
CFL3D User’s Manual 7

2
CHAPTER 2 Getting Started

While the ultimate goal in utilizing CFL3D will be to solve problems pertinent to the
user’s work, it is highly recommended for new users to begin by running some of the test
cases described in Chapter9. Experience gained while running these will help the user
when running a “real” problem. The following sections provide general instructions for
compiling and running CFL3D.

2.1Acquiring the Code and Example Files

The files needed to run CFL3D are located on Vonneumann and Eagle, two Cray
supercomputers located at NASA Ames Research Center. The files are in

~rumsey/Cfl3dv5/cfl3dv5.ascii

The files are tarred, compressed, encrypted, and uuencoded. A keyword (obtained from
the Aerodynamic and Acoustic Methods Branch at NASA Langley – see below) must be
used to decode the filecfl3dv5.ascii. The steps for this procedure are as follows:

 Step 1

uudecode cfl3dv5.ascii

 Step 2

crypt keyword < cfl3dv5.crypt > cfl3dv5.tar.Z

 Step 3

uncompress cfl3dv5.tar.Z

 Step 4

tar xvf cfl3dv5.tar

This step should create a directory namedCfl3dv5 with the appropriate CFL3D files in it.

 Step 5

rm cfl3dv5.ascii cfl3dv5.tar cfl3dv5.crypt

CHAPTER 2 Getting Started

8 CFL3D User’s Manual

If the test cases are not required, a more convenient option might be to obtain the file
cfl3dv5.codeonly.ascii. This file is also tarred, compressed, encrypted, and uuen-
coded, but it is much smaller thancfl3dv5.ascii.

If access to Vonneumann or Eagle is not possible, the encrypted codes are also avail-
able on the Langley CFD anonymous ftp site. To obtain the code in this manner, take the
following steps:

 Step 1

ftp tabdemo.larc.nasa.gov

or

ftp 128.155.24.42

 Step 2

When prompted for the username, type

anonymous

 Step 3

Type the user’s e-mail address as the password.

 Step 4

cd incoming

 Step 5

cd Rumsey

 Step 6

get cfl3dv5.ascii

or

get cfl3dv5.codeonly.ascii

To obtain the current keyword needed to decode the source files, send mail or e-mail to
Dr. Christopher L. Rumsey (see page4) requesting the code, along with an explanation
describing the planned usage of the code. Include a FAX number with the request. All
users will be asked to fill out and sign a CFL3D Usage Agreement form. After the com-
pleted form is received, the keyword will be provided.

After obtaining CFL3D, it is required that the user remember not to distribute any part
of the code to others outside of his or her own working group without prior permission

CFL3D User’s Manual 9

2.1.1 The Code and Supplementary Files

from NASA Langley. The CFL3D code is currently restricted to use within the United
States only.

 2.1.1The Code and Supplementary Files

The items listed below are made available to the user when CFL3D is obtained. The
names inbold face indicate a directory.

The CFL3D code consists of one main driver subroutine package,cbsem.f, and six
sets of library subroutines,bc.f, rhs.f, af3f.f, lbcx.f, turbs.f, and dynptch.f.
Cbsem.f contains the main subroutine (mgblk) of the program as well as many of the rou-
tines needed for the input and output of information. The filebc.f contains the boundary
condition subroutines, including physical boundary conditions, 1-1 blocking, and grid
embedding. It also contains the necessary routines for processing supplemental over-
lapped-grid and static patched-grid interpolation information.Rhs.f contains the subrou-
tines needed for solving the right-hand side of the governing equations, whileaf3f.f
contains the subroutines needed for calculating the left-hand side of the governing equa-
tions. (See AppendixA.) Lbcx.f contains a variety of subroutines, including those needed
for multigrid and mesh sequencing, those providing the metrics and other grid informa-
tion, those involved with computing the forces, and several others. The fileturbs.f con-
tains the turbulence models subroutines. Finally, dynptch.f contains the subroutines
needed for dynamic grid patching.

