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ABSTRACT: Several modifications to the Davidson algorithm are
systematically explored to establish their performance for an assortment of
configuration interaction (CI) computations. The combination of a generalized
Davidson method, a periodic two-vector subspace collapse, and a blocked
Davidson approach for multiple roots is determined to retain the convergence
characteristics of the full subspace method. This approach permits the efficient
computation of wave functions for large-scale CI matrices by eliminating the
need to ever store more than three expansion vectors (bi) and associated
matrix-vector products (σ i), thereby dramatically reducing the I/O requirements
relative to the full subspace scheme. The minimal-storage, single-vector method
of Olsen is found to be a reasonable alternative for obtaining energies of
well-behaved systems to within µEh accuracy, although it typically requires
around 50% more iterations and at times is too inefficient to yield high accuracy
(ca. 10−10 Eh) for very large CI problems. Several approximations to the diagonal
elements of the CI Hamiltonian matrix are found to allow simple on-the-fly
computation of the preconditioning matrix, to maintain the spin symmetry of the
determinant-based wave function, and to preserve the convergence
characteristics of the diagonalization procedure. © 2001 John Wiley & Sons, Inc.
J Comput Chem 22: 1574–1589, 2001

Keywords: configuration interaction; diagonalization methods; Davidson
method; ab inito methods; symmetric eigenvalue problem

Correspondence to: W. D. Allen; e-mail: wdallen@ccqc.uga.edu
Contract/grant sponsor: U.S. National Science Foundation;

contract/grant number: CHE-9815397

Journal of Computational Chemistry, Vol. 22, No. 13, 1574–1589 (2001)
© 2001 John Wiley & Sons, Inc.



DIAGONALIZATION METHODS FOR CONFIGURATION INTERACTION MATRICES

Introduction

T he configuration interaction (CI) approach
dates back to the earliest days of quantum me-

chanics and still endures as one of the most flexible
techniques in computational chemistry for obtain-
ing electronic wavefunctions of the ground and
excited states of atomic and molecular systems.1 – 3

The CI method involves expressing the Schrödinger
equation as a matrix eigenvalue problem [eq. (1)]
within a finite-dimensional n-particle basis of Slater
determinants, or alternatively a spin-adapted basis
of configuration state functions.

Hck = λkck. (1)

Matrix elements of the Hamiltonian operator are
written in terms of standard one- and two-electron
molecular integrals and coupling coefficients be-
tween the n-particle basis functions.3 – 9 This numer-
ical representation of the Hamiltonian leads to ma-
trices whose dimensions grow exponentially with
respect to the one-particle basis and the number of
electrons. The standard methods10, 11 for the deter-
mination of all eigenvalues and eigenvectors of real,
symmetric N × N matrices necessitate greater than
N2 storage elements and scale as O(N3).

For CI computations involving 106 Slater deter-
minants, the standard methods for symmetric ma-
trices would require about 16 terabytes of storage
space, and currently take many years to complete.
A more efficient approach is to use iterative tech-
niques that exploit the sparsity of the Hamiltonian,
avoid the explicit storage of the Hamiltonian ma-
trix by forming matrix–vector products directly, and
only solve for the lowest single or few eigenval-
ues and eigenvectors.4, 5, 7, 9, 12 – 14 Such techniques
have produced benchmark CI computations involv-
ing over 109 Slater determinants.15 – 20

The Davidson algorithm12 is the traditional large-
scale, iterative diagonalization method of compu-
tational quantum chemistry, being a particularly
effective scheme among the host of subspace meth-
ods for extracting selected eigenvectors.11, 13, 14, 21 – 25

This technique typically convergences in 10–20 it-
erations and requires the storage of an expansion
vector (bi) and a matrix-vector product (σ i = Hbi)
per desired root per iteration. For CI computations
involving multiple roots, near degeneracies, or more
than several million determinants, the Davidson
procedure may suffer from insufficient disk storage,
I/O delays, and slow convergence. The disk space
bottleneck may be relieved by a periodic collapse
of the expansion space, in which the expansion

