
IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 016005 (6pp) doi:10.1088/0953-8984/21/1/016005

Spin waves in antiferromagnetically
coupled bimetallic oxalates
Peter L Reis1,2 and Randy S Fishman2

1 Physics Department, University of North Dakota, Grand Forks, ND 58202-7129, USA
2 Materials Science and Technology Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831-6065, USA

Received 4 September 2008, in final form 11 September 2008
Published 2 December 2008
Online at stacks.iop.org/JPhysCM/21/016005

Abstract
Bimetallic oxalates are molecule-based magnets with transition-metal ions M(II) and M′(III)
arranged on an open honeycomb lattice. Performing a Holstein–Primakoff expansion, we obtain
the spin-wave spectrum of antiferromagnetically coupled bimetallic oxalates as a function of
the crystal-field angular momentum L2 and L3 on the M(II) and M′(III) sites. Our results are
applied to the Fe(II)Mn(III), Ni(II)Mn(III) and V(II)V(III) bimetallic oxalates, where the
spin-wave gap varies from 0 meV for quenched angular momentum to as high as 15 meV. The
presence or absence of magnetic compensation appears to have no effect on the spin-wave gap.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Bimetallic oxalates have been the subject of intense
experimental research since they were first synthesized in
1992 [1]. Within each bimetallic layer, transition-metal ions
M(II) and M′(III) are coupled by oxalate molecules ox = C2O4

on the open honeycomb lattice sketched in figure 1 with
nearest-neighbor separation a ≈ 5.4 Å [2, 3]. The chemical
formula for bimetallic oxalates is A[M(II)M′(III)(ox)3],
where A is an organic cation that separates the bimetallic
layers. For different transition-metal ions, bimetallic oxalates
can magnetically order as ferrimagnets, antiferromagnets
or ferromagnets [4–7] with moments pointing out-of-the-
plane. The cation A lying between the layers does not
change the sign of the exchange between the M(II) and
M′(III) moments but can influence the optical and metallic
properties of the bimetallic oxalates [8]. Recent theoretical
calculations [9–11] used a simple model to explain many of
the magnetic properties of these materials. We now extend
those calculations to evaluate the spin-wave (SW) spectrum of
antiferromagnetically coupled bimetallic oxalates.

Evidence that cation A is not responsible for the magnetic
order of bimetallic oxalates was found in the Fe(II)Fe(III)
family, where it was observed that even compounds with
well-separated bimetallic layers can have high transition
temperatures [4]. Additional support stems from the
observation that a radical spin-1/2 cation does not appreciably
change the transition temperature and coercive field [3],

Figure 1. The open honeycomb lattice showing the alternating M(II)
and M′(III) sites. L2 and L3 are the crystal-field orbital angular
momenta on each site.

suggesting that the bimetallic planes are weakly coupled.
Earlier work [9, 10] argued that the magnetic properties of the
bimetallic oxalates are controlled by the spin–orbit coupling,
which can stabilize magnetic order within an isolated layer.

When the exchange interaction between the M(II) and
M′(III) moments is antiferromagnetic, it is possible for the
sublattice magnetizations to exactly cancel at a compensation
temperature Tcomp below the transition temperature Tc.
Magnetic compensation (MC) has been observed in the
Fe(II)Fe(III) compounds only for certain cations A [4].
Compounds that exhibit MC also possessed the highest
values of Tc and Curie–Weiss constant C [4]. Fishman and
Reboredo [9, 10] suggested that MC occurs when the orbital
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angular momentum of the low-lying crystal-field doublet on
the Fe(II) sites exceeds a threshold value. To determine if other
bimetallic oxalates could also exhibit MC for certain cations,
we included spin–orbit coupling on both the M(II) and M′(III)
sites [11]. MC was found to be possible in the M(II)Mn(III)
(M = Fe, Co or Ni) and V(II)M′(III) (M′ = Cr or V) families.
Spin–orbit anisotropy is also expected to generate a gap in
the SW spectrum. So it is natural to wonder if there is any
connection between the presence of MC and the magnitude of
the SW gap.

This paper is divided into five sections. Section 2
discusses the important energy scales in the bimetallic oxalates.
Section 3 briefly explains how we calculate the magnetization
of a bimetallic layer including spin–orbit coupling on both
sublattices. The SW spectrum of an antiferromagnetically
coupled bimetallic oxalate is derived in section 4. A conclusion
appears in section 5.

