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TECHNICAL	PUBLICATION

an eXaMInaTIon of sUnsPoT nUMbeR RaTes of GRoWTH anD DeCaY 
In RelaTIon To THe sUnsPoT CYCle

1.  InTRoDUCTIon

Wolf’s relat�ve sunspot number (R) �s one of the oldest and most endur�ng of the sunspot records.1–5  
Consequently, �t �s the one most often used to descr�be solar act�v�ty. Even so, recent stud�es have shown that 
�ts rel�ab�l�ty �s quest�onable for epochs earl�er than the m�d-1800s.5–10 In part�cular, Hoyt and Schatten’s 
group sunspot number has been shown to be v�rtually �dent�cal w�th Wolf’s relat�ve sunspot number, but 
only s�nce about 1882.9–11 Also, compar�son of Wolf’s relat�ve sunspot number aga�nst Greenw�ch sun-
spot areas shows fa�rly good cons�stency from about 1874.12,13 Hence, Wolf’s relat�ve sunspot number �s 
generally recogn�zed to be most rel�able from the onset of cycle 12 �n 1878 to the present.

In th�s study, the rates of growth and decay �n annual sunspot number averages are exam�ned  
relat�ve to m�n�mum and max�mum ampl�tudes to ascerta�n the�r pred�ct�ve behav�or �n prov�d�ng early 
est�mates of m�n�mum and max�mum ampl�tudes and the t�m�ng of the�r occurrences.14–21
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2.  RESULTS AND DISCUSSION

F�gure 1 d�splays the cycl�c behav�or of several solar cycle parameters for cycles 12–23 �nclud�ng 
the follow�ng: 

•	 M�n�mum sunspot number ampl�tude (Rmin).
•	 Max�mum sunspot number ampl�tude (Rmax). 
•	 Greatest pos�t�ve value change �n R from one year to the next (ΔRGPV).
•	 Greatest negat�ve value change �n R from one year to the next (ΔRGNV). 
•	 Average sunspot number slope dur�ng ascent �nterval (SLOPEASC), computed as Rmax–Rmin/ASC, where 

ASC �s ascent durat�on �n years, or elapsed t�me between Rmin and Rmax occurrences; and average sunspot 
number slope dur�ng descent �nterval (SLOPEDES), computed as Rmin (cycle n+1)–Rmax (cycle n)/DES,  
where DES �s descent durat�on �n years or elapsed t�me between Rmax occurrence cycle n and Rmin  
occurrence cycle n+1. 

The med�an, mean, and standard dev�at�on (sd) for each parameter are shown.

F�gure 1 reveals that cycles of late had values for these parameters that d�ffer markedly from 
earl�er cycles. Concern�ng Rmin for example, five of the last six cycles had an Rmin greater than both the  
med�an (6.1) and mean (7.0). Compar�ng Rmin for cycles 18–23 aga�nst Rmin for cycles 12–17, the d�f-
ference in means is statistically important at the 2-percent level of significance. On the basis of hypothesis 
test�ng us�ng the t-statistic for independent samples, note that a 5-percent level of significance means a 
confidence level (cl) of 95 percent, a level of significance of 1 percent means a cl of 99 percent, and so on.22  
Similarly, the other parameters show statistically significant differences in the means for the two groupings 
as follows:

•	 Rmax at the 0.2-percent level of significance. 
•	 ΔRGPV at the 2-percent level of significance. 
•	 ΔRGNV at the 0.1-percent level of significance. 
•	 SLOPEASC at the 0.5-percent level of significance. 
•	 SLOPEDES at the 2-percent level of significance. 

