{s} is given by (2.6.18),

2.6.29 \widetilde{d}_{s}=\lim _{{z\to s+1}}\left(\mathscr{M}\left(f;z\right)+\frac{a_{s}}{z-s-1}\right),
Show Annotations
Symbols:
f(t): locally integrable function and a_{n}: coefficients
Permalink:
http://dlmf.nist.gov/2.6.E29
Encodings:
TeX, pMathML, png

and

2.6.30 R_{n}(z)=\frac{(-1)^{n}}{z^{n}}\int _{{0}}^{{\infty}}\frac{\tau^{n}f_{n}(\tau)}{\tau+z}d\tau.
Show Annotations
Defines:
R_{n}(z): remainder
Symbols:
n: nonnegative integer and f_{{n,n}}(t): nth repeated integral
Permalink:
http://dlmf.nist.gov/2.6.E30
Encodings:
TeX, pMathML, png

The expansion (2.6.7) follows immediately from (2.6.27) with z=x and f(t)=(1+t)^{{-(1/3)}}; its region of validity is |\mathrm{ph}x|\leq\pi-\delta (<\pi). The distribution method outlined here can be extended readily to functions f(t) having an asymptotic expansion of the form

2.6.31 f(t)\sim e^{{ict}}\sum _{{s=0}}^{{\infty}}a_{s}t^{{-s-\alpha}}, t\to+\infty,
Show Annotations
Defines:
c\ne 0: real
Symbols:
\sim: asymptotically equal, f(t): locally integrable function and a_{n}: coefficients
Permalink:
http://dlmf.nist.gov/2.6.E31
Encodings:
TeX, pMathML, png

where c (\neq 0) is real, and 0<\alpha\leq 1. For a more detailed discussion of the derivation of asymptotic expansions of Stieltjes transforms by the distribution method, see McClure and Wong (1978) and Wong (1989, Chapter 6). Corresponding results for the generalized Stieltjes transform

2.6.32 \int _{{0}}^{{\infty}}\frac{f(t)}{(t+z)^{{\rho}}}dt, \rho>0,
Show Annotations
Symbols:
f(t): locally integrable function
Permalink:
http://dlmf.nist.gov/2.6.E32
Encodings:
TeX, pMathML, png

can be found in Wong (1979). An application has been given by López (2000) to derive asymptotic expansions of standard symmetric elliptic integrals, complete with error bounds; see §Ch.19.

§ 2.6(iii). Fractional Integrals

Show Annotations
Notes:
See Wong (1989, pp. 326–333).
Keywords:
distributions, fractional integrals, Heaviside function, integrals
Permalink:
http://dlmf.nist.gov/2.6.SS3

The Riemann-Liouville fractional integral of order \mu is defined by

2.6.33 I^{{\mu}}f(x)=\frac{1}{\Gamma\!\left(\mu\right)}\int _{0}^{x}(x-t)^{{\mu-1}}f(t)dt, \mu>0;
Show Annotations
Defines:
I^{\mu}: fractional integral operator and \mu: order
Symbols:
\Gamma\!\left(z\right): Gamma function and f(t): locally integrable function
Referenced by:
§2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E33
Encodings:
TeX, pMathML, png

see §Ch.1. We again assume f(t) is locally integrable on [0,\infty) and satisfies (2.6.9). We now derive an asymptotic expansion of I^{{\mu}}f(x) for large positive values of x.