vectors are replaced by one or a few of the best cur-
rent approximations for each eigenvector sought;
however, this approach reduces the size of the vari-
ational expansion space, and thus has the potential
to impede convergence. The methods of Olsen15 and
Mitrushenkov26 diminish the formidable storage re-
quirements in this manner in favor of larger num-
bers of iterations. Numerous of iterative schemes
have been proposed in recent years that offer effica-
cious alternatives or modifications to the traditional
Davidson method. In this letter we scrutinize many
of these proposals, and systematically test their effi-
ciency on a number of electronic structure problems,
specifically, various CI matrices of H2O, O3, N2,
C2, C2H4, SO2, HCN, SiO, C2H2, NH3, and F2. We
include consideration of the advantages of approx-
imating the diagonal elements of the Hamiltonian
matrix to allow efficient on-the-fly evaluation of the
Davidson preconditioning matrix while maintain-
ing spin symmetry in the determinantal expansion
space. On the basis of these numerous model com-
putations, recommendations are then drawn that
mesh the various proposals into maximally effi-
cient diagonalization algorithms within the limits of
available computational resources.

Methods

DAVIDSON’S METHOD

The Davidson diagonalization method,12 also
called the Davidson–Liu or simultaneous expan-
sion method,27 is classified as a subspace iterative
approach in which the eigenvectors of interest are
expanded in a linear orthonormal vector space,

xk =
L∑
i

αk
i bi, (2)

where the αk
i are expansion coefficients, bi is the

ith expansion vector, and xk is the current itera-
tion’s approximation to ck, the kth eigenvector of
the Hamiltonian. A subspace representation of the
Hamiltonian matrix is generated with the expansion
vectors and matrix–vector products of the Hamil-
tonian matrix with the expansion vectors,

Gij = (bi, Hbj) = (bi, σ j), 1 ≤ i, j ≤ L, (3)

where σ j = Hbj and the expansion coefficients are
subsequently determined as the eigenvectors of G:

Gαk = ρkαk. (4)

The subspace matrix G is easily diagonalized by
standard methods, because the number of expan-
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sion vectors is much smaller than the size of the
CI Hamiltonian matrix. As the number of expansion
vectors is appropriately increased, the CI eigenvec-
tor approximated by eq. (2) will approach the exact
eigenvector, and the eigenvalues (ρk) of the small
subspace matrix G will approach those of the
CI Hamiltonian matrix (λk). This method enables
the iterative diagonalization of large-scale matrices
through the application of standard diagonalization
methods to a small subspace eigenvalue problem.
The most CPU demanding step involves the forma-
tion of the σ vectors; however, for large CI problems
that exhaust available memory, the algorithm easily
becomes I/O bound.

An expression for the Davidson expansion vec-
tors (bi) is constructed by relating the exact eigen-
vector (ck) to the approximate vector (xk) through a
correction vector (δk),12, 27

ck = xk + δk, (5)

where δk satisfies(
H − λk)δk = −(

H − λk)xk = −rk (6)

and rk is the residual vector. If the current itera-
tion’s approximation (ρk) to the kth root is substi-
tuted for λk, then H − λk is no longer singular, and
eq. (6) constitutes a traditional, shifted inverse iter-
ation approach11 to computing δk from an arbitrary
starting guess. In essence, as shown by spectral de-
composition of H, those components of rk involving
eigenvectors with eigenvalues in close proximity
to ρk are selectively magnified in the update vec-
tor δk. From another viewpoint, eq. (6) with the ρk

replacement amounts to a Newton–Raphson update
for finding eigenvectors as stationary points of the
Rayleigh quotient

ρ = xTHx
xTx

(7)

provided that residual-vector terms are neglected
in the Hessian of ρ. Unfortunately, eq. (6) involves
solving a system of linear equations with the same
dimension as the CI eigenvalue problem for each
iteration and for each root sought. This difficulty is
circumvented by using the sparsity of the CI Hamil-
tonian matrix and approximating H, on the left side
of eq. (6), by some approximate, invertible Hamil-
tonian H0. In brief, the correction vector is derived
by applying the preconditioner matrix (H0 − ρk)−1

onto the current residual vector, i.e., δk = −(H0 −
ρk)−1r k. Diagonal dominance of the CI matrix leads
in the simplest approximation to setting H0 to the
diagonal part, D, of H:12, 27

δk = −(
D − ρk)−1(H − ρk)x k = −(

D − ρk)−1rk (8)

The resulting δk vector is orthonormalized against
the list of previous expansion vectors and appended
to the expansion space. The iterative process is con-
sidered converged when a threshold value of 10−η is
reached, where η is typically 6–10 for the energy or
3–6 for the norm of the residual vector. Because the
residual vector is computed each iteration according
to eq. (9), it is necessary to store all previous b and
σ vectors.

