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Introduction 
TCGRID (Turbomachinery C-GRID) is a three-dimensional grid generation code for turbomachinery blades. The code 

can generate single or multiblock grids that are compatible with various analysis codes including Swift and ADPAC. Single
block grids can be either C-type or H-type, and can be for linear cascades or annular blade rows. Multi-block grids must use a 
C-type grid around the blade, and can add an H-grid in the inlet region and O-grids in the hub or tip clearance regions. 

A brief description of TCGRID and an example of a compressor grid are given in (1). Examples of turbine grids generated 
with TCGRID can be found in (2). Figures 1 here shows a multiblock H-C grid for a transonic compressor rotor (NASA rotor 
37,) and figure 2 shows an H-grid for a transonic fan (NASA rotor 67.) The figures are used to describe the input variables 
later. 

All geometry manipulation in TCGRID is done using parametric cubic splines, so the code can handle axial, mixed, and 
centrifugal flow machines. The input blade geometry can be translated, rescaled, and flipped tangentially, and full control of 
spacing along the blade surface is provided. Blade-to-blade grids are generated using an efficient elliptic solver that gives con
trol of spacing and angles at the blade and outer periodic boundary. Grids are reclustered spanwise with control over spacing at 
the hub, casing, and clearance regions. 

TCGRID is written completely in Fortran and runs as a quick batch job on unix or Windows computers. Code input is sup
plied as an ASCII dataset. Grid parameters are specified using convenient namelist input. Hub and casing geometries are spec
ified as coordinate pairs. Blade shapes may be specified in MERIDL format, Crouse-Tweedt design code format, or specified 
directly by the user as coordinate triplets. Some printed output is provided. No graphical output is provided, but grid files can 
be read directly and plotted using the public domain CFD visualization codes PLOT3D and FAST, or the commercial codes 
FIELDVIEW and TECPOT. 

This documentation briefly describes how the TCGRID code works. Instructions for dimensioning, compiling, and run
ning TCGRID are given for Silicon Graphics (SGI) workstations and PC’s. The namelist input variables and the hub, tip, and 
blade input are described in detail. Finally, an outline of the code structure given and the output file format is described. 
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Features of TCGRID 
• New in Version 300 

Code distributed in tarred format that should compile and run directly on unix machines, or a zipped format that should 
compile and run directly on Windows PC’s. 
Code converted to Fortran 90 
Dynamic memory allocation reduces memory requirements and avoids recompiling for most problems 
New algorithm for the meridional grid works for complicated axial-radial flow paths 
ADPAC compatible grid files 
Improved support for H-grids 
Note: For inlet H-grids, the dummy grid line at j=1 has been deleted for compatibility with Swift version 300. Thus inlet H
grids generated with TCGRID v. 300 are incompatible with earlier versions of Swift. 

• Applications 
Linear cascades

Axial compressors and turbines

Isolated blade rows or multistage machines

Centrifugal impellers and mixed-flow machines without splitters

Radial diffusers

Pumps


• Grid Types 
C- or H-grids around blades

C-grid with upstream H-grid

O-grids in hub- and tip-clearance regions

Multistage machines can be modeled by merging C-grids for individual blades using a utility called MULTIX


• Formulation 
Blade-to-blade grids generated with a fast elliptic solver (GRAPE)

Spanwise reclustering done using cubic splines

H-grids in inlet regions and O-grids in clearance gaps generated algebraically


• Input 
Namelist input of grid parameters

Hub and casing geometries input in (z, r) coordinates

Blade geometries input in general (z, r, θ) coordinates, or MERIDL format (z, r, θ−upper,θ−lower) or (z, r, Δθ)


• Printed Output 
Input parameters

Convergence information for blade-to-blade grids

Spanwise output of inlet, leading edge, trailing edge, and exit coordinates

Index file with grid size information for Swift


• Grid & Debug Output 
Grid files are written as binary data in standard PLOT3D format

Intermediate grid files can be output for debug purposes. Debug files include reclustered blade coordinates, the 2-D

throughflow grid, and 2-D blade-to-blade grids which may be useful for other purposes.


• Computer Requirements 
Runs as a quick batch process on most unix, linux, or Windows computers

Fortran 90 compatible compiler


• Graphical Output 
No graphical output is provided with TCGRID, but access to some CFD visualization package is absolutely necessary to 
view and evaluate new grids. Grid files are in standard PLOT3D format and can be read directly and plotted with public
domain CFD visualization tools PLOT3D and FAST, or the commercial tools EnSight, FIELDVIEW, or TecPlot. Check the 
following web sites for more information. 

PLOT3D & FAST: http://www.nas.nasa.gov/Research/Software/swdescription.html 
TecPlot: http://www.amtec.com/ 
FIELDVIEW: http://www.ilight.com/ 
EnSight: http://www.mscsoftware.com.au/products/software/cei/ensight/ 
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Getting Started – Unix 

Unpacking 
For unix systems TCGRID is supplied as a gzipped tar file called tcgrid.tgz. To open: 

gunzip tcgrid.tgz

tar -xvf tcgrid.tar 

This will create a directory called tcgrid.300 with subdirectories for the source, documentation, and test cases. 

Compiling 
Tcgrid must be compiled with a Fortran 90 compatible compiler. Edit modules.f90 and change the maximum array size if 

desired (see Parameter Statement below.) Edit Makefile and change the compiler name (f90) and options (OPTS) as necessary 
for your compiler. 

cd tcgrid.300/src; make

The executable file tcgrid remains in the src directory. 