In terms of the convolution product

2.6.34 (f\ast g)(x)=\int _{0}^{x}f(x-t)g(t)dt
Show Annotations
Defines:
g(t): locally integrable function and \ast: convolution
Symbols:
f(t): locally integrable function
Referenced by:
§2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E34
Encodings:
TeX, pMathML, png

of two locally integrable functions on [0,\infty), (2.6.33) can be written

2.6.35 I^{{\mu}}f(x)=\frac{1}{\Gamma\!\left(\mu\right)}(t^{{\mu-1}}\ast f)(x).
Show Annotations
Defines:
\ast: convolution
Symbols:
\Gamma\!\left(z\right): Gamma function, I^{\mu}: fractional integral operator, \mu: order and f(t): locally integrable function
Referenced by:
§2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E35
Encodings:
TeX, pMathML, png

The replacement of f(t) by its asymptotic expansion (2.6.9), followed by term-by-term integration leads to convolution integrals of the form

2.6.36 (t^{{\mu-1}}\ast t^{{-s-\alpha}})(x)=\int _{0}^{x}(x-t)^{{\mu-1}}t^{{-s-\alpha}}dt, s=0,1,2,\dots.
Show Annotations
Defines:
\ast: convolution
Symbols:
\mu: order
Permalink:
http://dlmf.nist.gov/2.6.E36
Encodings:
TeX, pMathML, png

Of course, except when s=0 and 0<\alpha<1, none of these integrals exists in the usual sense. However, the left-hand side can be considered as the convolution of the two distributions associated with the functions t^{{\mu-1}} and t^{{-s-\alpha}}, given by (2.6.12) and (2.6.13).

To define convolutions of distributions, we first introduce the space K^{{+}} of all distributions of the form D^{n}f, where n is a nonnegative integer, f is a locally integrable function on \Real which vanishes on (-\infty,0], and D^{n}f denotes the nth derivative of the distribution associated with f. For F=D^{n}f and G=D^{m}g in K^{{+}}, we define

2.6.37 F\ast G=D^{{n+m}}(f\ast g).
Show Annotations
Defines:
D: derivative of distribution, n: nonnegative integer, F: derivative and G: derivative
Symbols:
g(t): locally integrable function, \ast: convolution and f(t): locally integrable function
Referenced by:
§2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E37
Encodings:
TeX, pMathML, png

It is easily seen that K^{{+}} forms a commutative, associative linear algebra. Furthermore, K^{{+}} contains the distributions H, \delta, and t^{{\lambda}}, t>0, for any real (or complex) number \lambda, where H is the distribution associated with the Heaviside function H\!\left(t\right)Ch.1), and t^{{\lambda}} is the distribution defined by (2.6.12) – (2.6.14), depending on the value of \lambda. Since \delta=DH, it follows that for \mu\neq 1,2,\dots,

2.6.38 t^{{\mu-1}}\ast\delta^{{(s-1)}}=\frac{\Gamma\!\left(\mu\right)}{\Gamma\!\left(\mu+1-s\right)}t^{{\mu-s}}, t>0.
Show Annotations
Symbols:
\Gamma\!\left(z\right): Gamma function, \mu: order and \ast: convolution
Referenced by:
§2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E38
Encodings:
TeX, pMathML, png

Using (5.12.1), we can also show that when \mu\neq 1,2,\dots and \mu-\alpha is not a nonnegative integer,

2.6.39 t^{{\mu-1}}\ast t^{{-s-\alpha}}=\frac{\Gamma\!\left(\mu\right)\Gamma\!\left(1-s-\alpha\right)}{\Gamma\!\left(\mu+1-s-\alpha\right)}t^{{\mu-s-\alpha}}, t>0,
Show Annotations
Symbols:
\Gamma\!\left(z\right): Gamma function, \mu: order and \ast: convolution
Permalink:
http://dlmf.nist.gov/2.6.E39
Encodings:
TeX, pMathML, png

and

2.6.40 t^{{\mu-1}}\ast t^{{-s-1}}=\frac{(-1)^{s}}{\mu\cdot s!}D^{{s+1}}\left(t^{{\mu}}\left(\ln t-\EulerConstant-\psi\!\left(\mu+1\right)\right)\right), t>0,
Show Annotations
Defines:
D: derivative of distribution
Symbols:
\EulerConstant: Euler's constant, \psi\!\left(z\right): Psi or digamma function, \mu: order and \ast: convolution
Referenced by:
§2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E40
Encodings:
TeX, pMathML, png

where \EulerConstant is Euler's constant (§5.2(ii)).