Some supplementary files are also needed for CFL3D. A “makefile” is used to compile
and link subroutines and to create an executable for the code. A preprocessing program
called precfl3d.f is used to determine the memory and array dimensions needed by
CFL3D for a particular case. For precfl3d.f, usemakeprecfl3d_machinename. Here,
and in the discussions that follow, the terms in italics pertain to user-specific items. For

2dtestcases isrcheq_wkstn.f makeprecfl3d_hp_sngl

3dtestcases lbcx.f makeprecfl3d_rs6000

Advice makecfl3d_cray makeprecfl3d_sgi

Maggie makecfl3d_decalpha makeprecfl3d_sgi_R10000

Multitask_cray makecfl3d_hp_dbl makeprecfl3d_sgi_R8000

README makecfl3d_hp_sngl makeprecfl3d_sun

Ronnie makecfl3d_rs6000 plot3d_hp_dbl.f

Tools makecfl3d_sgi precfl.h

af3f.f makecfl3d_sgi_R10000 precfl3d.f

bc.f makecfl3d_sgi_R8000 rhs.f

cbsem.f makecfl3d_sun second_hp_dbl.f

cvmgt_wkstn.f makeprecfl3d_cray second_rs6000.f

dynptch.f makeprecfl3d_decalpha second_wkstn.f

input.doc makeprecfl3d_hp_dbl turbs.f

CHAPTER 2 Getting Started

10 CFL3D User’s Manual

instance,machinename might becray, sgi, or sun for the Cray supercomputer, SGI, and
Sun workstations, respectively. Precfl.h is the parameter file required by this makefile.
The array dimensions set inprecfl.h should be large enough for nearly any problem and
should rarely need modification; if a larger value of a particular parameter is required,
precfl3d will stop and request the user to increase the relevant parameter.

A makefile calledmakecfl3d_machinename is also needed to compile and link the
CFL3D subroutines and create the executable,cfl3d. Several files are needed to compile
the code on workstations. These files contain Fortran source code for the corresponding
Cray intrinsic functions. For instance, when utilizingmakecfl3d_rs6000, make sure that
second_rs6000.f is available. Likewise, when usingmakecfl3d_hp_dbl, make sure that
plot3d_hp_dbl.f andsecond_hp_dbl.f are in the working directory. Note that for dou-
ble precision on the HP, the user must actuallyremove the subroutinesplot3d, plot3c,
and plot3t from cbsem.f prior to compiling withmakecfl3d_hp_dbl. For all other
makecfl3d makefiles,cvmgt_wkstn.f, isrcheq_wkstn.f, andsecond_wkstn.f are uti-
lized and therefore must be available. (Note thatwkstn is short for “workstation”.)

 The fileinput.doc contains the information found in Chapter3. It is a listing and
description of the input parameters used in CFL3D.

The files in directory2dtestcases are:

The files in directory3dtestcases are:

Directory 2dtestcases contains various two-dimensional test cases. A patching
example involving the NACA 0012 airfoil is located in0012_patch. In 0012_xmera, a
case utilizing grid overlapping for the same airfoil is found. A three-element airfoil case
involving grid overlapping is set up inMultielem. Directory Rae10 contains a single
block case for the RAE 2822 airfoil.Flatplate contains the files needed to run the flat
plate test case. A multistream nozzle case is inMultistream. In Vibrate are the files for
a vibrating plate case. A rotor-stator case is set up inRotor.

The three-dimensional test cases are located in the directory3dtestcases. A case
solving the flow over an axisymmetric bump is inAxibump. Other cases currently available
are for a delta wing (inDelta), an F-5 wing (inF5wing), and an Onera M-6 wing (in
Oneram6). The steps for running these test cases are described in Chapter9.

0012_patch Flatplate Rae10

0012_xmera Multielem Rotorstator

README.2d Multistream Vibrate

README.3d Delta Oneram6

Axibump F5wing

CFL3D User’s Manual 11

2.1.1 The Code and Supplementary Files

The files in directoryAdvice are:

The first four files contain the same information given in Chapter10 and in "CFL3D
Papers" on page337. Thev4_to_v5.inputdif file describes the differences between the
Version 4.1 and Version 5.0 input files. (This information is also given in AppendixK.)

The files in directoryMaggie are:

The files in theMaggie directory are needed for cases involving grid overlapping. The
chimera scheme code is calledmaggie.f. Maggie.doc explains the input parameters for
maggie.f. Makefiles for various machines are available and requiremag1.h, which con-
tains the appropriate dimensions for the problem at hand. Make sureismax_wkstn.f,
ismin_wkstn.f, andsecond_wkstn.f are available before running MaGGiE on a work-
station.

The files inMultitask_cray are:

These files should be used in conjunction with the standard CFL3D files when Cray
multitasking is desired.