Important Note: Modules.f90 contains several Fortran 90 modules that are used within other routines. It must be compiled 
before any other routines are compiled. The Makefile should take care of this automatically. If you ever need to compile man
ually, be sure to compile modules.f90 first. To delete the object files and executable, 

make clean


Parameter Statement 
TCGRID uses dynamic memory allocation for most arrays to avoid redimensioning for most problems. However, for pro

gramming convenience the maximum size of many work arrays are set using a Fortran module defined in modules.f90. 

module param

! maximum dimensions of any grid, used for work arrays


 integer,parameter::ni=321, nj=63, nk=65, nb=2*ni

end module param


This grid size (321 x 63 x 65) is large enough for most problems but can be increased to any size as needed. 

Running TCGRID 
To run the Goldman turbine vane test case: 

cd tcgrid.300/gold

../src/tcgrid < gold.int


The grid should run in a few seconds. The output can be redirected to a file if desired. 

Output Files 
The output grid file is written to Fortran unit 1 (fort.1). Debug grid files may be written to fort.11 - fort.19, depending on 

idbg flags set in the input file. All grid files are written as unformatted binary files. A Swift index file may also be written to 
fort.10. The index file is in ASCII format and can be edited as desired. Output files should be renamed after running TCGRID, 

mv fort.1 gold.xyz

mv fort.10 gold.ind


Alternative 
Setting iopen=1 in the input file causes all files to be opened explicitly with a default file name. For example, the grid will 

be named grid.xyz. Other file names are given with the iopen options under “&nam3 -Algorithm Parameters” on page 10. By 
using the default file names you can avoid the file renaming steps, but you may want to rename the files with more descriptive 
names later. 

Binary grid files can be used immediately by Swift. Grid files can be read into PLOT3D using the read /unformatted 
option. 
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Getting Started – Windows 

Unpacking 
For Windows, TCGRID is supplied as a zipped file called tcgrid.zip. Use Winzip or PKZIP to unzip it. This will create a 

directory called tcgrid.300 with subdirectories for the source, documentation, and test cases. 

Compiling 
Tcgrid must be compiled with a Fortran 90 compatible compiler. Compaq Visual Fortran works well, but I don’t have 

enough experience to give step-by-step instructions. Please let me know if you can adapt my Makefile or have any information 
about other compilers. In general, using Developer Studio: 

Go to tcgrid.300/src

Open a new Fortran console application

Edit modules.f90 and change the maximum array size if desired (see Parameter Statement below.)

Set compile options for full optimization and no debug tables

Compile modules.f90 first

Build tcgrid


Important Note: Modules.f90 contains several Fortran 90 modules that are used within other routines. It must be compiled 
before any other routines are compiled. If you ever need to recompile, be sure to compile modules.f90 first. 

Parameter Statement 
TCGRID uses dynamic memory allocation for most arrays to avoid redimensioning for most problems. However, for pro

gramming convenience the maximum size of many work arrays are set using a Fortran module defined in modules.f90. 

module param

! maximum dimensions of any grid, used for work arrays


 integer,parameter::ni=321, nj=63, nk=65, nb=2*ni

end module param


This grid size (321 x 63 x 65) is large enough for most problems but can be increased to any size as needed. 

Running TCGRID 
To run the Goldman turbine vane test case, open a DOS window (Start/Programs/Accessories/Command prompt) 

cd tcgrid.300\gold

Edit the TCGRID input file gold.int and set iopen=1 in namelist 3. This will cause all files to be opened with the default names 
given. Now run TCGRID. 

..\src/tcgrid < gold.int

The grid should run in a few seconds. The output can be redirected to a file if desired. 

Output Files 
The output grid file is written to grid.xyz. Debug grid files may be written to dedugnn.xyz, where nn=11-19, depending on 

idbg flags set in the input file. All grid files are written as unformatted binary files. A Swift index file may also be written to 
index.dat. The index file is in ASCII format and can be edited as desired. 

Binary grid files can be used immediately by Swift. Grid files can be read into TecPlot using File/Import/PLOT3D Loader 
with the unformatted option. 

4




TCGRID Input – Overview 
TCGRID input consists of five blocks of namelist input (&nam1 - &nam5), followed by a title, then ASCII hub, tip, and 

blade coordinates. All grids require the title, hub, tip, and blade coordinate input, (see Hub, Tip, and Blade Input, page 13). 
Many of the namelist variables are initialized in modules.f90. Required input variables that are not initialized are listed below, 
followed by some comments regarding optional variables. All variables are described in detail in the section entitled Namelist 
Input. 

C-grids 
To generate the main C-grid around the blade set the following variables: 
&nam1 - im, jm, km, merid, itl, icap. 

To change clustering along the blade surface, along the span, and upstream and downstream of the blade, use iclus, icluss, 
and iclusw, respectively. 
Use iclus2d=1 to cluster the meridional grid using the same spanwise clustering as the input blade. For simple, ruled blades 
use iclus2d=0. 
For complex flow paths increase the meridional grid size using i2d and k2d. 

&nam2 - nle, nte, dsle, dste, dswte, dswex, dsmin, dsmax, dshub, dstip. 
Vary the leading- and trailing-edge radii with span using dsthr. 
Move the location of the leading-edge clustering using dsra. 

&nam3 - iterm. 
For a quick check of a new grid, set iterm=0. Use PLOT3D to check leading- and trailing-edge spacings, surface cluster
ings, boundary locations, and outer boundary spacings. 
If something goes wrong, use the array idbg(9) to generate debug grids to check input coordinates or intermediate grids 
(see “TCGRID Code Description” on page 16.) 
Use aabb and ccdd to move points towards or away from the blade and outer boundary respectively. 

&nam4 - Inlet and exit boundary coordinates zbc and rbc are required. 
&nam5 - Most variables can defaulted. 

Use zscale, tscale, rscale, ztrans, and tflip to manipulate the input blade coordinates. 
Use ioble, exl, and exr to change the outer boundary shape. 
Use iwakex and jwakex to stretch the wake grid. 