rk =
L∑

i = 1

αk
i

(
σ i − ρkbi

)
(9)

In the computation of excited states, the original
Davidson method solves for higher roots in a se-
quential fashion.12 To reduce the amount of I/O op-
erations, Liu suggested solving for all roots of inter-
est simultaneously.27 This approach has the advan-
tage that the expansion vectors for any given root
provide additional variational flexibility and energy
minimization within the subspace of the G matrix
for all roots sought. This modification of the origi-
nal Davidson method is known by several names,
including the Block Davidson, Davidson–Liu, and
simultaneous expansion method.27, 28 A general out-
line for this algorithm is given in Appendix A.

SUBSPACE COLLAPSE

An increase in disk I/O may substantially de-
grade the effectiveness of the diagonalization al-
gorithm. Typically, I/O is reduced by restarting
the Davidson procedure with the latest eigenvec-
tor guess when the number of expansion vectors
becomes too large, which is equivalent to a col-
lapse of the bi subspace to one dimension. How-
ever, this truncation can hinder convergence due to
loss of variational flexibility. In 1990, van Lenthe
and Pulay29 reported that the convergence of the
diagonalization procedure is nearly conserved if
the expansion space is collapsed to two vectors
each iteration rather than to one vector every sev-
eral iterations. This remarkable behavior can be
justified29 from conjugate gradient theory, assum-
ing the collapse is accomplished by taking the CI
eigenvectors given by eq. (2) from the last two itera-
tions and orthonormalizing them. Murray, Racine,
and Davidson28 generalized this approach for ex-
cited states and also proposed a complementary
scheme entailing periodic least-squares extrapola-
tion to minimize the norm of the residual vector un-
der the constraint of a fixed eigenvalue and eigen-
vector norm. The alternative expansion coefficients
(αk) resulting from this extrapolation are obtained
as the eigenvectors of the root-dependent residual
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overlap matrix:

Mij = [(
H − λk)bi

]T(
H − λk)bj (10)

Murray et al.28 reported a 20% increase in efficiency
for obtaining 10 roots of a CI matrix when the ex-
trapolation was invoked every third iteration after
the energy correction reached a threshold of 5.0 ×
10−3 Eh. A periodic collapse to two vectors rather
than one vector per root when the expansion space
reached 100 vectors yielded an additional 20% sav-
ings.

CORRECTION VECTOR

Several investigators have explored modifica-
tions of the correction/update vector in the diago-
nalization procedure. In 1990, Olsen15 constructed
a correction vector that ensures the introduction
of new character into the expansion space near
convergence. Analysis of the Davidson method re-
veals that as H0 → H, δk → −x k, raising
concerns of linear dependence in the expansion
vectors.15, 23, 25, 30 – 32 The Olsen correction scheme in
the H0 → H limit gives

δk = −xk + (H0 − ρk)−1xk

(xk)T(H0 − ρk)−1xk
, (11)

in which δk is explicitly orthogonal to and hence lin-
early independent of xk. The general form of Olsen
correction vector is

δk = −(
H0 − ρk)−1(H − ρk

new

)
xk, (12)

which differs from the Davidson vector [eq. (8)]
only by the substitution of an updated eigenvalue
estimate (ρk

new) containing first-order corrections.15

Equation (12) can be derived by a simple perturba-
tion analysis in which the change in the eigenvalue
estimate is determined directly from the condition
δk · xk = 0. The Olsen update can also be derived
by first invoking the Newton–Raphson method in
search of stationary points of a Lagrangian function
related to the Rayleigh quotient and then substitut-
ing the preconditioner as an estimate of (H−ρk)−1.33

In 1990, the Olsen correction vector scheme was
employed in a single-vector iterative diagonaliza-
tion algorithm to perform the first iterations of a one
billion determinant full CI computation.15 Although
the Olsen single-vector method is necessary if exter-
nal storage is limited, its convergence characteristics
are not always ideal. Mitrushenkov26 emphasized
that Olsen’s iterator does not determine expan-
sion coefficients through a minimization procedure.
Mitrushenkov proposed a modification to Olsen’s
scheme, which avoids this difficulty by utilizing a

nonorthogonal two-vector version of the algorithm,
whereby δk and xk are optimally mixed by diagonal-
ization of a corresponding 2×2 subspace matrix G.26

