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Abstract 

Because of their simplicity and low computational cost, discretizations based on pixels 

have held sway in remote sensing since its inception. Yet functional representations are 

clearly superior in many applications, for example when combining retrievals from 

dissimilar remote sensing instruments. Here, using cloud tomography as an example, we 

show that a point-function discretization scheme based on linear interpolation can reduce 

retrieval error up to 40% compared to a conventional pixel scheme. This improvement is 

particularly marked because cloud tomography, like the vast majority of remote sensing 

problems, is ill-posed and thus a small inaccuracy, such as discretization error, can cause 

a large error in the retrievals.  
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1. Introduction 

Discretizations based on pixels have held sway in remote sensing since its inception. 

They have shown many disadvantages as earth observations are relying more and more 

on multi-sensor data (a single instrument usually does not convey enough information to 

accurately retrieve the desired parameters). For example, the NASA EOS A-train 

satellites carrying many dissimilar sensors (active vs. passive, different instantaneous 

field of view, etc.) have provided unprecedented data for comprehensive studies of Earth 

weather and climate (Stephens et al., 2002). In the pixel framework, the mismatch of 

pixel sizes used in various satellite products poses many challenges for data integration. 

Another example is using multiple ground instruments to measure atmospheric properties, 

e.g., a microwave radiometer and a radar with different antenna beam widths. The 

dissimilar ground instruments actually view cones of different apex angles; thus 

rectangular pixels are not a natural match to the cones and unavoidably introduce some 

artifacts.  

 Furthermore, the inverse problems of remote sensing are often ill-posed, making 

the retrieval sensitive to small inaccuracies such as discretization errors. The 

discretization errors will be magnified in the numerical inversion procedure, making the 

retrieval even more inaccurate (Bockman, 2000). Superficially, it would seem that 

discretization error could be reduced by using smaller grids/pixels, but in practice this 

may not improve the retrieval. This is because finer grids lead to a larger number of 

unknowns, thus a higher dimension in the involved inverse problem, which in turn makes 

the inverse problem more ill-posed and thus the retrieval more sensitive to perturbations 

(Hansen, 1998). The tradeoff between discretization and ill-posedness limits the ability of 
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remote sensing techniques to resolve the desired variables at small spatial scales. The 

interweaving issue of ill-posedness and discretization needs to be addressed in order to 

improve the retrieval.  

Functional representations would work better for the above issues than the widely 

used pixel scheme. With a functional representation, satellite images can be sampled at 

any resolution and thus can overcome the problem of resolution mismatch between 

different satellite products. Although regularization techniques using a priori knowledge 

of the retrieval can reduce the retrieval sensitivity to perturbations (Twomey, 1977), 

functional representations can further help the interweaving issue of ill-posedness and 

discretization. The variable to be retrieved is expressed as a superposition of some 

prescribed basis functions (usually orthogonal empirical functions derived from historical 

measurements, or functions such as the Fourier basis and polynomials). Then the only 

unknowns are the coefficients for each basis function; in this way the discretization error 

can be reduced without increasing the dimension of the retrieval problem.  

Unfortunately, the measurements needed to specify the basis functions 

empirically are unavailable in many applications. And familiar but arbitrary basis 

functions like the Fourier set may be inappropriate. The objective of this paper is to 

develop a functional discretization scheme, called point-function discretization, through 

which a continuous variable is approximated by interpolating over the whole domain 

based on a set of point values. Microwave cloud tomography is then used as an example 

to show that the point-function discretization scheme can be integrated into a 

regularization algorithm to reduce the discretization error and thus improve the retrieval. 
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2. Pixel and point-function representations 

Remote sensing retrieval problems can generally be formulated as: deriving the 

distribution of some desired variable x(r) within a domain Ω from the set of remote 

sensing measurements {bi}. In many applications, the problem can be reduced to solving 

a set of Fredholm integral equations of the first kind: 
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where ai(r) is a kernel function representing the forward operator that relates the desired 

variable x(r) to the measurements {bi}.  
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The inverse problem now is to find the nodal values x(ej) from which the solution 

everywhere in the domain Ω can be derived by the interpolation rule (2).  
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  Different choices of the basis functions lead to different discretization models. 