H-grids 
Most of the parameters required for C-grids are also required for H-grids. In addition, the following indices must be set:

&nam1 - igch=1, ilh, itl.

&nam2 - Spacing parameters are interpreted as follows:


dsin = spacing at inlet,

dsle = spacing at leading edge,

dste = spacing at trailing edge,

dswex = spacing at exit

dsmax is reset to dsmin internally.


&nam3 - Some algorithm control parameters are reset for consistency. 
ccdd is reset to aabb. 
omegpq is reset to omegrs. 

Linear Cascades 
To generate a grid for a linear cascade set the following:

&nam1 - igeom = 1,

&nam2 - gap.


Inlet H-grid 
To generate an inlet H-grid, set the following:

&nam1 - igin = 1, imi.

&nam2 - dsin.


Since the inlet H-grid overlaps the blade C-grid, the C-grid must be run to convergence for proper H-grid spacings. 
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Tip Clearance O-grid 
To generate a tip clearance grid, set the following:

&nam1 - igclt = 1, jmt, kmt.

&nam2 - cltip, dsclt.


The number of points in the i-direction depends on the C-grid size. Since the clearance O-grid overlaps the blade C-grid, 
the C-grid must be run to convergence for proper O-grid spacings. 

Hub Clearance O-grid 
To generate a hub clearance grid, set the following:

&nam1 - igclh = 1, jmh, kmh.

&nam2 - clhub, dsclh.


The number of points in the i-direction depends on the C-grid size. Since the clearance O-grid overlaps the blade C-grid, 
the C-grid must be run to convergence for proper O-grid spacings. 

Multistage Grids – Grid requirements 
Multistage C-grids are generated one blade row at a time, then are merged using a utility called MULTIX. The individual 

grids must meet certain requirements: 

1. The blades must be in the correct location and orientation. Use ztrans to move the blades axially, and tflip to flip the θ-
coordinates if necessary. 
2. All grids must have identical spanwise spacings. Use identical hub and tip inputs, and identical spanwise stretching and 
spacing parameters for all grids. 
3. The grids must match at an interface between the blades. Set the exit boundary coordinates of grid 1 to the inlet bound
ary coordinates of grid 2. Place the interface midway between the blades, or close enough to blade 2 to get a good C-grid. 
4. For Swift, the grids must overlap exactly one cell at the interface. On grid 1 set dswex to give a fine spacing near the exit, 
and set dslap ≈ dswex . This resets the grid spacing at the exit from approximately dswex to exactly dslap. On grid 2 set 
dsmax2 = dsla p1 . This will cause the dummy grid line from grid 2 to overlap grid 1 by dsmax. (Not necessary for 
ADPAC.) 
5. The relative circumferential spacing between the grids doesn’t matter. 

Multistage Grids – MULTIX Utility 
MULTIX simply merges two PLOT3D files and two index files without much checking. The steps are as follows: 

1. Run grid 1. Rename the grid file from fort.1 to name1.xyz. Rename the index file from fort.10 to name1.ind. 
2. Run grid 2. Rename the grid file from fort.1 to name2.xyz. Rename the index file from fort.10 to name2.ind. 
3. Compile multix.f and run it. It will prompt for name1 and name2.
4. The output files are named out.xyz and out.ind. You can rename them and add more files if necessary. 
5. The index file out.ind will have the correct format and grid sizes, but you will have to edit it and change connectivity, 
boundary condition flags, etc. as described in the Swift documentation. 
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Namelist Input 
Defaults are given in angle brackets, <default=value> or <default.> If no default is given the value MUST be input. Rele

vant figures are given in parentheses (fig. #.) 

&nam1 - Grid Size Parameters 
Many grid size parameters are illustrated in figures 1 – 4. 

merid Flag for type of blade input. See Hub, Tip, and Blade Input, page 13, and figures 5 and 6 for complete 
descriptions of the blade input formats. 

= 0 Blade input in stacked sections, (z, r, θ). Completely general, (fig. 5), <default.> 

= 1 Blade input in Crouse/Tweedt design code format, (z, r, θ) (fig. 5.) Like merid=1 but ordered differently. 

= 2 Blade input in MERIDL format, (z, r, θ-upper, θ-lower), (fig. 6). 

= 3 Blade input in MERIDL format, (z, r, θ, Δθ) 

im Grid size in i- (streamwise) direction, (figs. 1, 2.) 

jm Grid size in j- (blade-to-blade) direction, (figs. 1, 2.) 

km Grid size in k- (spanwise) direction, (fig. 3.) 

itl C-grid: i-index of lower trailing-edge point, (fig. 1.) 

H-grid: number of cells downstream of the trailing-edge, (fig. 2.) 

icap Number of cells on the inlet part of the C-grid, equally-spaced. Remaining cells are distributed over the peri
odic boundaries. Increase icap to pull points towards inlet, and vice-versa, (fig. 1.) 

igeom Flag that tells whether grid will be for a linear cascade or an annular blade row. 

= 0 Annular blade row <default.> 

= 1 Linear cascade. 

iclus Flag for type of clustering along the blade surfaces. 

= 1 Hyperbolic tangent clustering - smoothest, but may be sparse at blade center if im is small <default.> 

= 2 Hermite polynomial clustering - more uniform, but may grow too quickly near leading and trailing 
edges. Good for large im. 

icluss Same as iclus, but for clustering in the spanwise direction. 

iclusw Same as iclus, but for streamwise clustering downstream in the wake, and also upstream for an H-grid. 

iclus2d Flag that sets spanwise clustering of the meridional grid on which blade-to-blade grids are generated. 