Bofill and Anglada33 have derived the Olsen correc-
tion vector from other considerations and combined
it with a two-vector subspace collapse in a Lanczos-
type method. Their approach was found to con-
verge more rapidly than the method of van Lenthe
and Pulay,29 where the Davidson correction vector
was employed. The application of this method to
excited states revealed that the optimization of any
root can be achieved without solving for the lower
roots of the same spin and spatial symmetry.33 Ben-
dazzoli and Evangelisti34 utilized a single-vector
variant of the Davidson and Olsen methods wherein
the correction vector is derived from

δk = −[
H − ρk − rk(x k)T − x k(rk)T + βx k(x k)T]−1rk,

(13)
where β is an arbitrary, nonzero parameter whose
choice does not noticeably affect convergence of the
algorithm. If β is chosen to be ρk, eq. (13) is equiv-
alent to the Jacobi–Davidson update scheme. Equa-
tion (13) is an approximation to a formal solution35

of eq. (6) in the orthogonal complement of the null
space of H − λk. Again, the update vector (ignoring
the β term) can be viewed as a Newton–Raphson
iteration for stationary points of the Rayleigh quo-
tient, this time the residual terms being included in
the Hessian of ρ, unlike the Davidson scheme. In
practice, only diagonal elements have been taken
in forming the preconditioner of eq. (13). This ap-
proach has been employed in the computation of
full CI benchmark energies that involve up to ten
billion determinants to µEh accuracy.16 – 18, 36 – 39

GENERALIZED DAVIDSON METHOD

The performance of the diagonalization algo-
rithm can be improved by lifting the assumption of
diagonal dominance in the preconditioner through
the explicit inclusion of coupling between the most
important determinants. This generalized David-
son preconditioner improves convergence consid-
erably when there are near degeneracies in the CI
spectrum.25, 40 A partitioned H matrix in eq. (6) may
be selected by invoking three model spaces accord-
ing to the value of the diagonal Hamiltonian matrix
elements: reference space 0 containing the most
important determinants and full internal coupling
among them; a larger, less important interacting
space 1 possessing external coupling to the reference
space but no internal coupling; and the remaining,
least important space 2 exhibiting neither internal
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nor external coupling. With λk approximated by ρk,
eq. (6) is then reduced to


H00 − ρk H01 0

H10 D11 − ρk 0
0 0 D22 − ρk







δk
0

δk
1

δk
2


 = −




rk
0

rk
1

rk
2


 .

(14)
In the simplest case, space 1 is null, and the pre-
conditioner is obtained by trivial inversion of the
diagonal matrix D22 − ρk, and the use of standard
direct10 or iterative methods10, 41 for solving the
H00 − ρk linear system for δk

0. Otherwise, the exact
solution for δk

0 and δk
1 can be represented as

−δk
0 = (

H00 − ρk
)−1 [

(I − �0�1)−1rk
0

− �0(I − �1�0)−1rk
1

]
,

−δk
1 = (

D11 − ρk
)−1 [

(I − �1�0)−1rk
1

− �1(I − �0�1)−1rk
0

]
,

(15)

where

�0 = H01
(
D11 − ρk

)−1,
�1 = H10

(
H00 − ρk

)−1.
(16)

For limited coupling, �0 and �1 are small; thus, they
may be neglected, or employed in the well-known
matrix expansion

(I − R)−1 = I + R + R2 + · · · (17)

where

R = �0�1 or �1�0. (18)

While all terms in low-order expansions of eq. (15)
are computationally accessible, the extra effort ex-
erted to obtain the best preconditioner is rarely
warranted.

APPROXIMATE DIAGONAL ELEMENTS

For large-scale computations it is advantageous
to approximate the diagonal Hamiltonian matrix el-
ements in the preconditioner to maintain the spin
symmetry of the expansion basis, and to allow effi-
cient on-the-fly evaluation. In a Slater determinant
basis it is possible to introduce spin contamination
in the expansion vectors during the precondition-
ing step [eq. (8) and eq. (27)], a bothersome feature
that may plague the eigenvector estimate until full
convergence is reached. Spin-adapted configuration
state functions (CSFs) are formed from a set of deter-
minants having the same spatial orbital occupation
pattern but with different spin couplings. The de-
terminants with identical spatial orbital occupancies
will couple to form CSFs with various values of the
spin quantum number S.42, 43 Let us call this set of

determinants a spin-coupling set. For example, the
spin-coupling set with spatial orbitals p, q, r, and
s singly occupied outside a closed shell is |pqr̄s̄〉,
|pq̄rs̄〉, |pq̄r̄s〉, |p̄qrs̄〉, |p̄qr̄s〉, |p̄q̄rs〉. All determinants in
a spin-coupling set must have certain fixed relation-
ships for spin eigenfunctions to result. For Ms = 0
states these relationships include the time-reversal
symmetry constraint9