The files in directoryRonnie are:

When utilizing grid patching, the files in theRonnie directory are needed. The code
that sets up the patching interpolation stencils is calledronnie.f. Ronnie.doc explains
the input parameters forronnie.f. Makefiles for various machines are available and uti-
lize ron1.h in the compilation. The user must set the parameters inron1.h for each par-
ticular case. Also, make suresecond_wkstn.f is available before running ronnie on a
workstation.

cfl3dadvice.give cfl3d.references v4_to_v5.inputdif

cfl3dadvice.grid cfl3d.turb.references

README maggie.doc makemaggie_sgi

ismax_wkstn.f maggie.f makemaggie_sun

ismin_wkstn.f makemaggie_cray second_wkstn.f

mag1.h makemaggie_hp_sngl

README makecfl3d_cray_multi xlim_multi.f

fhat_multi.f tinvr_multi.f

README makeronnie_sgi ronnie.f

makeronnie_cray makeronnie_sun second_wkstn.f

makeronnie_decalpha ron1.h

makeronnie_hp_sngl ronnie.doc

CHAPTER 2 Getting Started

12 CFL3D User’s Manual

The files in theTools directory are:

These programs are useful for converting files from one format to another. The code
everyother.f takes an existing CFL3D-type grid and coarsens it by taking every other
grid point. Theeveryotherp3d.f program performs the same task for PLOT3D-type
grids. The filehistorytec3d.f reads in the residual history file and creates a correspond-
ing Tecplot4 file. It will also convert iterations to work units if desired. Themake1to1.f
program assists in the creation of the boundary condition and one-to-one blocking sections
of the input file. The p3dtotec3d.f tool (along with p3dtotec3d_pre.c and
make_p3dtotec3d_cray) creates a Tecplot file from PLOT3D grid and solution files. The
reverseijk.f code reads a CFL3D-type grid file, swaps indices (as desired), and writes
out a new CFL3D-type grid file. Thev4tov5_input.f tool takes a Version 4.1 input file
and converts it to Version 5.0 form. Thev4tov5_restart.f tool converts a Version 4.1
restart file to Version 5.0 form. Finally, v5inpdoubhalf.f takes an existing input file and
creates a new input file with either double or half the grid points of the original.

2.2Obtaining a Grid File

The first step in solving a CFD problem is obtaining a grid. A pre-packaged tool such
as GRIDGEN36 could be used to create a grid, or perhaps a user-written program could be
used for relatively simple configurations. How ever the grid is obtained, an essential step
toward success with CFL3D will be having the grid file written in CFL3D or PLOT3D/
TLNS3D format. See “Grid File” on page65 for the appropriate formats for the file. Time
can also be saved at this point by considering what options will be desirable later. For
example, since the use of multigrid is highly recommended, choose grid dimensions
wisely. See “A Word About Grid Dimensions” on page127. If viscous cases will be run,
make sure the grid spacing normal to the wall in the boundary layer is fine enough. At
least 20 grid points are recommended in alaminar boundary layer. At least 3 points are

recommended in the laminar sub-layer of aturbulent boundary layer (of first grid point

off the wall should be). Basically, consider how the problem will be solved and
choose dimensions, blocking strategies, grid-line stretching, etc., accordingly.

2.3Creating the Input File

Chapter3 lists and describes all the parameters in the input file. The easiest way to cre-
ate an input file for a particular case is to copy the input file from the test case (see

README make1to1.f reverseijk.f

everyother.f make_p3dtotec3d_cray v4tov5_input.f

everyotherp3d.f p3dtotec3d.f v4tov5_restart.f

historytec3d.f p3dtotec3d_pre.c v5inpdoubhalf.f

y
+

O 1()

CFL3D User’s Manual 13

2.4 Utilizing Patched and/or Overlapped Grids

Chapter9) most resembling the case at hand. Then change those parameters that pertain to
the current case. The other parameters should already be set to the recommended values.
Besides the test case sample inputs, some input examples for 1-1 blocking and grid
embedding are provided in Chapter6 and several input examples for multigrid, mesh
sequencing, and grid embedding are provided in Chapter7. CFL3D provides additional
help in setting up the input file with an extensive set of diagnostics which halt execution at
detectable errors and provide the user with a message indicating the problem.