Thus, cycles 18–23 appear to be �nherently more robust than cycles 12–17.
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 F�gure 1.  Cycl�c var�at�on of selected solar cycle parameters for cycles 12–23: (a) SLOPEDES,  
  (b) SLOPEASC, (c) ΔRGNV, (d) ΔRGPV, (e) Rmax, and (f) Rmin. The med�an value   
  shown for each parameter is depicted as the thin horizontal line. Also identified are  
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Figure 2 compares yearly sunspot number averages for cycle 23 (filled circles) against the mean 
yearly averages (<R>) for cycles 12–22, relat�ve to the epoch of Rmin occurrence (E(Rmin)). It also shows 
the relat�ve s�zes and t�mes of Rmax occurrences, the ascent durat�on (ASC), and the relat�ve length of the 
cycles (PER). On the basis of figure 2, it appears that cycle 23 is nearly to its end, with Rmin for cycle 24 
expected e�ther �n 2006 or 2007, wh�ch corresponds respect�vely to year 10 or 11 of the sunspot cycle. For 
cycles 12–23, cycle 23 ranks fifth in relative size, having a maximum amplitude of 119.5 that occurred in 
year 4 of the sunspot cycle (count�ng the m�n�mum year as year 0).
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 F�gure 2.  Compar�son of cycle 23 R-values aga�nst the mean sunspot number (<R>)  
  for cycles 12–22, relat�ve to the elapsed t�me (t) �n years from the epoch of  
  sunspot m�n�mum (E(Rmin)). Also shown are the relat�ve s�zes and t�mes of    
  occurrences of Rmax, the ascent durat�on (ASC), and the relat�ve length of  
  the cycle, per�od (PER). Cycle 23 is identified by the filled circles and the  
  mean by the line. On the basis of this figure, there appears a strong indication  
  that Rmin occurrence for cycle 24, the next sunspot cycle, w�ll be �n year t=10,  
  correspond�ng to the year 2006.
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Figure 3 compares yearly sunspot number averages for cycle 23 (filled circles) against the mean 
yearly averages (<R>) for cycles 12–22, relat�ve to the elapsed t�me (T) �n years from the epoch of sun-
spot max�mum (E(Rmax)). It also shows the relat�ve t�mes of occurrences for the succeed�ng cycle Rmin 
descent durat�on (DES), thereby mark�ng the convent�onal onset of the follow�ng cycle. On the bas�s of 
figure 3, it is suggested that cycle 23 will probably end in year seven from E(Rmax), correspond�ng to 
2007, �nferr�ng an 11-yr per�od for cycle 23 (ASC+DES=PER, or 4 +7 yr=11 yr). It should be noted, how-
ever, that m�n�mum could come earl�er �n 2006, espec�ally �f cycle 24 proves to be above average �n s�ze, 
s�nce robust cycles tend to start early, be fast r�sers, and often are of a shorter per�od.
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 F�gure 3.  Compar�son of cycle 23 R-values aga�nst the mean sunspot number (<R>) for  
  cycles 12–22, relat�ve to the elapsed t�me (T) �n years from the epoch of sunspot  
  max�mum (E(Rmax)). Also shown are the relat�ve occurrences of the descent  
  durat�on (DES). Cycle 23 is identified by the filled circles and the mean by the line.  
  On the basis of this figure, there appears a strong indication that Rmin for cycle 24,  
  the next sunspot cycle, w�ll be �n year T=6 or 7, correspond�ng to the years 2006  
  or 2007.
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F�gure 4 shows the d�str�but�on of cycles based on cycle length (PER) and ASC for cycles 12–22. 
All cycles have ASC of 3, 4, or 5 yr and PER of 10, 11, or 12 yr. A χ2 test of the observed 3×3 d�str�but�on 
y�elds χ2=8.13, suggest�ng that ASC and PER m�ght be weakly assoc�ated at the 10-percent level of s�gn�f-
�cance.23 At the 5-percent level of significance, the two parameters must be viewed as being independent  
of each other. 

 F�gure 4.  A 3×3 cont�ngency table compar�ng ascent durat�ons (ASC) and per�ods (PER) for  
  cycles 12–22. Individual cycle numbers are identified in each bin. The numbers in  
  parentheses g�ve the frequency of occurrence. A χ2 test y�elds χ2=8.13, wh�ch �s a  
  marginally significant result (at the 10-percent level of significance). 