To derive the asymptotic expansion of I^{{\mu}}f(x), we recall equations (2.6.17) and (2.6.20). In the sense of distributions, they can be written

2.6.41 f=\sum _{{s=0}}^{{n-1}}a_{s}t^{{-s-\alpha}}-\sum _{{s=1}}^{{n}}c_{s}\delta^{{(s-1)}}+f_{n},
Show Annotations
Defines:
a_{n}: coefficients
Symbols:
f(t): locally integrable function, n: nonnegative integer, f_{{n,n}}(t): nth repeated integral and c_{s}: coefficients
Permalink:
http://dlmf.nist.gov/2.6.E41
Encodings:
TeX, pMathML, png

and

2.6.42 f=\sum _{{s=0}}^{{n-1}}a_{s}t^{{-s-1}}-\sum _{{s=1}}^{{n}}d_{s}\delta^{{(s-1)}}+f_{n}.
Show Annotations
Defines:
a_{n}: coefficients
Symbols:
d_{s}: coefficients, f(t): locally integrable function, n: nonnegative integer and f_{{n,n}}(t): nth repeated integral
Permalink:
http://dlmf.nist.gov/2.6.E42
Encodings:
TeX, pMathML, png

Substituting into (2.6.35) and using (2.6.38) – (2.6.40), we obtain

2.6.43 t^{{\mu-1}}\ast f=\sum _{{s=0}}^{{n-1}}a_{s}\frac{\Gamma\!\left(\mu\right)\Gamma\!\left(1-s-\alpha\right)}{\Gamma\!\left(\mu+1-s-\alpha\right)}t^{{\mu-s-\alpha}}-\sum _{{s=1}}^{{n}}c_{s}\frac{\Gamma\!\left(\mu\right)}{\Gamma\!\left(\mu-s+1\right)}t^{{\mu-s}}+t^{{\mu-1}}\ast f_{n}
Show Annotations
Defines:
a_{n}: coefficients
Symbols:
\Gamma\!\left(z\right): Gamma function, \mu: order, \ast: convolution, f(t): locally integrable function, n: nonnegative integer, f_{{n,n}}(t): nth repeated integral and c_{s}: coefficients
Referenced by:
§2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E43
Encodings:
TeX, pMathML, png

when 0<\alpha<1, or

2.6.44 t^{{\mu-1}}\ast f=\sum _{{s=0}}^{{n-1}}\frac{(-1)^{s}a_{s}}{\mu\cdot s!}D^{{s+1}}\left(t^{{\mu}}\left(\ln t-\EulerConstant-\psi\!\left(\mu+1\right)\right)\right)-\sum _{{s=1}}^{{n}}d_{s}\frac{\Gamma\!\left(\mu\right)}{\Gamma\!\left(\mu-s+1\right)}t^{{\mu-s}}+t^{{\mu-1}}\ast f_{n}

when \alpha=1. These equations again hold only in the sense of distributions. Since the function t^{{\mu}}\left(\ln t-\EulerConstant-\psi\!\left(\mu+1\right)\right) and all its derivatives are locally absolutely continuous in (0,\infty), the distributional derivatives in the first sum in (2.6.44) can be replaced by the corresponding ordinary derivatives. Furthermore, since f_{{n,n}}^{{(n)}}(t)=f_{n}(t), it follows from (2.6.37) that the remainder terms t^{{\mu-1}}\ast f_{n} in the last two equations can be associated with a locally integrable function in (0,\infty). On replacing the distributions by their corresponding functions, (2.6.43) and (2.6.44) give