2. Crystal field

Bimetallic oxalates are characterized by three different energy
scales. Since the spin correlations within the 3d orbitals
are large, Hund’s first rule is obeyed [3]. Measurements of
the magnetic susceptibility χ , magnetic moment and Curie
constant C of the bimetallic oxalates all confirm that the
3d ions are found in their high-spin states [4, 6]. The C3-
symmetric crystal-field potential produced by the six oxygen
atoms surrounding each ion is the next-highest energy level.
This potential induces a splitting of the degenerate 3d orbitals.
Lowest in energy are the spin–orbit coupling λrLr · Sr (r = 2
or 3) for each metal ion and the antiferromagnetic exchange
JcS2 · S3 mediated by the oxalate molecules.

With matrix elements given by the overlap integrals of the
crystal-field potential with the fivefold degenerate d orbitals,
the crystal-field Hamiltonian of a single M(II) or M′(III) ion
can be written as a 5 × 5 matrix [9]. Upon diagonalizing this
matrix, we obtain two doublet energy levels and one singlet,
with eigenvectors |ψ1,2〉, |ψ4,5〉 and |ψ3〉. The orbital angular
momenta of the low-lying doublets on the M(II) and M′(III)
sites are given by ±L2 and ±L3: 〈ψ1,2|L|ψ1,2〉 = ±L rz points
in the out-of-the-plane or z direction. Whereas the orbital
angular momenta of the doublets are generally nonzero, the
orbital angular momentum of the singlet vanishes. If the singlet
on the M(II) or M′(III) site lies lowest in energy, we would take
L2 or L3 equal to zero.

Within the low-energy doublets, the effective Hamiltonian
for an antiferromagnetically coupled bimetallic oxalate can be
written as

H = Jc

∑

〈i, j〉
S2i · S3 j + λ2

∑

i

Lz
2i S

z
2i + λ3

∑

j

Lz
3 j Sz

3 j , (1)

where the 〈i, j〉 sum runs over all nearest neighbors, the i
sum runs over all M(II) sites and the j sum runs over all
M′(III) sites. The antiferromagnetic exchange Jc is positive.
As discussed above, Lz

2i = ±L2 and Lz
3 j = ±L3 can each

take two values on the low-energy doublets.
We would like to emphasize that the orbital angular

momenta of the low-energy doublets, L2 and L3, are modified

by the crystal fields. They are not the same as the total angular
momenta of the M(II) or M′(III) multiplets before the crystal
field is taken into account. For example, in an octahedral
crystal field (which can be obtained as a limit of the C3-
symmetric potential [10]), the orbital angular momentum L3

of the eg doublet for an Mn(III) ion is quenched although the
3d4 multiplet had L = 2 before it was split by the crystal field.

3. Magnetization and magnetic compensation

Mean-field (MF) theory is used to treat the exchange
interaction JcS2 ·S3 between the antiferromagnetically coupled
M(II) and M′(III) spins. The MF Hamiltonians on M(II) and
M′(III) sites are then

H2 = λ2 Lz
2Sz

2 + 3JcSz
2〈Sz

3〉 (2)

H3 = λ3 Lz
3 Sz

3 + 3JcSz
3〈Sz

2〉. (3)

Since equations (2) and (3) are evaluated in the subspace of the
M(II) and M′(III) doublets, the energy levels εr are given by

ε2 = (±λ2 L2 + 3Jc〈Sz
3〉)σ2, (4)

ε3 = (±λ3 L3 + 3Jc〈Sz
2〉)σ3, (5)

where σ2 = S2, S2−1, . . . ,−S2 and σ3 = S3, S3−1, . . . ,−S3.
Taking g = 2 for both M(II) and M′(III) ions and setting

μB = 1, the magnetic moments on the M(II) and M′(III) sites
are M2 = 〈2Sz

2 + L2〉 and M3 = 〈2Sz
3 + L3〉, which must

be solved self-consistently. The average magnetization is then
given by Mavg = (M2 + M3)/2. We adopt the convention that
M2 > 0 and M3 < 0. Results in the next section also employ
the estimate Jc = 0.5 meV obtained from MF theory [9].
Although a recent Monte Carlo study [12] suggests that Jc is
about twice as large, our results are insensitive to the precise
value of Jc, provided that it is small compared to the spin–orbit
coupling.