2.4Utilizing Patched and/or Overlapped Grids

When using patched and/or overlapped grids, the files containing the appropriate inter-
polation coefficients must be obtained prior to running CFL3D. The preprocessors ronnie
and MaGGiE11 will generate the needed coefficients for patched grids and overlapped
grids, respectively, and will output the interpolation information in the format needed by
CFL3D. Information on using ronnie and MaGGiE can be found in theronnie.doc and
maggie.doc files, respectively. The preprocessorprecfl3d, which sets all the array size
parameters needed by CFL3D, will need the appropriate patch and/or overlap data files in
order to properly size the arrays needed for these options. Therefore, be sure to run ronnie
and/or MaGGiEbefore runningprecfl3d.

 2.4.1Runningronnie

When utilizing the grid patching option of CFL3D, the preprocessor ronnie must be
run first. The basic steps for running this code are as follows.

 Step 1

Prepare an input deck, typically calledronnie.inp, for the case. Also, modify the header
file ron1.h as needed.

 Step 2

Use the makefile to compile, link, and create the executable for the ronnie code (be sure
ron1.h is in the current directory):

 make -f makeronnie_machinename

 Step 3

Run the ronnie code:

 ronnie < ronnie.inp

If successful, ronnie will create a file containing patch interpolation data. The name of the
patch file is specified by the user in the input file; it is typically calledpatch.bin.

CHAPTER 2 Getting Started

14 CFL3D User’s Manual

 2.4.2RunningMaGGiE

If grid overlapping is used in some portion of the grid configuration, then the prepro-
cessor MaGGiE must be utilized. The basic steps for running this code are as follows.

 Step 1

Prepare an input deck, typically calledmaggie.inp, for the case. Also, modify the header
file mag1.h as needed.

 Step 2

Use the makefile to compile, link, and create the executable for the MaGGiE code (be sure
mag1.h is in the current directory):

 make -f makemaggie_machinename

 Step 3

Run the MaGGiE code:

 maggie < maggie.inp

If successful, MaGGiE will create a file containing overlap interpolation data. The name
of the overlap file is specified by the user in the input file; it is typically calledovrlp.bin.

2.5RunningCFL3D

The basic steps for running CFL3D are as follows. Remember, if using grid patching
and/or grid overlapping, run ronnie and/or MaGGiE before proceeding with the following
steps.

 Step 1

Compile, link, and create the executable for theprecfl3d.f code. Make sure the param-
eter fileprecfl.h is available.

make -f makeprecfl3d_machinename

The resulting executable will be calledprecfl3d.

 Step 2

Runprecfl3d.

precfl3d < inputfilename

Theinputfilename here is the CFL3D input file name. Detailed diagnostic information
is printed out in the fileprecfl3d.out. Most items in the input deck will be checked for

CFL3D User’s Manual 15

2.5 Running CFL3D

consistency. However, sinceprecfl3d does not read in the grid file, it cannot detect grid
problems and, most importantly, it cannot detect ordering errors in the 1-1 block inter-
faces. Check the output from CFL3D itself to verify that 1-1 block interfaces are set cor-
rectly. If precfl3d has not run successfully, then the most likely cause is an error in the
input file; precfl3d echoes the input file as it goes along, so check the bottom of
precfl3d.out to determine the approximate location of the input error. A successful exe-
cution ofprecfl3d will have one of the following lines at the end of the output file and
print to the screen:

you *MUST* recompile cfl3d

or

you do not need to recompile cfl3d

When the code has run successfully, there will be no further need for this program until a
new input file is developed.

Running precfl3d will either create or modify the parameter files,cfl1.h, cfl2.h,
cfl3.h, cfl4.h, andcfl5.h, which are used when compiling CFL3D. Remember that
these filesare case dependent. Therefore, another case will generally require that
precfl3d be run again and CFL3D recompiled.

 Step 3

Compile, link, and create the executable for CFL3D.

make -f makecfl3d_machinename

The executable will be calledcfl3d.

 Step 4

Runcfl3d. This step can be performed interactively or a submittal file can be utilized
to send the case to a particular queue of the machine being used.

cfl3d < inputfilename

Users have been known to submit cases for large numbers of iterations on the first run
only to discover that an input parameter was set incorrectly. It is wise to begin running
CFL3D with only a few iterations and then check the output. Look over the main output
file. Make sure there are no warning messages and that, in general, it “looks right” for the
particular case being run. Take the PLOT3D files to a Silicon Graphics (or compatible)
workstation and check any block boundaries to see if the flow is passing from block to
block as expected.Then submit the case for a more extensive computation.

CHAPTER 2 Getting Started

16 CFL3D User’s Manual