= 0 Meridional grid is equally spaced between hub to tip. Good for ruled blades, 

= 1 Meridional grid has approximately the same spanwise clustering as the input blade sections. Use this 
option if the input blade sections resolves spanwise geometry variations, e.g., fillets <default.> 

i2d Number of i- (streamwise) points on the coarse meridional grid used to define the passage. Typically 21 for 
an axial machine, 41 or more for a centrifugal. <default = 21, max=101.> 

k2d Number of k- (spanwise) points on the coarse meridional grid used to define the passage. Should be roughly 
equal to the number of input blade sections nbs. <default = 11, max=50.> 

Parameters for H-grids Around Blades 

igch Flag to set C- or H-grids around blade 
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= 0 C-grid <default.> 

= 1 H-grid. 

ilh H-grid: number of cells upstream of the leading edge, (fig. 2.) 

itl	 H-grid: number of cells downstream of the trailing-edge, (fig. 2.) 

Parameters for Inlet H-grids 

igin Flag to generate inlet H-grid ahead of main C-grid. Not used if igch = 1. 

= 0 No inlet H-grid <default.> 

= 1 Generate inlet H-grid. 

imi Number of i- (streamwise) points in the inlet H-grid. Only used if igin = 1. 

Parameters for Clearance Gap O-grids 

igclt	 Flag to generate tip clearance O-grid. 

= 0 No tip clearance O-grid <default.> 

= 1 Generate tip clearance O-grid. 

jmt Number of j- (radial) points in the tip clearance grid, (fig. 4.). Only used if igclt = 1. 

kmt Number of k- (spanwise) points in the tip clearance grid, (fig. 4.) Only used if igclt = 1. 

igclh Flag to generate hub clearance O-grid. 

= 0 No hub clearance O-grid <default.> 

= 1 Generate hub clearance O-grid. 

jmh Number of j- (radial) points in the hub clearance grid. Only used if igclh = 1. 

kmh Number of k- (spanwise) points in the hub clearance grid, (fig. 4.) Only used if igclh = 1. 

&nam2 - Grid Spacing Parameters 
All spacing parameters must be input in the units desired for the final grid. All spacing parameters named “ds…” refer to 

spacing along some arc length, and not in a particular coordinate direction. Values suggested as “e.g.” should give a good ini
tial guess but may need to be modified after examining the initial grid. 

nle	 Number of points equally-spaced around the blade leading edge, typically 15. 

nte	 Number of points equally-spaced around the blade trailing edge, typically 10. 

dsle	 Spacing around the leading edge at the hub, e.g. π ⋅ rle ⁄ nle . 

dste	 Spacing around the trailing edge at the hub, e.g. π ⋅ rte ⁄ nte . 

dsthr	 “ds tip-to-hub ratio.” Dsle, dste, and dswte are taken as hub values and are varied linearly with span to this 
factor at the tip. Allows the leading edge radius, etc. to increase or decrease (usually decrease) with span. 
<default = 1.> 

dswte	 Spacing away from the trailing edge on the wake cut of C-grid, should be ≈ dste, (fig. 1.) 

dswex	 Spacing at exit on wake cut of C-grid, hard to estimate in advance. Should be roughly the spacing along the 
periodic boundary, which is roughly the streamwise distance from the inlet to the exit divided by (im-icap)/ 
2, (fig. 1.) 
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dsmin Spacing away from the blade, e.g. chord/10,000 for viscous grids, (fig. 1, 2.) Note: Swift’s blade surface out
put gives y+, the grid spacing at the wall in turbulent wall units. y+ should be . If it is too large you O 1 5 – ( ) 
may need to rerun your grid with dsmin, dshub, and dstip reduced accordingly. 

dsmax Spacing away from the periodic boundary, e.g. midspan-pitch/jm, (fig. 1, 2.) 

dsin Spacing away from the inlet of inlet H-grid, (fig. 1, 2.) Only used if igin = 1 or igch = 1. 

dsra (Pressure surface arc length)/(total surface arc length). Used to locate the center of the leading edge cluster
ing on the blade. The clustering is centered about dsra x (total surface arc length.) Typical values are 0.5 for 
symmetrical blades, about 0.49 for compressor blades, and about 0.45 for highly-cambered turbine blades. 
Only used for general blade input, merid = 0. 

= 0 TCGRID assumes that there are the same number of blade input coordinates on each surface and clusters 
about the median input point <default.> 

gap Blade row pitch for a linear cascade. Only used if igeom = 1. If igeom = 0 the pitch is set by nblade. <default 
= 1.> 

rcorn Radius for the front corner of the C-grid, (fig. 1.) Usually 0., but the inlet may be smoother with 
. <default = 0. Reset to 0. if igin = 1.>rcorn ≈ pitch/8 

Spanwise Spacing Parameters 

The spanwise grid is clustered in 1 3 – regions as shown in fig. 4. The stretching function in each region is set by icluss. 
A central region is always used between the hub and casing, with wall spacings dshub and dstip. 
If cltip > 0  a tip clearance region is added, with wall spacing dstip, height = cltip, and interface spacing dsclt. 

If clhub > 0  a hub clearance region is added, with wall spacing dshub, height = clhub, and interface spacing dsclh. 

Note that these regions are independent of any clearance region O-grids that are added if igclt = 1 or igclh = 1 . In 
other words, these stretching functions can be used to cluster points near the endwalls without adding O-grids. 

dstip Spanwise spacing at the tip, e.g. span/10,000 for viscous grid. Should be ≈ dshub, (fig. 4.) 

cltip Tip clearance height, (fig. 4.) Used if igclt = 1, or to cluster tip grid for a simple periodicity clearance model. 

= 0 Grid is stretched continuously away from the casing. <default.> 

> 0 Grid is clustered near the casing using dstip, cltip, and dsclt. 

dsclt Spanwise spacing at the blade/tip clearance interface, (fig. 4.) Only used if cltip > 0. <default = dstip.> 

dsclh	 Spanwise spacing at the blade/hub clearance interface, (fig. 4.) Only used if clhub > 0. <default = dshub.> 

clhub	 Hub clearance, (fig. 4.) Used if igclh = 1, or to cluster hub grid for a simple periodicity clearance model. 