To characterize the magnetic behavior of a bimetallic layer
as a function of the crystal-field angular momenta L2 and L3,
we make use of the limiting behavior of Mavg as T → Tc and
T → 0. In the first case

Mavg ∼ √
Tc − T , T → Tc. (6)

While the square-root behavior is an artifact of MF theory [12],
the proportionality factor is a function of L2 and L3. As
T → 0, the ground-state magnetization depends on the signs
of the spin–orbit coupling on the M(II) and M′(III) sites. The
spin–orbit coupling constant λ of a 3dn electronic configuration
is negative when the d orbitals are more than half-filled (n > 5)
and positive when they are less than half-filled (n < 5). So
for electronic configurations 3dn2 and 3dn3 on the M(II) and
M′(III) sites, the average magnetization at T = 0 is given by

M0 =
(

S2 + L2

2
sgn(n2 − 5)

)
−

(
S3 + L3

2
sgn(n3 − 5)

)
.

(7)
Knowing the sign of Mavg near Tc together with its sign at
T = 0 allowed us to determine possible regions of MC in the
parameter space of {L2, L3}. For example, when Mavg < 0 as
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Figure 2. Contour plots of the SW gap �(L2, L3) and the associated MC region for Fe(II)Mn(III), Ni(II)Mn(III) and V(II)V(III). Each plot
contains seven contours with � = 1, 2, 3, 4, 5, 10 and 15 meV, moving out from the origin as � increases. The diagonal separators satisfy the
condition �+ = �−.

T → Tc and M0 > 0 then the sublattice magnetizations change
from |M3| > |M2| above Tcomp to |M2| > |M3| below Tcomp.

Regions of MC are presented in figure 2 for the three
compounds M(II)Mn(III) (M = Fe and Ni) and V(II)V(III).
The prominent features that distinguish the MC regions are the
shapes of their boundaries. For Ni(II)Mn(III) and V(II)V(III),
the MC regions have straight diagonal boundaries along which
the sublattice magnetizations exactly cancel at T = 0. The
curved boundaries represent the onset of MC at Tc. In all cases,
the sublattice with the smaller magnetization at T = 0 initially
orders faster than the sublattice with the larger magnetization
at T = 0.

4. Spin-wave frequencies

We now calculate the SW spectrum for an antiferromagneti-
cally coupled bimetallic oxalate. Because the spin–orbit inter-
action λ3L2i · S2i or λ3L3 j · S3 j can be replaced by λ2 Lz

2i S
z
2i

or λ3 Lz
3 j S

z
3 j within the low-energy doublet on the M(II) or

M′(III) sites, there are no L±
2i or L±

3 j terms in the Hamilto-
nian of equation (1) that can flip the orbital angular momentum.
Therefore, the crystal-field orbital angular momentum acts as
an Ising variable and has no intrinsic dynamics. At low tem-
peratures, 〈Lz

2i 〉 and 〈Lz
3 j 〉 are almost fully saturated and can be

replaced by −sgn(λ2)L2 and sgn(λ3)L3. So the Hamiltonian
at low temperatures can be rewritten as

H = Jc

∑

〈i, j〉
S2i · S3 j − |λ2|L2

∑

i

Sz
2i + |λ3|L3

∑

j

Sz
3 j . (8)

The absolute values ensure that the energy is minimized with
the convention that 〈Sz

2i 〉 > 0 and 〈Sz
3 j 〉 < 0.

A Holstein–Primakoff (HP) expansion about the classical
limit is performed for the Hamiltonian in equation (8). The
Heisenberg operators S2i and S3 j can be transformed into
boson creation and destruction operators a†

i , b†
j , ai , and b j

provided that 〈a†
i ai〉 � S2 and 〈b†

j b j〉 � S3. These conditions

are satisfied at low temperatures and for large spins S2 and S3.
To first order in 1/Si , the Heisenberg operators take the form

S+
2i = √

2S2ai , (9)

S+
3 j = √

2S3b†
j , (10)

S−
2i = √

2S2a†
i , (11)

S−
3 j = √

2S3b j , (12)

Sz
2i = S2 − a†

i ai , (13)

Sz
3 j = −S3 + b†

j b j . (14)

Fourier-transforming equations (9)–(14) and substituting the
results into equation (8), we obtain the SW Hamiltonian:

H SW =
∑

k

{3Jc

√
S2 S3(γ

∗
k a†

kb†
k + γkakbk)

+ (3JcS3 + |λ2|L2)a
†
kak + (

3JcS2 + |λ3|L3
)
b†

kbk}, (15)

where

γk = 1

3

{
eikx a + 2e−ikx a/2 cos

(√
3

2
kya

)}
(16)

is complex with γk = γ ∗
−k due to the lack of inversion

symmetry. Generally, the error involved in an HP expansion
for spins of magnitude S at low temperatures is of the order of
1/(2S + 1).