Figure 5 compares yearly sunspot number averages for cycle 23 (filled circles) against the mean 
yearly averages (<R>) for cycles of ASC=3 yr (th�ck l�ne), 4 yr (th�n l�ne), and 5 yr (dashed l�ne). Through-
out �ts r�se, cycle 23 yearly sunspot numbers fell below the mean for ASC=3 yr and above the mean for 
ASC=4 yr, making it difficult to accurately determine whether it would have a 3 yr or 4 yr rise. The cycle 23  
decl�ne appears to be more l�ke the decl�ne found for ASC=3 yr rather than ASC=4 yr, except for the last 
year or two. The cycle 23 R value at t=9 yr (2005) equals 29.9, wh�ch �s sl�ghtly smaller than was seen for 
the same t �n cycles 17 (30.6) and 20 (38.2) and sl�ghtly larger than was seen for the same t �n cycle 19 
(27.9). The suggestion from figure 5 is that minimum for cycle 24, the next sunspot cycle, will probably 
occur e�ther at t=10 yr (2006) or t=11 yr (2007).

Figure 6 compares yearly sunspot number averages for cycle 23 (filled circles) against the mean 
yearly averages (<R>) for cycles of PER=10 yr (th�ck l�ne), 11 yr (th�n l�ne), and 12 yr (dashed l�ne). 
Throughout �ts r�se and fall, cycle 23’s behav�or has closely m�m�cked the mean behav�or of cycles hav�ng 
10-yr lengths. Hence, �t may be that cycle 23 �s also a cycle of PER=10 yr. If true, then 2006 should mark 
the onset year for cycle 24, on the bas�s of annual averages.
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 F�gure 5.  Compar�son of cycle 23 R-values (filled circles) against the mean sunspot  
  number (<R>) for cycles of ASC=3 yr (th�ck l�ne), 4 yr (th�n l�ne), and 5 yr  
  (dashed l�ne) relat�ve to the elapsed t�me (t) �n years from the epoch of sunspot   
  m�n�mum (E(Rmin)).



8

10 (Cycles 15, 16, 18, 19, 21, 22)

11 (Cycles 12, 17)

12 (Cycles 13, 14, 20)

140

120

100

80

60

40

20

0 2 4 6 8 10 12

t, Elapsed Time in Years From E(Rmin)

<R
>

 
 F�gure 6.  Compar�son of cycle 23 R-values (filled circles) against the mean sunspot number  
  (<R>) for cycles of PER=10 yr (th�ck l�ne), 11 yr (th�n l�ne), and 12 yr (dashed l�ne)  
  relat�ve to the elapsed t�me (t) �n years from the epoch of sunspot m�n�mum (E(Rmin)).

Once �t �s clear that sunspot m�n�mum has occurred, one can read�ly employ observed sunspot 
number values to pred�ct Rmax. F�gure 7 d�splays scatterplots of Rmax versus Rmin, left panel; Rmax ver-
sus ΔRGPV , center panel; and Rmax versus Rmax, ( yx1x2 ), r�ght panel, where Rmax(yx1x2 ) �s a b�var�ate 
fit of Rmax aga�nst both Rmin (x1) and ΔRGPV (x2). Pla�nly, Rmin provides a crude first-order prediction 
some 2–4 yr �n advance for the later occurr�ng Rmax. A much better pred�ct�on can be made follow�ng the 
occurrence of ΔRGPV, wh�ch usually precedes Rmax occurrence by 1–2 yr (usually occurr�ng �n years 2 
or 3 follow�ng Rmin occurrence). ΔRGPV represents the inflection point during the rising portion of the 
ongoing sunspot cycle. The bivariate fit is found to further improve upon the prediction for Rmax of the 
grow�ng sunspot cycle.24
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F�gure 8 dep�cts the scatterplot of Rmax versus SLOPEASC, where SLOPEASC �s the average rate 
of growth dur�ng the r�s�ng port�on of the cycle. As noted before, �t �s computed as (Rmax-Rmin)/ASC. 
Unfortunately, one cannot compute SLOPEASC unt�l Rmax has been observed. Wh�le str�ctly true, one can 
exam�ne the evolv�ng average rate of growth as the cycle progresses from Rmin occurrence to est�mate the 
later occurr�ng Rmax.
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F�gure 8.  Scatterplot of Rmax versus SLOPEASC.