2.6.45 I^{{\mu}}f(x)=\sum _{{s=0}}^{{n-1}}a_{s}\frac{\Gamma\!\left(1-s-\alpha\right)}{\Gamma\!\left(\mu+1-s-\alpha\right)}x^{{\mu-s-\alpha}}-\sum _{{s=1}}^{{n}}\frac{c_{s}}{\Gamma\!\left(\mu+1-s\right)}x^{{\mu-s}}+\frac{1}{x^{n}}\delta _{n}(x),
Show Annotations
Defines:
a_{n}: coefficients and \delta _{n}(x): sum
Symbols:
\Gamma\!\left(z\right): Gamma function, I^{\mu}: fractional integral operator, \mu: order, f(t): locally integrable function, n: nonnegative integer and c_{s}: coefficients
Referenced by:
§2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E45
Encodings:
TeX, pMathML, png

when 0<\alpha<1, or

2.6.46 I^{{\mu}}f(x)=\sum _{{s=0}}^{{n-1}}\frac{(-1)^{s}a_{s}}{s!\Gamma\!\left(\mu+1\right)}\frac{{d}^{s+1}}{{dx}^{s+1}}\left(x^{{\mu}}\left(\ln x-\EulerConstant-\psi\!\left(\mu+1\right)\right)\right)-\sum _{{s=1}}^{{n}}\frac{d_{s}}{\Gamma\!\left(\mu-s+1\right)}x^{{\mu-s}}+\frac{1}{x^{n}}\delta _{n}(x),
Show Annotations
Defines:
a_{n}: coefficients and \delta _{n}(x): sum
Symbols:
\Gamma\!\left(z\right): Gamma function, \EulerConstant: Euler's constant, \psi\!\left(z\right): Psi or digamma function, d_{s}: coefficients, I^{\mu}: fractional integral operator, \mu: order, f(t): locally integrable function and n: nonnegative integer
Permalink:
http://dlmf.nist.gov/2.6.E46
Encodings:
TeX, pMathML, png

when \alpha=1, where

2.6.47 \delta _{n}(x)=\sum _{{j=0}}^{{n}}\binom{n}{j}\frac{\Gamma\!\left(\mu+1\right)}{\Gamma\!\left(\mu+1-j\right)}I^{{\mu}}\left(t^{{n-j}}f_{{n,j}}\right)(x),
Show Annotations
Defines:
\delta _{n}(x): sum
Symbols:
\Gamma\!\left(z\right): Gamma function, I^{\mu}: fractional integral operator, \mu: order, n: nonnegative integer and f_{{n,n}}(t): nth repeated integral
Permalink:
http://dlmf.nist.gov/2.6.E47
Encodings:
TeX, pMathML, png

f_{{n,j}}(t) being the jth repeated integral of f_{n}; compare (2.6.15).

¶ Example

Let f(t)=t^{{1-\alpha}}/(1+t), 0<\alpha<1. Then

2.6.48 I^{{\mu}}f(x)=\frac{1}{\Gamma\!\left(\mu\right)}\int _{{0}}^{{x}}(x-t)^{{\mu-1}}t^{{1-\alpha}}(1+t)^{{-1}}dt,
Show Annotations
Symbols:
\Gamma\!\left(z\right): Gamma function, I^{\mu}: fractional integral operator, \mu: order and f(t): locally integrable function
Referenced by:
§2.6(iii)
Permalink:
http://dlmf.nist.gov/2.6.E48
Encodings:
TeX, pMathML, png

where \mu>0. For 0<t<\infty

2.6.49 f(t)=\sum _{{s=0}}^{{n-1}}(-1)^{s}t^{{-s-\alpha}}+(-1)^{n}\frac{t^{{1-n-\alpha}}}{1+t}.
Show Annotations
Symbols:
f(t): locally integrable function and n: nonnegative integer
Permalink:
http://dlmf.nist.gov/2.6.E49
Encodings:
TeX, pMathML, png

In the notation of (2.6.10), a_{s}=(-1)^{s} and

2.6.50 f_{n}(t)=(-1)^{n}\frac{t^{{1-n-\alpha}}}{1+t}.
Show Annotations
Symbols:
n: nonnegative integer and f_{{n,n}}(t): nth repeated integral
Permalink:
http://dlmf.nist.gov/2.6.E50
Encodings:
TeX, pMathML, png