C(Iα, Iβ) = (−1)SC(Iβ , Iα), (19)

where Iα and Iβ denote the occupation lists for the α

and β strings.3 In our previous example, eq. (19) re-
quires that the CI coefficients for determinants (1,6),
(2,5), and (3,4) of the list differ internally only by the
factor (−1)S.

If the spin eigenfunction relationships are satis-
fied by the trial eigenvector, then both the σ and
residual vectors will also have the proper relation-
ships because the nonrelativistic CI Hamiltonian
does not contain spin-dependent operators. Thus, if
the correction vector is to have the proper relation-
ships among determinantal coefficients belonging
to a spin-coupling set, then the denominator for
every determinant in a spin-coupling set must be
identical, otherwise the Davidson subspace vectors
will not be spin eigenfunctions. It should be noted
that for the generalized Davidson method each ele-
ment in a spin-coupling set must be included in the
same model space, or spin contamination will result
in the expansion vectors.

An average diagonal energy for a spin-coupling
set can be derived as follows. First, let us consider
the diagonal energy for a given single determinant.
For a given determinant, (nα

i , nβ

i ) will represent a
binary digit (1 or 0) signifying whether an elec-
tron with (α, β) spin is present in orbital i. The
diagonal energy in terms of the usual one-electron
Hamiltonian (hii), Coulomb ( Jij), and exchange (Kij)
integrals is then

HII =
∑

i

(
nα

i + nβ

i

)
hii + 1

2

∑
ij

nα
i nα

j Jij

+ 1
2

∑
ij

nβ

i nβ

j Jij +
∑

ij

nα
i nβ

j Jij

− 1
2

∑
ij

nα
i nα

j Kij − 1
2

∑
ij

nβ

i nβ

j Kij, (20)

where the summations run over all the (ROHF)
spatial orbitals. The energy of each determinant in
a spin-coupling set differs through the exchange
integrals, as in our previous example, where the
open-shell exchange contribution to the energy of
the six determinants is (−Kpq−Krs, −Kpr−Kqs, −Kps−
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Kqr, −Kps − Kqr, −Kpr − Kqs, −Kpq − Krs), in order. The
most accurate approximation is to employ an aver-
age of all the exchange integrals in a spin-coupling
set. In our example, this approach ascribes an ex-
change contribution of −( 1

3 )(Kpq + Krs + Kpr + Kqs +
Kps + Kqr) to the diagonal element of the precondi-
tioner for all six determinants. Knowles and Handy8

advocate the use of modified one-electron integrals,
which fold in part of the two-electron exchange
integral contribution, and replace the exchange in-
tegrals by the maximum exchange integral for the
molecule. However, we found this approximation
to nearly double the number of iterations in the
Davidson procedure, and because of the numerous
integral look-ups it does not allow efficient on-
the-fly evaluation. A more viable alternative is the
approximation

HII = 1
2

∑
i

(
nα

i + nβ

i

)
(εi + hii), (21)

which deviates from the correct expression in that
the two-electron terms 〈rs||rs〉 for excited spin or-
bitals r and s of the Hartree–Fock virtual space are
reckoned as 〈rh||rh〉, where spin orbital h is a corre-
sponding hole in the Hartree–Fock occupied space.