F�gure 9 shows Rmax versus SLOPEASC(1), left panel; Rmax versus SLOPEASC(2), center panel; 
and Rmax versus SLOPEASC(3), r�ght panel, where

•	 SLOPEASC(1) �s the d�fference �n R between year 0 (sunspot m�n�mum year) and year 1 (year after 
sunspot m�n�mum year).

•	 SLOPEASC(2) �s the d�fference �n R between year 0 and year 2 d�v�ded by 2.
•	 SLOPEASC(3) �s the d�fference �n R between year 0 and year 3 d�v�ded by 3. 

As an example, cycle 23 had— 
•	 R=8.6 �n year 0, 1996, the sunspot m�n�mum year.
• R=21.5 �n year 1, 1997.
• R=64.2 �n year 2, 1998. 
• R=93.2 �n year 3, 1999. 

Hence, for cycle 23 SLOPEASC (1)=12.9, SLOPEASC (2)=27.8, and SLOPEASC (3)=28.2. 
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{ {

 F�gure 9.  Scatterplots of (a) Rmax versus SLOPEASC (1), (b) Rmax versus SLOPEASC (2),  
  and (c) Rmax versus SLOPEASC (3).

Pla�nly, beg�nn�ng at one year past Rmin occurrence, one can est�mate Rmax cons�derably better 
(standard error (se) of 21.7 un�ts of sunspot number) than at Rmin (se=36.3 un�ts of sunspot number), and 
better yet at two years past Rmin occurrence (se=15.7 un�ts of sunspot number).

Another parameter of �nterest �s ΔRGNV, the inflection point during the cycle decline from Rmax 
occurrence of the ongo�ng cycle to the Rmin occurrence of the follow�ng cycle. ΔRGNV usually precedes 
Rmin occurrence of the succeed�ng cycle by about three to four years, usually occurr�ng �n year seven fol-
low�ng Rmin occurrence of the ongo�ng cycle. F�gure 10 d�splays scatterplots of ΔRGNV versus ΔRGPV 
(left panel) and ΔRGNV versus Rmax (right panel). Both the inflection amplitude during the rise and the 
actual maximum sunspot number amplitude provide a reliable prediction for the inflection amplitude 
during the fall of the ongoing sunspot cycle. A bivariate fit employing both ΔRGPV and Rmax does not 
significantly improve the estimate for ΔRGNV.

F�gure 11 dep�cts scatterplots of Rmin for cycle n+1 versus Rmax for cycle n (left panel), and Rmin 
for cycle n+1 versus ΔRGNV for cycle n. Of the two, only the first is marginally statistically significant. 
Because Rmax for cycle 23 (119.5 denoted by the small downward po�nt�ng arrow along the x-ax�s) was 
above the med�an for cycles 12–22 (th�n vert�cal l�ne), the �nd�cat�on �s that Rmin for cycle 24 w�ll l�e 
above the med�an for Rmin (th�n hor�zontal l�ne) �n the upper r�ght quadrant. On the bas�s of the �nferred 
regress�on, cycle 24 Rmin w�ll probably measure about 7.6±3.4. S�m�larly, on the bas�s of cycle 23 ΔRGNV 
(–40.5 denoted by the small downward po�nt�ng arrow along the x-ax�s), cycle 24 Rmin �s expected to l�e 
within the upper left quadrant, having a value of about 7.9±3.5. A bivariate fit employing both parameters 
does not significantly improve the estimate of Rmin for cycle n+1.
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y=1.422+0.051 x
r=0.563, r 2=0.317
se=3.43, cl >90%{

=>Rmin(24)=7.6±3.4

=>P=6.7%
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y=2.299–0.139 x
r=–0.495, r 2=0.245
se=3.54, cl <90%{

=>Rmin(24)=7.9 + 3.5

F�gure 11.  Scatterplots of (a) Rmin (n+1) versus Rmax (n) and (b) Rmin (n+1) versus ΔRGNV (n).