An equations-of-motion technique is used to diagonalize
H SW. The vector

uk =
(

ak

b†
k

)
, (17)

is a solution of

i
duk

dt
= [

uk, H SW
] = M uk = ω(k)uk (18)

where M is a 2 × 2 matrix. This system of equations requires
that Det{M − ω(k)I } = 0, which yields a pair of solutions
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0

Figure 3. The SW gap� versus L2 and L3 for Fe(II)Mn(III). Fixed values of L2 and L3 are increased from 0 to 2 in steps of 0.5.

for ω(k). Replacing uk by u†
k gives another pair of solutions.

The four solutions to the two determinantal equations then
consist of two equal and opposite pairs. We retain the two
positive solutions

ω±(k) = ± 1
2 (3Jc(S3 − S2)+ |λ2|L2 − |λ3|L3)

+ 1
2 {(3Jc(S2 + S3)+ |λ2|L2 + |λ3|L3)

2

− 36J 2
c |γk|2S2 S3}1/2. (19)

When S2 = 2, S3 = 5/2 and λ3 = 0, this expression reduces
to an earlier one [10] for the Fe(II)Fe(III) bimetallic oxalates.

At k = 0, γk = 1 and the SW spectrum develops a
gap � due to the spin–orbit anisotropy. Defining the k = 0
SW frequencies by �± ≡ ω±(k = 0), the SW gap is given
by � = min(�+,�−). To better appreciate the behavior
of � as a function of L2 and L3, we have constructed the
three contour plots in figure 2 for Fe(II)Mn(III), Ni(III)Mn(III)
and V(II)V(III) compounds. The contours represent constant
values of � in {L2, L3} parameter space. It is clear that the
SW gap is enhanced as L2, L3 → 2. The contours consist of
two channels, �+ and �−, running parallel to the L3 and L2

axes, respectively. Along the diagonal lines in figure 2,�+ and
�− are equal, which is satisfied when

3Jc(S3 − S2)+ |λ2|L2 − |λ3|L3 = 0. (20)

The slope of this diagonal separator is given by |λ2/λ3|.
The result that the channels �+ and �− are essentially

constant or parallel to the L3 and L2 axes, respectively, can
be understood by expanding the frequencies in powers of Jc/ f
where f ≡ |λ2|L2 + |λ3|L3 � Jc:

�+ ≈ |λ2|L2 + 3JcS3 + ϑ

(
J 2

c

f

)
, (21)

�− ≈ |λ3|L3 + 3JcS2 + ϑ

(
J 2

c

f

)
. (22)

So to lowest order in Jc/|λi |, �+ and �− are given by
|λ2|L2 and |λ3|L3, respectively, and are independent of L3

and L2. From equation (19), the SW gap vanishes in the limit
L2, L3 → 0, independent of the channel �+ or �−.

The contours �(L2, L3) of figure 2 contain seven values
ranging from 1 to 15 meV. To illustrate the possible interplay
between the SW gap and MC, each figure also indicates
the region of MC for that compound. For Fe(II)Mn(III)
compounds, the sublattice spins are identical, with S2 =
S3 = 2 and the spin–orbit couplings λ2 = −12.64 meV and
λ3 = 10.91 meV are similar in magnitude. Consequently,
the first term in equation (20) vanishes and the separator
terminates at the origin with slope |λ2/λ3| ≈ 1.15. Notice
that � → 0 in both the �+ and �− channels as L2, L3 → 0.
Because |λ2| ≈ |λ3|, �+ and �− are evenly distributed in
{L2, L3} parameter space. Also notice that the MC region
for Fe(II)Mn(III) overlaps the �+ frequencies between 0 and
4 meV.

Another view of the contour plot for Fe(II)Mn(III)
compounds is provided in figure 3, which illustrates the
behavior of � versus L2 and L3. Below the kink in the left-
hand or right-hand panel, � = �+ or �−; above the kink,
� = �− or �+. These plots clearly reveal the behavior of
equations (21) and (22): above the kinks, �− depends weakly
on L2 and �+ depends weakly on L3. The lowest curves in
figure 3 indicate that � → 0 in both the �+ and �− channels
as L2 and L3 → 0.