The concept of approximating or averaging di-
agonal matrix elements to enhance algorithmic per-
formance or preserve spin properties has existed in
the literature for some time.14, 44 Recently, Evange-
listi et al.16, 38 have suggested several schemes that
enable efficient on-the-fly evaluation of average di-
agonal Hamiltonian elements, thus eliminating the
need to store the entire diagonal vector on disk or
in core memory. The first approach38 is simply to
use the sum of orbital energies (εi) of the occu-
pied orbitals for each determinant, a relatively crude
estimate, which, unlike eq. (21), does not attempt
to correct for overcounting of two-electron interac-
tions. A more accurate approach16 is to evaluate a
diagonal element as

D(Iα, Iβ) = EHF + F(Iα) + F(Iβ), (22)

where F(I) for occupation string I contains an
orbital-energy correction to the Hartree–Fock ref-
erence energy (EHF) arising from the differences in
occupations between the Hartree–Fock and excited
determinants. Specifically,

F(I) =
vir∑
a∈I

εa −
occ∑
a/∈I

εi, (23)

where occ and vir refer to the occupied and virtual
spaces of the reference configuration. The dimen-
sion of the F(I) array is much smaller than the size

of the CI problem, for example, in a full CI com-
putation the length of F(I) is approximately the
square root of the number of determinants. There-
fore, the F(I) array can be precomputed and stored
in core memory. Both Evangelisti schemes for ap-
proximating diagonal elements, as well as eq. (21),
are computationally efficient, and their convergence
effects on the diagonalization procedure will be dis-
cussed shortly.

CURRENT STUDY

In this article we calibrate the performance of
several modifications to the Davidson algorithm
against the traditional Davidson method for an as-
sortment of atomic and molecular computations.
We consider how the convergence characteristics
are affected by a generalized Davidson method,
a periodic n-vector subspace collapse, a least-
squares extrapolation technique, several one- and
two-vector approaches, alternative correction vec-
tors, and approximate diagonal Hamiltonian matrix
elements in the preconditioner. Although compres-
sion schemes39, 45 – 47 are useful for reducing I/O
requirements of large-scale computations, we ex-
clude them from the present study. Indeed, to keep
the scope of our investigation manageable, the algo-
rithms tested here are not exhaustive of the plethora
of large matrix methods in use by the scientific com-
munity at large. Rather, our work is focused on
establishing a diagonalization scheme for electronic
structure problems that reduces disk storage and
I/O requirements, but maintains the convergence
characteristics of the full subspace scheme. Such an
approach would permit the computation of large-
scale CI wave functions with the convergence crite-
ria necessary for the calculation of general proper-
ties over a wider range of chemical systems.

Computational Details

In this study computations on the chemical
systems in Table I were used to calibrate the
performance of the diagonalization methods. The
computations utilized the correlation consistent
cc-pVDZ and cc-pVQZ basis sets of Dunning and
coworkers,48 as well as DZP and TZ2P sets. The
DZP basis sets were comprised of the standard
Huzinaga–Dunning49 double-ζ sp set augmented
with a d-type manifold [αd(C) = 0.75, αd(O) =
0.85, αd(S) = 0.70], while the TZ2P basis con-
sisted of the standard Huzinaga–Dunning50 triple-
ζ sp set augmented with two polarization mani-
folds [αp(H) = 1.5, 0.375; αd(O) = 1.7, 0.4250;
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TABLE I.
Iterations Required by Various Diagonalization Schemes for (10−10 Eh) Convergence of Selected CI Wave
Functions for Model Species.a

(Collapse Size, Subspace Dimension)b

(Precon, Update) (∞, ∞) (2,4) (2,3) (1,4) (1,3) (1,2)

X̃ 1A1 H2O (cc-pVDZ FCI) 19 604 169 dets (C2v)
(DVD, DVD) 12 12 (13) 12 (13) 14 (14) 15 (14) 22
(DVD, OLS) 12 12 (13) 12 (13) 14 (14) 16 (14) 22
(GDVD, DVD) 10 10 (11) 10 (10) 11 (11) 11 (11) 15
(GDVD, OLS) 10 10 (11) 10 (10) 11 (11) 11 (11) 15

(GDVD, OLS) OLS(1,1) = 25 (10 for µEh conv)c

MIT(1,2) = 21 (7 for µEh conv)c

X̃ 1A1 O3 (TZ2P CISD) 109 033 dets (C2v)
(DVD, DVD) 13 13 (14) 14 (14) 15 (15) 17 (14) 26
(DVD, OLS) 13 13 (14) 13 (14) 15 (15) 16 (14) 26
(GDVD, DVD) 11 12 (12) 12 (13) 13 (12) 13 (13) 22
(GDVD, OLS) 11 12 (12) 11 (12) 12 (12) 12 (12) 17

(GDVD, OLS) OLS(1,1) = 21 (12 for µEh conv)
MIT(1,2) = 20 (11 for µEh conv)