F�gure 12 shows scatterplots of SLOPEDES versus SLOPEASC (left panel) and SLOPEDES  
versus Rmax (r�ght panel). Both plots reveal strong l�near negat�ve correlat�on between the parameters. 
SLOPEDES prov�des a s�mple way to est�mate the Rmin year of occurrence for the follow�ng cycle. For 
example, cycle 23 had SLOPEASC=(119.5–8.6)/4=27.73, as denoted by the small downward po�nt�ng 
arrow along the x-ax�s. Us�ng th�s value, one est�mates cycle 23 SLOPEDES to be about –14.67±1.97. 
Also, us�ng cycle 23 Rmax, 119.5 (denoted by the small downward po�nt�ng arrow along the x-ax�s), one 
est�mates SLOPEDES to be about –16.27±1.92. Presum�ng cycle 24 Rmin w�ll measure about 9.8±3.2, 
the average for cycles 18–23, one finds that cycle 24 Rmin should follow cycle 23 Rmax occurrence by 
about 7 yr, �nd�cat�ng cycle m�n�mum �n the year 2007. For cycle 24 m�n�mum to occur �n 2006, cycle 23  
SLOPEDES must measure at least –17 (or more negat�ve) �n value.

Str�ctly speak�ng, one cannot measure SLOPEDES unt�l after the m�n�mum for the follow�ng cycle has 
occurred. However, �n add�t�on to us�ng SLOPEASC and Rmax to est�mate the value of SLOPEDES, another 
s�mple way for est�mat�ng SLOPEDES �s based on the evolv�ng values dur�ng the decl�ne of the cycle.
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y=–5.850–0.318 x
r=–0.942, r 2=0.886
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F�gure 12.  Scatterplots of (a) SLOPEDES versus SLOPEASC and (b) SLOPEDES versus Rmax.

F�gure 13 d�splays the scatterplot of SLOPEDES versus SLOPEDES (GNV), where SLOPEDES (GNV)  
�s the greatest negat�ve value of the evolv�ng slope dur�ng the sunspot cycle decl�ne. As an example,  
cycle 23 Rmax measured 119.5 �n the year 2000. For 2001–2005, R measured 110.9, 104.1, 63.6, 40.4, 
and 29.9, respect�vely. The evolv�ng SLOPEDES has values of –8.60 (the d�fference of 119.5–110.9), −7.70  
(the d�fference of (119.5–104.1)/2, −18.63 (the d�fference of (119.5–63.6)/3, −19.78 (the d�fference of  
(119.5–40.4)/4, and –17.92 (the d�fference of (119.5–29.9)/5. The greatest negat�ve value of the evolv�ng 
SLOPEDES �s –19.78, shown �n the plot as the small downward po�nt�ng arrow along the x-ax�s.

Wh�le for the general scatterplot, one �nfers a strong l�near pos�t�ve correlat�on between the param-
eters at <0.1-percent level of significance, having the form y=−0.393+0.773x, a correlation coefficient of 
r=0.959 and an se of 1.76, a more �nterest�ng result �s that the cycles appear to be d�str�buted along two 
d�fferent regress�on l�nes—cycles 12–16 along yU and cycles 17–22 along yL. As stated earl�er, cycle 23 
SLOPEDES(GNV) equals −19.78, hence, cycle 23 SLOPEDES w�ll e�ther be equal to −13.87±0.4, based on 
the yU fit, or −17.36±1.03, based on the yL fit. Ignoring the cyclic split and using the general regression, 
cycle 23 SLOPEDES equals −15.68±1.76. If cycle 23 cont�nues the trend character�zed by yL for cycles 
17–22, then cycle 24 Rmin occurrence w�ll be �n 2006; however, �f cycle 23 reverts to the cycle 12–16 
trend, then cycle 24 Rmin occurrence w�ll be delayed unt�l 2007.

It should be noted that the sunspot m�n�mum year �s closely related to the peak �n the number of 
reported spotless days dur�ng that year. F�gure 14 shows the envelope (l�nes 1 and 4) and means of cycles 
12–16 (l�ne 2) and 17–23 (l�ne 3) of the number of spotless days (top panel) and sunspot number (bottom 
panel) relat�ve to Rmin occurrence. Pla�nly, as one approaches sunspot m�n�mum, the sunspot number 
decreases and the number of spotless days (NSD) �ncrease. Table 1 g�ves the NSD and R relat�ve to E(Rmin) 
for the elapsed t�me of 3 yr before cycle m�n�mum to 2 yr after sunspot m�n�mum.
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F�gure 13.  Scatterplot of SLOPEDES versus SLOPEDES(GNV).