Since

2.6.51 \mathscr{M}\left(f;s\right)=(-1)^{s}\pi/\sin\!\left(\pi\alpha\right),
Show Annotations
Symbols:
f(t): locally integrable function
Permalink:
http://dlmf.nist.gov/2.6.E51
Encodings:
TeX, pMathML, png

from (2.6.45) it follows that

2.6.52 I^{{\mu}}f(x)=\sum _{{s=0}}^{{n-1}}(-1)^{s}\frac{\Gamma\!\left(1-s-\alpha\right)}{\Gamma\!\left(\mu+1-s-\alpha\right)}x^{{\mu-s-\alpha}}-\frac{\pi}{\sin\!\left(\pi\alpha\right)}\sum _{{s=1}}^{{n}}\frac{1}{\Gamma\!\left(\mu+1-s\right)}\frac{x^{{\mu-s}}}{(s-1)!}+\frac{1}{x^{n}}\delta _{n}(x).

Moreover,

2.6.53 {\left|\delta _{n}(x)\right|}\leq\frac{\Gamma\!\left(\mu+1\right)\Gamma\!\left(1-\alpha\right)}{\Gamma\!\left(\mu+1-\alpha\right)\Gamma\!\left(n+\alpha\right)}\*\sum _{{j=0}}^{{n}}\dbinom{n}{j}\frac{\Gamma\!\left(n+\alpha-j\right)}{\left|\Gamma\!\left(\mu+1-j\right)\right|}x^{{\mu-\alpha}}
Show Annotations
Symbols:
\Gamma\!\left(z\right): Gamma function, \mu: order, n: nonnegative integer and \delta _{n}(x): sum
Permalink:
http://dlmf.nist.gov/2.6.E53
Encodings:
TeX, pMathML, png

for x>0.

It may be noted that the integral (2.6.48) can be expressed in terms of the hypergeometric function {{}_{{2}}F_{{1}}}\!\left(1,2-\alpha;2-\alpha+\mu;-x\right); see §Ch.15.

For proofs and other examples, see McClure and Wong (1979) and Wong (1989, Chapter 6). If both f and g in (2.6.34) have asymptotic expansions of the form (2.6.9), then the distribution method can also be used to derive an asymptotic expansion of the convolution f\ast g; see Li and Wong (1994).

§ 2.6(iv). Regularization

The method of distributions can be further extended to derive asymptotic expansions for convolution integrals:

2.6.54 I(x)=\int _{{0}}^{{\infty}}f(t)h(xt)dt.
Show Annotations
Defines:
I(x): convolution integral and h(x): function
Symbols:
f(t): locally integrable function
Referenced by:
§2.6(iv)
Permalink:
http://dlmf.nist.gov/2.6.E54
Encodings:
TeX, pMathML, png

We assume that for each n=1,2,3,\dots,

2.6.55 f(t)=\sum _{{s=0}}^{{n-1}}a_{s}t^{{s+\alpha-1}}+f_{n}(t),
Show Annotations
Defines:
n: positive integer and a_{n}: coefficients
Symbols:
f(t): locally integrable function and f_{{n,n}}(t): nth repeated integral
Referenced by:
§2.6(iv)
Permalink:
http://dlmf.nist.gov/2.6.E55
Encodings:
TeX, pMathML, png

where 0<\alpha\leq 1 and f_{n}(t)=O\!\left(t^{{n+\alpha-1}}\right) as t\to 0+. Also,

2.6.56 h(t)=\sum _{{s=0}}^{{n-1}}b_{s}t^{{-s-\beta}}+h_{n}(t),
Show Annotations
Defines:
n: positive integer, b_{n}: coefficients and h(x): function
Permalink:
http://dlmf.nist.gov/2.6.E56
Encodings:
TeX, pMathML, png

where 0<\beta\leq 1, and h_{n}(t)=O\!\left(t^{{-n-\beta}}\right) as t\to\infty. Multiplication of these expansions leads to