This is illustrated as follows. Let ej be the nearest node to an arbitrary location r.  Setting 

the basis to be the Kronecker delta function, i.e., w(r, ei)=w(ej, ei)=δij, assures that x(r) 

takes the same value in the box of size d centered at ej. Hence choosing the Kronecker 

delta function as the basis coincides with the conventional pixel scheme.  

Replacing the Kronecker delta function with localized linear interpolation 

functions, we get our point-function discretization model. Let (rx, ry) and (ei
x, ei

y) denote 

the coordinates of point r and node ei in the two-dimensional case, we define the basis 

function as the bi-linear interpolation function: 
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We call the basis function defined by Eq. (3) “the pyramid basis” because it actually 

looks like a pyramid when plotted in the three-dimensional space. 

With the basis functions specified by Eq. (3), substituting Eq. (2) into in Eq. (1) 

leads to: 
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Rewrite Eq. (4) as a matrix equation: 
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measurements. Hereby, the retrieval problem now reduces to solving the matrix equation 

(5) for a set of point values and then interpolating the point values for the desired 

variables in the entire domain.  

 

3. Application to microwave cloud tomography 

3.1 Cloud tomography and modified DSCNNLS 

Cloud tomography is a method for retrieving 3D distributions of the cloud liquid 

water content (LWC) from radiometric data (Warner et al., 1985; Warner and Drake, 

1986; Twomey, 1987). This method involves measuring the microwave cloud emission 

from a multiplicity of different directions by a single airborne or several ground-based 

radiometers, and inverting the resulting radiometric data for the LWC distribution by 

numerical procedures. The tomographic retrieval problem is highly ill-posed especially 

when only a few ground-based radiometers are used, as shown in Huang et al.(2008a). 

Regularization techniques that use various types of prior knowledge to constrain the 

retrievals are necessary to reduce this sensitivity. The Double-side plus Smoothness 

Constrained Non-Negative Least Squares (DSCNNLS) algorithm capable of using 
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several types of constraints significantly improved the cloud tomography retrievals 

compared to the standard least squares method (Huang et al., 2008b). 

The conventional pixel scheme, in conjunction with the ill-posedness of the 

retrieval problem, produces unfavorable artifacts in the tomographic retrievals (Scales et 

al., 1990; Delprat-Jannaud and Lailly, 1993). Operational microwave antennas do not 

have an infinitesimal beam width. As illustrated in Figure 1, four radiometer with 

different beam widths are actually viewing cones of different apex angles centered 

around the nominated rays. Considering the geometric mismatch, it is thus not surprising 

that dividing the retrieval space into rectangular boxes will introduce artifacts in the 

tomographic retrieval. Moreover, some rays graze a pixel through its corner such that the 

path lengths of these rays in this pixel are very small, and so carry little information about 

this pixel. This will directly result in artifacts in the retrieval. 

To test the capability of the point-function discretization scheme, we select two 

very different cloud cases: a stratocumulus and a broken cumulus . Both cases are 5 km 

wide and 1.5 km high snapshots from a large eddy simulation model (Ackerman et al., 

1995). Four simulated radiometers of 0.3 K noise level and 2-degree beam width are 

spaced equally along a line of 10 Km on the ground. Each radiometer scans the upper 

plane within 80o elevation of zenith at an 0.35o increment and this scanning strategy 

results in a total of 900 rays intersecting the 5 km by 1.5 km domain. The brightness 

temperature data for each ray are computed based on a radiative transfer equation and a 

prescribed antenna response function (Huang et al., 2008a). 

Using Eqs. (2-5), we then replace the pixel discretization scheme implemented in 

the original DSCNNLS algorithm with the point-function discretization scheme to handle 
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the interweaving issue of ill-posedness and discretization. With its ability of using 

various constraints, the DSCNNLS algorithm enables us to improve the ill-conditioned 

kernel matrix and thus to better separate the discretization effect from the ill-posedness 

effect. The modified DSCNNLS algorithm is used to retrieve the LWC values on a set of 

30 by 30 points from the simulated brightness temperatures . The resulting point values 

are then interpolated using Eq. (2) to obtain the cloud water distribution in the 5 km by 

1.5 km domain.  

