FIRE Plasma Facing Component Design Activities

NSO Physics Validation Review Meeting

Mar, 2004

Presented by Dan Driemeyer *The Boeing Company* Contributions from Chandu Baxi *General Atomics*

3/30/2004

DED-1 FIRE Plasma Facing Components

Presentation Outline

U.S. Industrial Team

Component sizing and thermal performance assessments

Divertor component redesign into single module

- New outer divertor configuration
- New baffle configuration (actively-cooled)
- Inner-divertor configuration (actively cooled)

Halo-current / Disruption loading assessments

Remote handling assessments

Remaining conceptual design issues

3/30/2004

Current FIRE Divertor Configuration

U.S. Industrial Team

- 16 upper and lower modules combining inner divertor, outer divertor and baffle into single unit
- Build on design/fabrication approaches developed during ITER-EDA
- W-brush armor on divertor components and plasma-sprayed Be for first wall tiles
- Individually-tested Cu-alloy finger elements for high heat flux outer target
- Concentric cooling channel arrangement in outer divertor fingers eliminates water pipe loops at upper pumping slot end
- Gun-drilled channels in formed CuCrZr plate construction for lower heat flux baffle and inner divertor
- Combined modular unit for simple invessel remote handling operations during maintenance

All Components Actively Cooled by Horizontal Port Concentric Pipe Feed

Revised Divertor Design Improves <u>Remote Handling and Vacuum Pumping</u>

U.S. Industrial Team

CY'01 Configuration

(Three Separate Components)

CY'03 Configuration

(Single Combined Module)

BOEING

New Outer Divertor Design Concept

U.S. Industrial Team

- 22 CuCrZr finger elements with W-brush armor, attached to back plate using sliding U-channel and laser welds
- Direct HIP-bond fixtured W-rods or EBweld prefab brush with PS-Cu layer
- HHF cycle finger elements to verify armor joint prior to integration

22 CuCrZr Fingers with W-Brush Armor Single 28-mm dia Concentric Cooling Channel with Helical fins for CHF enhancement

- SS316LN back plate for structural support with machined/gun-drilled channels for cooling / manifolding
- Coolant supplied using concentric pipe feed down divertor ports
- Attached to vessel using sliding shear pins through interweaving lugs

Details of Backplate Design

U.S. Industrial Team

- Finger elements slide into machined Uchannels on upper section of back plate
- Cooling connections welded after tube stubs engage machined holes on lower section of plate
- Laser weld lower section structural attachments after cooling welds verified

- Machined and gun-drilled channels for cooling / manifolding
- Welded cover plates close out machined cross channels
- Weld final vessel attach features inplace after cover plate welding

3D Views of New Outer Divertor <u>Finger Plate Configuration</u>

Tungsten Brush Surface Fabrication Demonstrated

DED-7

- Internal Geometry of Outer Divertor Finger Plate
 - Arrows Show Coolant Flow Paths
 - Y = 2.5 Helical Fins in Upper Part of Outer Channel
 - Sliding upper section attachment allows for differential thermal expansion during HHF operation
 - Laser welded lower attachment provides positive location and disruption load response

BOEING

Typical Configuration for Actively-Cooled Finger Elements

U.S. Industrial Team

Outer Divertor Unit Cell 9 MW/m²

Gundrilled CuCrZr Finger Plate y=2.5 Helical Fins 5 m/s, 30°C, 1.5 MPa Welded Cu Cover Plate SS-316 Gun-Drilled CuCrZr Bar Extruded Tube Insert with Brush Helical Fin

FIRE Plasma Facing Components **© GENERAL ATOMICS**

A BOEING

3/30/2004

Baffle and Inner Divertor Component

U.S. Industrial Team

BOEING

Unit Cell Sizing for Actively-Cooled Outer Divertor and Baffle

U.S. Industrial Team

FIRE Plasma Facing Components

Baffle Unit Cell

GENERAL ATOMICS

Coolant Flow Paths and Manifolding in Backplate and Baffle Structures

Finger Element Coolant Supply Path

U.S. Industrial Team

Outer Divertor Flow Parameter Summary

U.S. Industrial Team

Outer Divertor Power Balance and Flow Parameters for FIRE

Overall Power Balance

Fusion Alpha Power	30 MW
Auxiliary Heating Power	30 MW
Total Plasma Power	60 MW
Power Fraction Radiated	33%
Power Fraction to Inner Divertor	20%
Power Fraction Radiated in SOL	20%
Power to Inner Divertor	6.4 MW
Power to Outer Divertor	25.6 MW
Power to Baffle	8.0 MW
Number Modules (Upper & Lower)	32
Channel Flow Rate	5.0 m/s
Single Pass Mass Flow Rate	16.6 kg/s
Calculated Pressure Drop (Darcy)	0.156 MPa
L/D Equivalent for U-bend	100