X 1	+
g N2 (cc-pVDZ CISDTQ) 969 718 dets (D2h)

(DVD, DVD) 15 15 (16) 15 (16) 17 (16) 18 (16) 28
(DVD, OLS) 14 15 (16) 15 (16) 17 (16) 18 (16) 28
(GDVD, DVD) 12 13 (12) 12 (12) 13 (13) 13 (12) 17
(GDVD, OLS) 12 13 (12) 12 (12) 13 (13) 13 (12) 17

(GDVD, OLS) OLS(1,1) = 17 (9 for µEh conv)
MIT(1,2) = 17 (9 for µEh conv)

X 1	+
g C2 (DZP CISDTQ) 582 455 dets (D2h)

(DVD, DVD) 18 18 (22) 19 (26) 31 (21) 33 (26) 60
(DVD, OLS) 18 18 (23) 19 (26) 31 (21) 36 (26) 60
(GDVD, DVD) 14 14 (15) 14 (16) 18 (16) 20 (17) 28
(GDVD, OLS) 14 14 (15) 14 (16) 16 (16) 19 (17) 28

(GDVD, OLS) OLS(1,1) = DNCd (DNCd for µEh conv)c

MIT(1,2) = DNCd (10 for µEh conv)c

2 1	+
g C2 (DZP CISDTQPH) 16 786 215 dets (D2h)

(DVD, DVD) 20 21 (25) 21 (25) 28 (26) 29 (26) 86 (32)
(DVD, OLS) 20 21 (25) 21 (25) 28 (26) 30 (26) 86 (32)
(GDVD, DVD) 16 16 (19) 16 (20) 18 (18) 20 (18) 36 (22)
(GDVD, OLS) 16 16 (18) 16 (18) 19 (18) 19 (18) 35 (20)

X̃ 1A1g C2H4 (TZ2P CISD) 40 021 dets (D2h)
(DVD, DVD) 11 11 (11) 11 (11) 11 (11) 11 (11) 16
(DVD, OLS) 11 11 (11) 11 (11) 11 (11) 11 (11) 15
(GDVD, DVD) 9 9 (9) 10 (10) 10 (10) 9 (9) 16
(GDVD, OLS) 9 10 (10) 10 (10) 10 (10) 9 (9) 12

(GDVD, OLS) OLS(1,1) = 14 (8 for µEh conv)
MIT(1,2) = 14 (8 for µEh conv)
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TABLE I.
(Continued)

(Collapse Size, Subspace Dimension)b

(Precon, Update) (∞, ∞) (2,4) (2,3) (1,4) (1,3) (1,2)

X̃ 1A1 SO2 (DZP CISD) 41 738 dets (C2v)
(DVD, DVD) 13 13 (14) 13 (14) 15 (13) 15 (14) 25
(DVD, OLS) 13 13 (14) 13 (14) 15 (13) 15 (14) 25
(GDVD, DVD) 11 11 (11) 11 (12) 12 (12) 12 (12) 21
(GDVD, OLS) 11 11 (11) 11 (11) 11 (11) 11 (11) 16

(GDVD, OLS) OLS(1,1) = 20 (11 for µEh conv)
MIT(1,2) = 18 (8 for µEh conv)

X̃ 1	+ HCN (cc-pVDZ CISDTQ) 4 601 819 dets (C2v)
(DVD, DVD) 15 15 (15) 15 (16) 16 (16) 18 (16) 25
(DVD, OLS) 15 15 (15) 15 (16) 16 (16) 19 (16) 25
(GDVD, DVD) 13 13 (13) 13 (13) 13 (13) 14 (13) 18
(GDVD, OLS) 13 13 (13) 13 (13) 13 (13) 14 (13) 19

(GDVD, OLS) OLS(1,1) = 87 (13 for µEh conv)
MIT(1,2) = 72 (10 for µEh conv)

X 1	+ SiO (cc-pVDZ CISDTQ) 1 938 774 dets (C2v)
(DVD, DVD) 16 16 (17) 16 (18) 19 (18) 23 (19) 34
(DVD, OLS) 16 16 (17) 16 (18) 19 (18) 23 (19) 34
(GDVD, DVD) 14 14 (15) 14 (15) 16 (16) 19 (16) 27
(GDVD, OLS) 14 14 (15) 15 (15) 16 (16) 19 (16) 27