Cycle 23 experienced its first spotless days during its decline in the year 2004. The total number of 
spotless days �n 2004 numbered three and R measured 40.4. For 2005, the number of spotless days num-
bered 13 and R measured 29.9. Now, �n 2006 (through February) there have been 17 spotless days and R 
has averaged only 10.5. Such values are suggest�ve that, for cycle 24, the sunspot m�n�mum year w�ll be 
e�ther 2006, espec�ally �f cycle 24 has an unusually h�gh Rmin value and �s a robust cycle, or 2007.

F�gure 15 d�splays the cycl�c var�at�on of the number of spotless days dur�ng the sunspot m�n�mum 
year for cycles 12–23. A strong downward decrease �s not�ceable �n the number of spotless days, wh�ch 
is statistically significant at the 0.5-percent level of significance. Presuming the validity of the inferred 
regress�on and extrapolat�ng �t to cycle 24 suggests that cycle 24 w�ll have 107±48 spotless days �n the 
sunspot minimum year. Cycles 18–23 have averaged 152±50 spotless days, significantly less than the 
255±44 average of cycles 12–17.
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1 = Upper Envelope
2 = Mean Cycles 12–16
3 = Mean Cycles 17–23
4 = Lower Envelope
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F�gure 14.  Scatterplots of (a) NSD versus t and (b) R versus t.
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Table 1.  Compar�son of R and NSD values relat�ve to E(Rmin).

Cycle
–3 –2 –1 0 +1 +2

R NSD R NSD R NSD R NSD R NSD R NSD

12 17.0 130 11.3 190 12.4 139 3.4 280 6.0 217 32.2 32

13 25.4 62 13.1 104 6.8 150 6.3 212 7.1 171 35.6 24

14 26.7 39 12.1 104 9.5 158 2.7 287 5.1 257 24.4 45

15 18.6 75 5.7 200 3.6 254 1.4 311 9.6 153 47.4 12

16 37.6 7 26.1 46 14.2 134 5.8 200 16.7 116 44.3 27

17 35.7 3 21.2 42 11.1 108 5.7 240 8.7 154 36.0 19

18 47.5 5 30.6 24 16.3 64 9.6 159 33.1 16 92.5 0

19 69.4 0 31.4 23 13.9 131 4.4 241 38.0 48 141.7 0

20 53.9 6 37.6 9 27.9 21 10.2 111 15.1 67 46.9 8

21 38.2 27 34.4 20 15.5 95 12.6 105 27.5 25 92.7 0

22 66.6 4 45.9 13 17.9 82 13.4 129 29.2 44 100.0 0

23 54.7 0 29.4 19 17.5 59 8.6 165 21.5 60 64.2 3
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r=–0.76, r 2=0.578
se=47.94, cl >99.5%

 F�gure 15.  Cycl�c var�at�on of the number of spotless days (NSD) dur�ng the sunspot m�n�mum  
  year (E(Rm�n)) for cycles 12–23. 
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F�gure 16 dep�cts the scatterplot of Rmin versus NSD(E(Rmin)), the latter term mean�ng the num-
ber of spotless days during the sunspot minimum year. The inferred regression is statistically significant at 
the 0.1-percent level of significance. If cycle 24 has NSD((E(Rmin))=107±48, then cycle 24 Rmin would 
be expected to be about 12.1±2.5. Such a value, when appl�ed us�ng the yL regression (fig.13) suggests an 
expected SLOPEDES for cycle 23 that �mpl�es cycle 24 sunspot m�n�mum year to be 2006.

y=17.776–0.053 x

r=–0.962, r 2=0.926

se=1.14, cl >>99.9%{
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F�gure 16.  Scatterplot of Rmin versus NSD(E(Rmin)).