2.6.57 f(t)h(xt)=\sum _{{j=0}}^{{n-1}}\sum _{{k=0}}^{{n-1}}a_{j}b_{k}t^{{j+\alpha-1-k-\beta}}x^{{-k-\beta}}+\sum _{{j=0}}^{{n-1}}a_{j}t^{{j+\alpha-1}}h_{n}(xt)+\sum _{{k=0}}^{{n-1}}b_{k}x^{{-k-\beta}}t^{{-k-\beta}}f_{n}(t)+f_{n}(t)h_{n}(xt).
Show Annotations
Defines:
n: positive integer, a_{n}: coefficients, b_{n}: coefficients and h(x): function
Symbols:
f(t): locally integrable function and f_{{n,n}}(t): nth repeated integral
Referenced by:
§2.6(iv)
Permalink:
http://dlmf.nist.gov/2.6.E57
Encodings:
TeX, pMathML, png

On inserting this identity into (2.6.54), we immediately encounter divergent integrals of the form

2.6.58 \int _{{0}}^{{\infty}}t^{{\lambda}}dt, \lambda\in\Real.
Show Annotations
Permalink:
http://dlmf.nist.gov/2.6.E58
Encodings:
TeX, pMathML, png

However, in the theory of generalized functions (distributions), there is a method, known as “regularization”, by which these integrals can be interpreted in a meaningful manner. In this sense

2.6.59 \int _{{0}}^{{\infty}}t^{{\lambda}}dt=0, \lambda\in\Complex.
Show Annotations
Referenced by:
§2.6(iv)
Permalink:
http://dlmf.nist.gov/2.6.E59
Encodings:
TeX, pMathML, png

From (2.6.55) and (2.6.59)

2.6.60 \mathscr{M}\left(f;z\right)=\mathscr{M}\left(f_{n};z\right),
Show Annotations
Defines:
n: positive integer
Symbols:
f(t): locally integrable function and f_{{n,n}}(t): nth repeated integral
Permalink:
http://dlmf.nist.gov/2.6.E60
Encodings:
TeX, pMathML, png

where \mathscr{M}\left(f;z\right) is the Mellin transform of f or its analytic continuation. Also, when \alpha\neq\beta,

2.6.61 \mathscr{M}\left(h_{x};j+\alpha\right)=x^{{-j-\alpha}}\mathscr{M}\left(h;j+\alpha\right),
Show Annotations
Defines:
h(x): function
Referenced by:
§2.6(iv)
Permalink:
http://dlmf.nist.gov/2.6.E61
Encodings:
TeX, pMathML, png

where h_{x}(t)=h(xt). Inserting (2.6.57) into (2.6.54), we obtain from (2.6.59) – (2.6.61)

2.6.62 I(x)=\sum _{{j=0}}^{{n-1}}a_{j}\mathscr{M}\left(h;j+\alpha\right)x^{{-j-\alpha}}+\sum _{{k=0}}^{{n-1}}b_{k}\mathscr{M}\left(f;1-k-\beta\right)x^{{-k-\beta}}+\delta _{n}(x)
Show Annotations
Defines:
I(x): convolution integral, n: positive integer, a_{n}: coefficients, b_{n}: coefficients, h(x): function and \delta _{n}(x): integral
Symbols:
f(t): locally integrable function
Permalink:
http://dlmf.nist.gov/2.6.E62
Encodings:
TeX, pMathML, png

when \alpha\neq\beta, where

\delta _{n}(x)=\int _{{0}}^{{\infty}}f_{n}(t)h_{n}(xt)dt.

There is a similar expansion, involving logarithmic terms, when \alpha=\beta. For rigorous derivations of these results and also order estimates for \delta _{n}(x), see Wong (1979) and Wong (1989, Chapter 6).