Channel Length (50% with Fins)		700.00	mm
Annular Flow Area (Fin Reduction	on)	151.36	mm2
Total Fusion Power		180.00	MW
Nominal Pressure Drop (Half ITE	ER VT)	0.09	MPa
Number Channels per Finger		1.00	
Fingers in Divertor Module		22.00	
Density		1.00	kg/liter
Viscosity		0.0010	kg/m-s
Specific Heat		4.17	kJ/kg-K
Inlet Saturation Temp	Tsat	197.8	°C
Reynolds Number	Re	6,375	
Equivalent Channel Diam	De	1.22	mm
Wetted Flow Perimeter	Pe	496.1	mm
Friction Factor (Darcy)		0.0319	
· · · · · · · · · · · · · · · · · · ·			

		1	2
1.5 MPa	Divertor Module Parameter	Pass	Passes
Inlet	Avg Power to Module (MW)	0.80	0.80
Pressure	Peak Power to Module (MW)	1.73	1.73
Case	Number Cooling Channels	22	22
	Cooling Channel Dia (mm)	28.0	28.0
	Flow Area, 3 fins, 2-mm (mm ²)	151.4	151.4
	Water Flow Velocity (m/s)	5.0	5.0
	Module Flow Rate (liter/s)	16.6	8.3
	Water Inlet Temperature (°C)	30	30
	Inlet Pressure (MPa)	1.5	1.5
	Pressure Drop (MPa)	0.156	0.31
	Exit Pressure (MPa)	1.34	1.19
	Exit Saturation Temp (°C)	192.1	186.3
	Nominal Temp Rise (°C)	11.5	23.0
	Nominal Exit Temp (°C)	41.5	53.0
	Nominal Exit Subcooling (°C)	150.6	133.3
	Maximum Temp Rise (°C)	24.9	49.7
	Maximum Exit Temp (°C)	54.9	79.7
	Min Exit Subcooling (°C)	137.3	106.6
	Combined Inlet flow velocity (m/s)	3.8	2.1
	Inlet pipe ID (mm)	80.0	80.0
	Coaxial pipe OD (mm)	124.8	124.8

34-mm

Concentric Channel Info

- 28.0 OID
- 24.0 IOD
- 21.0 IID
- 346.4 Inner Area
- 151.4 Annular Flow Area
 - Includes 3-2mm fins
- 2.2 m/s Inner Flow Velocity
- 1.2 m/s Exit Section Velocity

Coolant Supply Flow Areas

BOEING

5026.5 Inner Area 5277.9 Outer Area

Component Coling Assessment Summary

- 1			
	Parameter	Outer Divertor	Baffle
	Total Power (MW)	25.6	3.4
	Peak Power/module (MW)	1.73	0.54
	Peak Heat Flux (MW/m^2)	9.0	4.0
	Nuclear heating in W (W/cm^3)	42	34
	Nuclear heating in Cu (W/cm^3)	16	13
	Channel Diameter (mm)	2 Annular	· 8
	Pitch (mm)	35	14
	Channelsper module	22	44
	Channels in series	1	2
	Enhancement	Fin 2 mm,Y=2.5	None
	Maximum PFC Temp (C)	tbd	tbd
	Maximum Copper Temp (C)	tbd	tbd
	Flow velocity (m/s)	5	2
	Flow/module (liter/s)	16.6	2.2
	Inlet/Max Exit Temperature (C)	30/55	30/32
	Pressure Drop (MPa)	0.2	0.02
	Exit Pressure (MPa)	1.3	1.48
	Exit Subcooling (C)	137	165
	Critical Heat Flux (MW/m)	tbd	tbd
	Maximum Wall Heat Flux MW/m^2)	tbd	tbd

GENERAL ATOMICS
 GENERAL ATOMICS

Many Elements of FIRE Divertor Fabrication Demonstrated on ITER

U.S. Industrial Team

- W-brush joining and helical wire integration for CHF enhancement
- Cu-alloy gundrilling, machining, and EBwelding for HIPping and coolant manifold closeout operations

Cu-SS transition joints using inertial welding or HIP bonding

SS back plate machining and automated closeout welding procedures using PE-flux

FIRE Plasma Facing Components

Divertor Module Removal Sequence

U.S. Industrial Team

1. Cut concentric cooling pipes, Remove upper inboard FW tiles, Disengage outer pins

3. Pivot to align vee side with midplane port opening

2. Raise module to disengage inner wall stubs, Rotate slightly to clear stubs and lower

4. Rotate to clear midplane opening and remove

