The Distributional Consequences of Tradable Carbon Permits in Personal Road Transport

Zia Wadud
Robert B Noland
Daniel J Graham

Centre for Transport Studies
Imperial College London
January 2007

Background

- Transport emits 20% of global CO_{2} emissions
- Personal road transport 10\% of global CO_{2}
- Personal road transport ${ }^{\text {nd }}$ biggest source (20\%) of GHG emissions in the US
- Biggest growth area (2.1\% annually) in the US
- Requires special attention

Policy Options: EEE

Command and control

- Emission limits
> Effective, Inefficient
- Standards and labelling

Market based policies

- Emission taxes
> Effective, Efficient
- Tradable emission permits

Equity??

Personal Tradable Permit Design

- Upstream vs Downstream
- Fixed amount of carbon permits, allocated to each person/ household/ allocation unit
- Trade between persons/households if excess/shortage, through ATMs, retail top-up shops, post offices etc.

Equity issues

- Price increases
- Regressive in general
- Different burden on different groups

- Demand elasticity an important determinant

The Welfare Model

- Partial equilibrium framework
- Δ CS/Compensating Variation, using 2003 CEX data, average representative household
- Determining price from aggregate demand curve, for a chosen reduction (15\%, hypothetical)

The Welfare Model

- 3 different measures of welfare loss:
\square Change in consumer surplus, no demand response
\square Compensating variation, same elasticity for all groups
\square Compensating variation, different elasticity for different groups
- 4 different allocation scheme:
- All permits allocated to everyone equally
- Permits calculated on per capita basis, but distributed only to vehicle owners, govt. retains the rest
\square All permits allocated only to vehicle owners, per capita
\square All permits allocated to vehicle owners, per vehicle

Results:

Petrol demand modelling

CEX Survey Summary Data for US from 1984-2003 SUR model, first order auto-correlated error Fuel $_{\mathrm{it}} \sim \mathrm{f}$ (income ${ }_{\mathrm{it}}$, price $_{\mathrm{t}}$, vehicle stock ${ }_{\mathrm{it}}$, fuel economy ${ }_{\mathrm{it}}$)

Elasticity estimates:

	Lowest quintile	Second quintile	Third quintile	Fourth quintile	Highest quintile	
Income	-0.067^{*}	0.465	0.381	0.387	0.086^{*}	0.414
Price	-0.351	-0.219	-0.203	-0.263	-0.293	-0.3

[^0]
Results:

Welfare change/Income: Vehicle owning households

Distributional consequences of tradable carbon permits

Results:

Welfare change/Income: Non-vehicle owning HH

Results:

Welfare change/Income: All households

Distributional consequences of tradable carbon permits

Results:

Effect of allocation units: All households

Distributional consequences of tradable carbon permits

Results:

Effect of allocation units: Vehicle owning households

Conclusion

- Price elasticity changes among different income quintiles (U-shape)
- 'No demand response' understates welfare loss especially among lower income quintiles
- Effect of different elasticities does not have much effect on general shape of distribution, however, may have important implications in some individual groups

Conclusion

- Progressivity/regressivity depends on the permit allocation strategies
- Any allocation regressive among the vehicle owning HH in the lowest two quintiles (per vehicle least regressive)
- Any allocation regressive among the two highest income quintiles
- Overall, equal allocation to everyone progressive
- Per vehicle allocation makes the policy fairly proportional

Thank you

Questions?

[^0]: * Statistically insignificant