 

3.2 Examination of discretization error and ill-posedness 

Here, the capability of the pixel and point-function discretization schemes to 

approximate the true images is quantified by root mean squared (rms) error, computed by 

re-sampling the discretized image back to the resolution of the true image and then 

calculating the root mean squared pixel-wise difference between the two images. While 

the ill-posedness of the underlying problems is characterized by the condition number of 

the corresponding kernel matrix A, which is the ratio of  the maximum to minimum 

singular values. Figure 2 shows an example of the true cloud images and the 

corresponding discretized images from the pixel and point-function discretization 

schemes using a total of 900 pixels or points. The point-function discretization scheme 

produces more realistic approximations than the conventional pixel scheme; the rms 

errors of the pixel and the point function schemes are 0.055 gm-3 and 0.025 gm-3 for the 

stratocumulus cloud, 0.067 gm-3 and 0.040 gm-3 for the broken cumulus cloud. Note that 

the discretized images are obtained by either aggregating the true images (for the pixel 

scheme) or minimizing the rms difference between the true and discretized images (for 

the point-function discretization scheme).  
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The accuracy of a discretized approximation to a continuous field depends on the 

smallest scale that the discretization scheme can resolve. This scale is usually determined 

by the total number of coefficients (pixels, points, or spectra) used in the discretization 

scheme. With the same number of coefficients, the point-function discretization scheme 

significantly better approximates the cloud images than the pixel scheme: the rms error of 

the point-function discretization scheme is about 60-80% of that of the pixel scheme 

(from 25 to 900 pixels or points); with less than 25 coefficients neither scheme works 

well while for more than 1600 pixels or points both schemes work well (Figure 3a). In 

contrast, the condition number of the pixel scheme agrees well with that of the point-

function scheme in the whole spectrum (Figure 3b, very high order singular values would 

be numerically unstable and thus the condition numbers were not calculated when the 

number of pixels or points is more than 900). Note that a larger condition number means 

a more ill-posed retrieval problem. Furthermore, figure 3 reveals the mixed consequences 

of using finer discretization: the discretization error unsurprisingly decreases when more 

pixels or points are used (Figure 3a), while the condition number increases with finer 

discretization (Figure 3b). This confirms that discretization error and ill-posedness of the 

involved retrieval problem trade-off against each other and thus using finer discretization 

may not improve the retrievals. 

 

3.3 Retrieving results  

The reduction of discretization error by the point-function discretization scheme is 

expected to improve the retrieval as well. Figure 4 shows the true and retrieved LWC 

distributions for the two cloud cases obtained by using the pixel and point-function 

discretization schemes. Although the retrieved images using the pixel scheme reasonably 
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capture the spatial patterns of the original images, they surfer from some noticeable 

artifacts. For the first cloud case, some spurious cloud pieces appear below the cloud base 

and over the cloud top (Figure 4, the middle plate on the top). Furthermore, the scattered 

clouds below the cloud base are arranged along several lines approximately 20° and 40° 

off the nadir, which indicates the discretization artifacts. For the broken cumulus cloud 

case, the retrieved image shows more pieces of clouds compared to the true image 

(Figure 4, the middle plate at the bottom). The shape of the cloud patches is not realistic 

compared to the true image as well. In contrast, the retrieval using the point-function 

discretization scheme preserves much more features of the original images. The spurious 

cloud patches disappear in the images retrieved with the point-function discretization 

scheme for both the stratocumulus and the broken cumulus cases. The geometrical shape 

of the clouds is also better reproduced with the point-function discretization scheme than 

that retrieved with the conventional pixel scheme.  

For both cloud cases, the retrieval errors corresponding to the point-function 

discretization scheme are reduced up to 40% compared to those of the pixel scheme, 

namely, 0.105 gm-3 and 0.069 gm-3 for the stratocumulus cloud case, 0.076 gm-3 and 

0.049 gm-3 for the broken cumulus cloud case.  