A contour plot for Ni(II)Mn(III) compounds is shown
in the center of figure 2. Unlike the case for Fe(II)Mn(III)
compounds, the sublattice spins are unequal and the magnitude
of the spin–orbit couplings are quite different: Ni(II) has
S2 = 1 and |λ2| = 40.29 meV while Mn(III) has S3 = 2 and
|λ3| = 10.91 meV. Since the first term on the right-hand side of
equation (20) is nonzero,�+−�− → 3Jc(S3−S2) = 1.5 meV
as L2, L3 → 0 and the separator has a slope of |λ2/λ3| = 3.69.
The nonzero intersect of equation (20) with the L3 axis allows
the �− channel to occupy a greater portion of the {L2, L3}
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Figure 4. The SW frequencies ω±(k) versus kx a for Fe(II)Mn(III)
with L2 = L3 = 0.5 and ky = 0.

parameter space. In the inset, we have blown up the region
from L r = 0 to 0.5. Notice that the contours� = 1 and 2 meV
exist only in the �− channel. As the gap energy increases to
3 meV, the �+ channel reappears. The two MC regions for
Ni(II)Mn(III) compounds appear in figure 2. While the SW
channel �− traverses region 2a, �+ traverses region 2b.

On the right of figure 2, the last set of contours is drawn
for V(II)V(III) compounds. The V(II) and V(III) ions have
spins S2 = 3/2 and S3 = 1, and spin–orbit coupling λ2 =
6.94 meV and λ3 = 12.89 meV, respectively. So�+ −�− →
3Jc(S3 − S2) = −3/4 meV as L2, L3 → 0. Because S3 < S2,
equation (20) has a nonzero intersect with the L2 axis. Due
to the small slope |λ2/λ3| = 0.53 of the separator, the �+
channel occupies the majority of parameter space. Notice that
the contours in the�− channel transverse the region of MC for
V(II)V(III) compounds.

The SW frequencies ω±(k) are plotted as a function of
kxa in figure 4 for the compound Fe(II)Mn(III) with L2 =
L3 = 0.5. As can easily be seen from figure 1, the wavevector
of the ferrimagnetic order on the open honeycomb lattice is
given by Q = (4π/3a)x. The maximum in the dispersion
along the kx axis occurs at kx = 2π/3a, corresponding to
a change of about 0.5 meV relative to the � point k = 0.
Generally, equation (19) can be expanded in powers of Jc/ f
to show that the width of the SW dispersion along the kx

axis is approximately 8J 2
c S2 S3/ f . The difference between

the two frequencies ω±(k) is constant as kx crosses the first
Brillouin zone, with a value given by equation (20). The lower
frequency at k = 0 gives the SW gap �−, in agreement with
the Fe(II)Mn(III) contours of figure 2.

5. Conclusion

We have calculated the SW frequencies for antiferromagnet-
ically coupled bimetallic oxalates. Our results for the SW gap
were demonstrated by studying the compounds Fe(II)Mn(III),
Ni(II)Mn(III) and V(II)V(III) as a function of their associated

crystal-field orbital angular momentum L2 and L3. The SW
gap varied from 0 meV to as high as 15 meV as the angular
momenta L2 and L3 increased. There does not seem to be
any relationship between the SW gap and the presence or
absence of MC. Indeed, the SW gap can achieve its largest
value outside regions of MC, as seen particularly in figure 2
for the Fe(II)Mn(III) compounds. These results indicate that
even compounds that do not exhibit MC may have sizeable
SW gaps. However, when the singlet levels on both the M(II)
and M′(III) sites lie lowest in energy, then both L2 and L3

would vanish and MC would be absent. Since any magnetic
anisotropy would then be produced by single-ion anisotropy
Di ∝ λ2

i , the SW gaps would tend to be much smaller than
those predicted here.

Depending on whether �+ or �− is smaller, the SW gap
depends primarily on the orbital angular momentum L2 or
L3 of the M(II) or M′(III) ion, respectively. This surprising
result stems from the small value of the exchange interaction
Jc compared to the magnitude of the spin–orbit coupling
constants λi .

In addition to the above compounds, we also constructed
the contours �(L2, L3) for V(II)Cr(III), Co(II)Mn(III),
Fe(II)Ru(III) and Cu(III)Ru(III). For the V(II)Cr(III) and
Co(II)Mn(III) compounds, we found similar behavior as in
figure 2. On the other hand, Ru(III) compounds with a
4d5 electronic configuration displayed an order-of-magnitude
higher value of � because of the large spin–orbit coupling
λ3 = 116.54 meV and low-spin S3 = 1/2 state [5].

Hopefully, this paper will inspire future measurements of
the SW excitations in the bimetallic oxalates. Although almost
all samples are polycrystalline, inelastic neutron scattering
measurements on deuterated materials should be able to
measure the SW gap without difficulty.
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