= 0 Grid is stretched continuously away from the hub <default.> 

> 0 Grid is clustered near the hub using dshub, clhub, and dsclh. 

dshub	 Spanwise spacing at the hub, e.g. span/10,000 for viscous grids, (fig. 4.) 

Parameters for Blunt Trailing Edges 
TCGRID can wrap grids around blades with blunt trailing edges like the blades shown in figure 7. Blade coordinates may 

be input in one of two ways depending on the value of merid. 

merid	 = 0 or 1 (general coordinate input) <default.> Blades must be input with an open trailing edge (fig. 7a,) and 
nbase points are added automatically. 

= 2 or 3 (MERIDL input.) Blades are always input with an open trailing edge (fig. 6,) then 
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if nbase = 0 a round trailing edge is added <default.> 

if nbase > 0 a blunt trailing edge is assumed. 

nbase Number of intervals on the blunt trailing edge (fig. 7a.) 

ibase Flag controlling the location of the wake cut line with respect to the base of the blade (fig. 7a.) To minimize 
grid distortion, choose ibase such that the cut leaves the corner with the acute angle. If the base is symmetric 
(fig. 7c, d), use ibase = 0. 

= +1 Cut line leaves the upper corner of the base. 

= 0 Cut line leaves the center of the base <default.> 

= -1 Cut line leaves the lower corner of the base. 

ibevel Flag for beveling the corner(s) of the base to reduce grid distortion (fig 7c, d.) If ibase = 0 both corners are 
beveled. If ibase = 1 the corner opposite the wake cut is beveled. 

= 0 No bevel <default.> 

= 1 Corner(s) are beveled. 

&nam3 -Algorithm Parameters 
See Sorenson’s GRAPE code documentation (5) for more information on algorithm parameters. Most values can be 

defaulted. 

iterm	 Number of iterations for elliptic solver, usually 50 – 150. Use iterm=0 to check initial grid spacings, bound
ary locations, etc. <default=100.> 

idbg(9)	 Integer flag array with nine elements for writing intermediate debug grids to Fortran units 11-19. Useful for 
debug, graphics, and possibly for grid generation in itself. For more information see Table 1 on page 18. 
<default = 9*0.> 

omega	 Relaxation factor for the elliptic solver, rarely changed. Acceptable values from 0. to 2. <default = 1.4.> 

omegpq	 Relaxation factor for the inner boundary forcing functions, rarely changed. Acceptable values from 0. to 2. 
Set to 0. for a Laplacian inner boundary. <default = 0.1.> 

omegrs	 Like omegpq, but for the outer boundary. 

aabb	 Exponent controlling the distance that angles and spacings at the inner boundary propagate into the interior. 
Small aabb give large distances but slow convergence, and vice versa. Any value > 0. is acceptable. <default 
= 0.45> Set aabb = 0.35 to cluster more points near the wall, or aabb = 0.55 0.65 – to reduce the clus
tering. 

ccdd	 Like aabb, but for the outer boundary. 

csmoo	 Smoothing coefficient for the periodic boundary. If csmoo > 0 , a 4th-difference smoothing operator is 
applied to the periodic boundary. This allows the boundary points to float a little, which may reduce distor
tion. Not usually needed, but worth a try if the periodic boundary looks bad. Acceptable values from 0. to 1, 
typically 0.5. <default=0.> 

iopen	 Flag for opening output files explicitly by name. 

= 0 Output files are written to Fortran units without explicitly opening them. <default.> 

= 1 Output files are opened by name: 

grid.xyz = main grid file (binary) 

index.dat = Swift index file (ASCII) 

debugnn.xyz = debug grid files. nn = 11 – 19 refer to the Fortran unit number in Table 1 on page 18. 
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&nam4 - Boundary Coordinates 

zbc(3,2) and rbc(3,2) 

Arrays of (z, r) coordinates that define three line segments that act as the upstream H-grid inlet, the blade C
grid inlet, and the blade C-grid exit. The line segments are intersected with the hub and tip geometry, so the 
coordinates need not lie exactly on the hub and tip. Anywhere nearby should work. Figure 3 illustrates the 
locations of the boundary coordinate points. The first index indicates the segment and the second index indi
cates hub or tip. The six points must be entered in the order shown below. The coordinates of the upstream 
H-grid inlet may be set to zero if igin = 0. 

zbc = z-H-hub-in, z-C-hub-in, z-C-hub-ex,  z-H-tip-in, z-C-tip-in, z-C-tip-ex 

rbc = r-H-hub-in, r-C-hub-in, r-C-hub-ex,  r-H-tip-in, r-C-tip-in, r-C-tip-ex 

&nam5 - Miscellaneous Parameters 
Most of these parameters can be defaulted. 

iswift	 Flag to set grid file format for RVC3D, Swift, or ADPAC. 

= 0 RVC3D code format – no dummy grid line. Note: RVC3D only uses single block C-grids. <default.> 

= 1 Swift code output – one or more blocks with dummy grid lines. 

= 2 ADPAC code output – one or more blocks, no dummy grid lines. Note: For ADPAC the j- and k-direc-
tions are swapped, i.e., for x(i, j, k), j is the spanwise direction and k is the blade-to-blade direction. 

Scaling Parameters 
Parameters for rescaling, translating and flipping the input blade coordinates. 

zscale Scale factor for blade z-coordinates, <default = 1.> 

tscale Scale factor for blade θ-coordinates, <default = 1.> 

rscale Scale factor for blade r-coordinates, <default = 1.> 

ztrans Translation distance for blade z-coordinates, <default = 0.> 

tflip Flag for flipping the blade in the θ-direction and reordering the points. 