 

4. Concluding remarks 

A point-function discretization scheme that approximates continuous distributions based 

on values over a set of points and predefined linear interpolation functions is developed 

as a replacement for the conventional pixel scheme. We first demonstrate that the point-

function discretization scheme can significantly reduce discretization error compared the 
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pixel scheme when the same number of unknowns are used for each discretization 

scheme. The utility of the new point function discretization scheme for ill-posed remote 

sensing problem is then illustrated with the example of cloud tomography, which 

involves probing clouds from multiple beams of same or different beam widths and 

inverting the resulting multi-angular data. The point-function discretization scheme is 

integrated into a regularization algorithm (i.e., DSCNNLS) to handle the interweaving 

issue of ill-posedness and discretization found in the practice of cloud tomography. Both 

the visual inspection and quantitative comparison show that this integrated algorithm 

substantially improves the tomographic retrieval, reducing the retrieval error by up to 

40%. 

The point-function discretization scheme indeed has many advantages. With the 

point-function scheme, the remote sensing retrievals can be sampled at any resolution, 

while with the pixel scheme they can only be coarsened in quantum jumps. This becomes 

important for synergetic retrieval from dissimilar remote sensing sensors, each sampling 

at a different resolution, or even worse the resolution difference being range-dependent 

due to conical beams; in this case, with the point-function representation, one can sample 

one instrument at the resolution of the other, or sample both at a new resolution. 
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Figures 

 
 
Figure 1. Discretization artifacts of the pixel scheme when using four ground radiometers 
of different antenna beam widths. The four microwave radiometers are placed on the 
ground, each 3.33 Km apart. The sampling volume of each radiometer measurement is a 
cone around the nominate ray and the apex angle of the cone is the beam width. The 5 km 
wide 1.5 km high domain contains a stratocumulus cloud and is divided into 6x6 pixels. 
Note that some rays intersect a pixel through its corner, e.g., ray A in pixel 13 and ray B 
in pixel 18. The brightness temperatures measured along A and B are close to that of a 
clear sky. The resulting tomographic retrieval would yield very little liquid water in 
pixels 13 and 18, which is apparently not true. 
 



- 14 - 
 

 

True field Pixel scheme Point-function scheme 
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Figure 2. The best approximations to two different cloud cases using the pixel and the 
point-function discretization schemes with 30x30=900 coefficients (pixels or points):  a 
stratocumulus (top), and a broken cumulus (bottom). The rms errors of the pixel and 
point-function schemes are respectively 0.055 gm-3 and 0.025 gm-3 for the stratocumulus 
cloud. The errors are 0.067 gm-3 and 0.040 gm-3 for the broken cumulus. 
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(a) (b) 

  
 
 
Figure 3. Illustration of the trade-off between discretization error and ill-posedness of the 
cloud tomography retrieval problem using the stratocumulus cloud shown in Figure 1. 
Discretization error is quantified by the rms error, while ill-posedness of the retrieval 
problem is characterized by the condition number of the corresponding kernel matrix A. 
The discretization errors of the pixel and the point-function discretization schemes 
decrease (a), but the corresponding condition numbers increase (b), with increasing 
number of pixels or grid points. When the number of points equals the number of pixels, 
the rms error of the point-function discretization scheme is much lower than that of the 
pixel scheme, which suggests that the point-function scheme better approximates the 
stratocumulus cloud than the pixel scheme. 
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Figure 4. The retrieved images using the pixel and the point-function discretization 
schemes for the two cloud cases (also shown in Figure 2). The cloud tomography 
simulations use four ground-based microwave radiometers of 0.3 K noise level and 2-
degree beam width to obtain a total number of 900 rays. The Double-side plus 
Smoothness constrained Non-Negativity Least Squares (DSNNLS) algorithm is used to 
retrieve the cloud water distributions from the simulated tomographic data. For both 
discretization schemes, 30x30 = 900 coefficients (pixels or points) are used. 
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