Table 2 prov�des a summary of the values and t�mes of occurrences for the var�ous parameters 
d�scussed �n th�s sect�on. Temporal parameters (ASC and PER) are expressed �n years, and t and T refer, 
respect�vely, to the elapsed t�me �n years from the epochs of sunspot m�n�mum (E(Rmin)) and sunspot 
max�mum (E(Rmax)).
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3.  ConClUsIon

The preced�ng sect�ons have shown that cycles of late have been rather robust �n compar�son to ear-
l�er cycles �n the span of cycles 12 through present, the most rel�ably known sunspot cycles (correspond-
ing to the interval 1878 to present). In particular, five of the past six cycles have had minimum (Rmin)  
and max�mum (Rmax) ampl�tudes that are above both the yearly med�an (6.1 and 110.2, respect�vely) and 
mean (7.0 and 115.7) values. Cycle 23, the current ongoing sunspot cycle, ranks fifth in size in terms of its 
observed Rmin and Rmax. Compar�son of �ts yearly sunspot number averages aga�nst the mean of cycles 
12–22 strongly suggests that onset for cycle 24 w�ll l�kely occur �n year 10 of the sunspot cycle from sun-
spot m�n�mum occurrence, correspond�ng to the year 2006. However, us�ng Rmax occurrence as the epoch 
of comparison, it is difficult to strictly determine the onset year for cycle 24, being either year six (2006) 
or year seven (2007), follow�ng sunspot max�mum ampl�tude. For nearly �ts ent�re l�fe, cycle 23 behav�or, 
�n terms of yearly averages of sunspot number, seems to be more l�ke the mean of 10-yr length sunspot 
cycles, wh�ch, �f true, �nd�cates that onset for cycle 24 w�ll be 2006.

Var�ous techn�ques were exam�ned to determ�ne the pred�ct�ve capab�l�t�es regard�ng Rmax, 
ΔRGNV, SLOPEDES, Rmin, and NSD. Very strong pos�t�ve correlat�ons are found to ex�st between Rmax 
and ΔRGPV and Rmax and both ΔRGPV and Rmin (a bivariate fit). Likewise, very strong positive correla-
t�ons are found between Rmax and SLOPEASC and �nferred growth rates after one, two, and three years. 
ΔRGNV �s found to strongly and negat�vely correlate aga�nst ΔRGPV and aga�nst Rmax. Also, SLOPEDES �s 
found to strongly and negat�vely correlate aga�nst SLOPEASC and Rmax. A rather interesting finding seems 
to ex�st for SLOPEDES when compared aga�nst SLOPEDES(GNV), wh�ch �s the greatest negat�ve value of 
the evolv�ng slope dur�ng the decl�n�ng phase of the sunspot cycle. Namely, cycles 12–16 appear to prefer 
a regress�on l�ne that d�ffers from the preferred regress�on l�ne for cycles 17–22. If cycle 23 SLOPEDES 
�s s�m�lar to those of recent cycles 17–22, then onset for cycle 24 w�ll occur �n 2006; on the other hand, �f 
cycle 23 SLOPEDES �s s�m�lar to those of earl�er cycles 12–16, then onset for cycle 24 w�ll be delayed unt�l 
2007. It should be noted that the general d�str�but�on of SLOPEDES versus SLOPEDES(GNV), �gnor�ng the 
apparent d�v�s�on of cycles �nto two d�st�nct group�ngs, has a strong pos�t�ve correlat�on at the 0.1-percent 
level of significance. Finally, the number of spotless days has been increasing since 2004, this being a 
s�gn of the approach of onset for cycle 24. The number of spotless days �s at max�mum dur�ng the sunspot 
minimum year. Because five of the past six cycles have had NSD <206 days (the med�an) and because 
there appears to exist a strong negative correlation (at the 0.5-percent level of significance) between NSD 
at E(Rmin) aga�nst sunspot cycle number, one pred�cts cycle 24 to have 107±48 days (the mean and stan-
dard dev�at�on of NSD for cycles 18–22 �s 152±50). Th�s suggests that NSD at E(Rmin) for cycle 24 w�ll 
be <206 days and that Rmin w�ll be >6.1, �nd�cat�ng further that cycle 24 should be expected to be another 
robust cycle, probably of larger than average max�mum ampl�tude (Rmax), shorter than average ascent 
durat�on (ASC) and shorter than  average length (PER).25–27  
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