= 0 Do not flip blade θ-coordinates, <default.>


= 1 Flip blade θ-coordinates.


Outer Boundary Shape Control Parameters 

dslap	 i- (streamwise) spacing at exit of C-grid. If dslap > 0, the grid lines at i = 2 and i = im-1 are repositioned 
exactly dslap from the exit, overriding dswex. For multistage machines the next blade row should have 
dsmax = dslap to give a perfect overlap of the grids. 

exl	 Controls the shape of the left (upstream) periodic boundary of a C-grid. The boundary starts tangent to the 
mean camber line and curves to axial at a rate determined by exl. 

> 10 No curvature – the boundary is a linear extension of the mean camber line. 

> 1.5 Slow curvature to axial. 

= 1.5 Moderate curvature to axial <default.> 

< 1.5 Fast curvature to axial.


= 1 Turns the boundary abruptly to axial.
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exr Controls the shape of the right (downstream) periodic boundary of a C-grid. The boundary starts tangent to 
the mean camber line and curves to axial at a rate determined by exr. 

> 10 No curvature – the boundary is a linear extension of the mean camber line <default.> 

> 1.5 Slow curvature to axial. 

= 1.5 Moderate curvature to axial. 

< 1.5 Fast curvature to axial. 

= 1 Turns the boundary abruptly to axial. 

fswake Fractional distance along the downstream periodic boundary between the trailing edge and the grid exit, 
where the j-grid lines from the trailing edge (i = itl) intersect the outer boundary, (fig. 1). The default value 
of <1.> places the outer boundary point directly above and below the trailing edge point. On some blades 
this can cause the j-grid lines to cross the trailing edge. In this case try setting to pull the grid fswake < 1.0 
lines towards the downstream boundary. 

ioble The periodic outer boundary for a C-grid is made up of three segments, an upstream segment, the mean
camber line between the blades, and a downstream segment. The parameter ioble is an index which deter
mines where the upstream segment joins the mean camber line. Values can be <11>, 10, 9 … The default 
<11> starts the upstream segment at the leading edge. Smaller values move the starting point inside the pas
sage, which can be useful if upstream part of the C-grid becomes distorted due to stagger, (fig. 1). 

iwakex Flag for stretching the outer boundary grid spacing along the wake (i-direction). 

= 0 Equally-spaced outer boundary along the wake. 

= 1 Stretched outer boundary along the wake, <default.> 

jwakex Flag for controlling the j-direction spacing along the trailing edge cut. 

= 0 j-grid spacing is dsmin all along the trailing edge cut, <default.> 

= 1 j-grid spacing expands from dsmin at the trailing edge to equally-spaced at the exit. 
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Hub, Tip, and Blade Input 
Immediately following the namelist input are unformatted reads for a title, the hub and tip coordinates, and the blade coor

dinates. Unformatted ASCII reads are used throughout. 

Title 

A title of ≤ 80  characters or less is read using the following Fortran input statement:

 read *,ititle


ititle	 An alphanumeric string of 80 characters printed to the output. The character string must be enclosed in sin
gle quotes. 

Hub and Tip Geometry 
Hub and tip coordinate arrays as shown in figure 3 are read in as follows: 

! 	 read hub & tip geometry

 read(5,*)nph,npt

 read(5,*)(zhub(i),i=1,nph)

 read(5,*)(rhub(i),i=1,nph)

 read(5,*)(ztip(i),i=1,npt)

 read(5,*)(rtip(i),i=1,npt)


nph	 Number of input hub points, min = 2, max = 321. 

npt	 Number of input tip points, min = 2, max = 321. 

zhub, rhub	 z, r coordinates of the hub. 

ztip, rtip	 z, r coordinates of the tip. 

Blade Geometry 
The next line of input contains three variables read as follows: 

! blade input
 read(5,*)nbs,npb,nblade 

nbs Number of blade sections, max. = 50. 

npb Number of points around the blade, max. = 321. 

nblade Number of blades around the wheel, used to determine the pitch. 

This is followed by blade coordinates in one of four formats set by the input value of merid. The coordinates need not 
intersect the hub and tip coordinates – they are spline fit if they span the endwalls, or are linearly extrapolated if they do not, 
and the intersections are calculated by TCGRID. The four input options and their corresponding Fortran reads are as follows: 

merid = 0 <default> 

Blade input in general stacked sections. Cylindrical coordinates starting at the blade trailing edge, wrapping clockwise 
around the blade, and repeating the trailing-edge point. Complete definition of the leading- and trailing-edges must be given. 
Sections are stacked from hub to tip. Figure 5 shows the ordering of points for merid = 0. 

! 	 merid=0: blade input in stacked sections, cyl. coords.

 if(merid == 0)then

 do k=1,nbs


 read(5,*)(zb(i,k),i=1,npb)

 read(5,*)(yb(i,k),i=1,npb)

 read(5,*)(rb(i,k),i=1,npb)


 enddo

 endif
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Here (zb, yb, rb) = (z, θ, r)-coordinates of the blade section. 

merid = 1 

Blade input in Crouse/Tweedt design code format. See Tweedt’s writeup on design code options. The point ordering 
around the blade is the same as for merid = 0, as shown in figure 5, but the points are stacked from tip to hub. 

! 	 merid=1: blade input in Crouse/Tweedt design code format

 if(merid == 1)then

 read(5,*)zbhub

 do k=nbs,1,-1


 read(5,*)dum

 read(5,*)dum

 read(5,*)(zb(i,k),i=1,npb)

 read(5,*)(yb(i,k),i=1,npb)

 read(5,*)(rb(i,k),i=1,npb)


 enddo

 endif


Again (zb, yb, rb) = (z, θ, r)-coordinates of the blade section. 

zbhub	 A z-translation value added to all blade z-coordinates, to shift them to the same reference as the hub and tip. 
Can also be done using namelist variable ztrans. 

dum	 Two dummy records are included before each blade section. 

merid = 2 or 3 

Blade input in MERIDL format. See Katsanis and McNally’s report on MERIDL (3) for more information on MERIDL 
input. Unlike MERIDL, TCGRID can handle purely radial flows without rotating the coordinate system. MERIDL input has 
no leading- or trailing-edge definition, but TCGRID will add leading- and trailing-edge circles automatically. Points are input 
from leading edge to trailing edge, and from hub to tip. 

! 	 merid=2 or 3: blade input in MERIDL format

 if(merid > 1)then

 do k=1,nbs


 read(5,*)( zbl(i,k),i=1,npb)

 enddo

 do k=1,nbs


 read(5,*)( rbl(i,k),i=1,npb)

 enddo

 do k=1,nbs


 read(5,*)(th1bl(i,k),i=1,npb)

 enddo

 do k=1,nbs


 read(5,*)(th2bl(i,k),i=1,npb)

 enddo

 endif


merid = 2	 (zbl, rbl, th1bl, th2bl)= (z, r, θ-upper-surface, θ-lower-surface) coordinates of the blade section, as shown in 
figure 6. 

merid = 3	 (zbl, rbl, th1bl) = (z, r, θ)-coordinates of the mean-camber-line, ordered like merid = 2 (fig. 6), 

th2bl = blade tangential thickness (θ-upper-surface – θ-lower-surface). 
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Grid Output XYZ-File 
Grids are stored using standard PLOT3D xyz-file structure. Single block grids can be read with the following code:

 read(1)im,jm,km !grid dimensions

! read grid coordinates


 read(1)

 &(((x(i,j,k),i=1,im),j=1,jm),k=1,km),

 &(((y(i,j,k),i=1,im),j=1,jm),k=1,km),

 &(((z(i,j,k),i=1,im),j=1,jm),k=1,km)


Multiblock grids can be read with the following code:
 integer,dimension(3,10)::idx


 read(1)ngrid !number of grids

 read(1)((idx(l,ng),l=1,3),ng=1,ngrid) !grid dimensions


! loop over the grids

 do ng=1,ngrid


 im=idx(1,ng)

 jm=idx(2,ng)

 km=idx(3,ng)


 read(1)

 & (((x(i,j,k),i=1,im),j=1,jm),k=1,km),

 & (((y(i,j,k),i=1,im),j=1,jm),k=1,km),

 & (((z(i,j,k),i=1,im),j=1,jm),k=1,km)

 enddo
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TCGRID Code Description 
TCGRID is based on an old, 2-D version of the Steger/Sorenson GRAPE code (5, 6). The GRAPE code is used to gener

ate blade-to-blade grids on several surfaces of revolution between the hub and casing. The individual blade-to-blade grids are 
stacked and reclustered spanwise to form the 3-D grid. Additional inlet or clearance blocks are then generated algebraically. 

Grids are generated in several sequential steps. Most steps are coded as separate subroutines, many of which can generate 
PLOT3D compatible grid files for debugging purposes. The outline below lists the main subroutines of TCGRID in the order 
that they are called, describes their function, and describes the debug flag and debug output generated. Indentation implies sub
routine nesting. 

(Debug files are requested using the namelist array idbg(9) described in Table 1 on page 18. In general, if idbg n ) = 1 , a 

debug grid file will be generated on Fortran unit n 10 + . Grids are in PLOT3D format, may be 2-D or 3-D, and may be in mul
tigrid format. If there is a problem with TCGRID, set idbg = 9*1 and plot fort.11 – fort.19 in turn. (Some files may not be gen
erated depending on input options.) Refer to the outline below to determine at which step the problem occurred. 

tcgrid.f 

Main calling program. 

1.	 setup.f 
Reads the namelist, hub, tip, and blade input. Hub and casing geometries are input as arrays of (z,r) coordinates. Blade 
geometries are input as arrays of (z,r,θ) coordinates. Several blade input formats are supported. The blade coordinates 
can be scaled and translated if desired. 
Output file: idbg(1) = 1, unit 11, 3-D blade as input (merid = 0 or 1.) 
Output file: idbg(1) = 1, unit 11, 3-D blade after addition of leading- and trailing-edge circles (merid = 2 or 3.) 

openfile.f - Opens files by name if iopen = 1 . 

2.	 inner.f (merid = 0 or 1) 
Reclusters points around the blade sections. The leading and trailing edges are evenly-spaced. The trailing-edge spacing 
is centered around the first blade input point (which is repeated as the last input point unless nbase > 0 .) The leading
edge spacing is centered around some fraction of arc length specified using dsra. If dsra = 0 , the leading-edge spac
ing is centered on the median input point. The blade surfaces are reclustered between the leading and trailing edges 
using Hermite polynomials or hyperbolic tangent clustering. Inner.f also adds points on the base if nbase > 0 . 

3.	 merfix.f (merid = 2 or 3) 
Converts MERIDL blade sections to GRAPE-type sections. Adds leading- and trailing-edge circles. Adds points on the 
base if nbase > 0 . Reclusters points around the blade sections. 
Output file: idbg(2) = 1, unit 12, 3-D multigrid MERIDL blade as input (merid = 2 or 3). 

lete.f - Computes leading- and trailing-edge circles for the MERIDL blades using the technique described in (4). 

4.	 addht.f

Adds inlet and exit points to hub and tip arrays.


5.	 meridg.f 
Generates a coarse meridional grid between the hub and casing. The grid is generated algebraically by connecting cor
responding points on the hub and casing. The number of spanwise points should be about the same as the number of 
input blade sections. If iclus2d = 0 the meridional grid is equally-spaced spanwise. This option is good for simple 
ruled blades or blades defined on equally-spaced stream surfaces. If iclus2d = 1 the meridional grid is generated with 
approximately the same spanwise clustering as the input blade sections. 
Output file: idbg(3) = 1, unit 13, 2-D meridional grid between hub and tip. 

6.	 blades.f 
Intersects spanwise lines between blade sections with the streamwise lines of the meridional grid. This gives new blade 
sections on the stream surfaces defined by the meridional grid. 
Output file: idbg(4) = 1, unit 14, 3-D blade after interpolation onto meridional grid. 
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7.	 grid2d.f 
Generates 2-D blade-to-blade grids along the meridional grid lines using an old version of the Steger/Sorenson GRAPE 
code (refs. 5 and 6). GRAPE is strictly 2-D, so the 3-D blade sections are mapped to a 2-D (m, r θ × ) system, where m 

2 2 2
is the meridional coordinate defined by dm = dz + dr and r is the mean radius. 

GRAPE requires the specification of an inner and outer boundary. For a C-grid the inner boundary is defined by the 
mapped blade coordinates plus a polynomial wake cut. A periodic outer boundary is defined using the mean camber line 
inside the passage, with polynomial extensions up- and downstream. For an H-grid the boundaries are defined by the 
blade surfaces and polynomial extensions up- and downstream. Angles and spacings are specified on the boundaries. 
The angles are set to give normal grid lines at the blade and inlet, and vertical grid lines at the periodic boundaries. The 
spacings are input using dsmin and dsmax. 

outc.f - Generates the periodic boundary for a C-grid 
outh.f - Generates the periodic boundary for a H-grid 

An initial grid is generated algebraically. GRAPE uses an SLOR scheme to solve the Poisson equations, and is typically 
iterated 100 iterations. Dummy grid lines may be added algebraically. 

grelax.f - Solves the elliptic grid equations. 
dumgl.f - Adds dummy grid lines if iswift = 1. 

Output file: idbg(5) = k, unit 15, 2-D blade-to-blade grid on surface k of the meridional grid. 

The 2-D, (m, r θ × ) grid is transformed back to (z, r, θ) .

Output file: idbg(6) = 1, unit 16, 3-D grid before spanwise clustering.


8.	 fill3d.f 
Reclusters the 2-D grids spanwise using either Hermite polynomials or hyperbolic tangent clustering to make a full 3-D 
grid. Separate clustering functions are used in the hub clearance, blade, and tip clearance regions. 

9.	 ginlet.f 
Generates an algebraic H-grid block upstream of the blade if igin = 1 . The boundaries are defined by the hub and cas
ing, and the H-grid and C-grid inlet boundaries. Transfinite interpolation (7) is used to fill in the interior points. The 
resulting meridional grid is swept tangentially. 
Output file: idbg(7) = 1, unit 17, 3-D inlet H-grid. 

10.	 gtip.f 
Generates an algebraic O-grid block in the tip clearance region if igclt = 1 . 
Output file: idbg(8) = 1, unit 18, 3-D tip clearance O-grid. 
Generates an algebraic O-grid block in the hub clearance region if igclh = 1 . 
Output file: idbg(9) = 1, unit 19, 3-D hub clearance O-grid. 

11.	 ospan.f 
Prints the inlet, leading edge, trailing edge, and exit coordinates. 

12.	 outmg.f 
Transforms (z, r, θ) to (x,y,z) and writes the grid file on unit 1 in PLOT3D format. 
Output file: unit 1, 3-D grid. 
Output file: unit 10, ASCII index file for use by the Swift code. Contains grid sizes and indices that may be needed for 
other codes. 
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i Value Unit Subroutine Grid Size Plot3d Format Grid Description 

1 1 11 Input npb, nbs, 1 3d/unf 
General blade as input (merid = 0, 1) 
MERIDL blade after l.e. & t.e. addition 
(merid = 2, 3) 

2 1 12 Merfix nbs, npb, 1 3d/unf/mg MERIDL blade as input (merid = 2, 3) 

3 1 13 Meridg i2d, k2d 2d/unf 2-D meridional grid between hub and tip 

4 1 14 Blades npb, k2d, 1 3d/unf 3-D blade after interpolation onto 2-D grid 

5 k 15 Grid2d im, jm, 1 2d/unf 2-D blade-to-blade grid on section k 

6 1 16 Grid2d im, km,k2d 3d/unf 3-D rid before spanwise clustering 

7 1 17 Ginlet imi, jmi, kmi 3d/unf 3-D inlet H-grid 

8 1 18 Gtip imt, jmt, kmt 3d/unf 3-D hub clearance O-grid 

9 1 19 Gtip imh,jmh,kmh 3d/unf 3-D tip clearance O-grid 

Table 1 — Debug grid files available with idbg options. 
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Figure 1 — Top: Blade-to-blade H–C grid for a transonic compressor rotor. 
Bottom: TCGRID nomenclature and input variables for blade-to-blade grid. 
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Figure 2 — Top: Blade-to-blade H-grid for a compressor rotor hub section. 
Bottom: TCGRID nomenclature and input variables for H-grids. 
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Figure 3 — Top: Meridional H–C grid for a transonic compressor rotor.
Bottom: TCGRID nomenclature and input variables for meridional grid.
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Figure 4 — Top: Tip clearance O–grid for a transonic compressor rotor.
Bottom: TCGRID nomenclature and input variables for spanwise grid.
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a. Effect of ibase on location of wake cut. b. Centrifugal impeller trailing edge. ibase = 1, nbase = 
8, ibevel = 0. 

c. Inlet guide vane trailing edge. ibase = 0, nbase = 8, d. Inlet guide vane trailing edge. ibase = 0, nbase = 8, 
ibevel = 1. ibevel = 0. 

Figure 7 — Options for blunt trailing edges. 
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