(GDVD, OLS) OLS(1,1) ≥ 100 (33 for µEh conv)
MIT(1,2) ≥ 100 (12 for µEh conv)

X̃ 1	+
g C2H2 (cc-pVDZ CISDTQ) 4 681 508 dets (D2h)

(DVD, DVD) 13 13 (14) 13 (14) 14 (15) 17 (14) 22
(DVD, OLS) 13 13 (14) 13 (14) 14 (15) 17 (14) 22
(GDVD, DVD) 11 11 (12) 11 (12) 12 (12) 13 (12) 17
(GDVD, OLS) 11 11 (12) 11 (12) 12 (12) 13 (12) 17

(GDVD, OLS) OLS(1,1) = 38 (12 for µEh conv)
MIT(1,2) = 28 (10 for µEh conv)

X̃ 1A1 NH3 (cc-pVDZ CISDTQ) 2 333 495 dets (Cs)
(DVD, DVD) 13 13 (14) 13 (14) 16 (14) 18 (15) 27
(DVD, OLS) 13 13 (14) 13 (14) 16 (14) 18 (16) 26
(GDVD, DVD) 11 11 (12) 11 (12) 12 (12) 14 (13) 20
(GDVD, OLS) 11 11 (11) 11 (11) 12 (12) 13 (12) 17

(GDVD, OLS) OLS(1,1) = 23 (11 for µEh conv)
MIT(1,2) = 20 (8 for µEh conv)

αd(C) = 1.5, 0.375]. The C2 computations employed
Cartesian polarization sets while the remaining test
cases utilized pure spherical harmonics. The core
(canonical Hartree–Fock) orbitals were frozen for
all computations, and for C2 the corresponding
1s∗ virtual orbitals were deleted. Configuration in-
teraction wave functions through double (CISD),

quadruple (CISDTQ), and hextuple (CISDTQPH)
substitutions were included in the calibration. The
computations were carried out at the following
structures: [0.95885 Å, 104.34◦] (H2O), [1.2808 Å,
116.71◦] (O3), 1.1996 Å (N2), 1.2695 Å (C2), [1.076 Å
(rCH), 1.330 Å (rCC), 116.6◦ (θHCH)] (C2H4), [1.4303 Å,
119.28◦] (SO2), [1.064 Å (rCH), 1.156 Å (rCN)] (HCN),
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TABLE I.
(Continued)

(Collapse Size, Subspace Dimension)b

(Precon, Update) (∞, ∞) (2,4) (2,3) (1,4) (1,3) (1,2)

X 1	+
g F2 (cc-pVQZ CISD) 90 926 dets (D2h)

(DVD, DVD) 12 12 (13) 12 (13) 13 (13) 13 (13) 20
(DVD, OLS) 10 12 (13) 12 (13) 13 (13) 13 (13) 20
(GDVD, DVD) 10 9 (9) 10 (10) 10 (10) 9 (9) 16
(GDVD, OLS) 10 9 (9) 9 (9) 10 (10) 9 (9) 11

(GDVD, OLS) OLS(1,1) = 15 (9 for µEh conv)
MIT(1,2) = 13 (7 for µEh conv)

a Both the initial guess vector and the generalized Davidson preconditioner were obtained from model spaces (H00) of 400 and 1000
determinants for CI spaces below and above one million determinants, respectively. No intermediate interacting space 1 in eq. (14)
was used.
b Entries in parentheses involve least-squares extrapolation every third iteration.
c To achieve facile convergence, the model space was increased to 750 determinants.
d Did not converge.

1.50974 Å (SiO), [1.06126 Å (rCH), 1.2041 Å (rCC)]
(C2H2), [1.0138 Å (rNH), 106.13◦ (θHNH)] (NH3), and
1.41193 Å (F2). All computations were executed with
the PSI3 package51 as linked to the determinant-
based CI program DETCI.3

Results and Discussion

The data obtained in this study on the perfor-
mance of various diagonalization schemes and myr-
iad variants thereof are summarized in Tables I–III.
The chemical systems chosen for investigation ex-
hibit varying degrees of multireference character,
ranging from the classic singly bonded, 10-electron
systems H2O and NH3, through the closed-shell,

multiply bonded C2H4, C2H2, N2, and HCN mole-
cules, to species such as O3 recognized for strong
diradical character, and finally to the extreme case
of the two lowest 1	+

g states of C2. As manifested
in our earlier full CI and very high-order MPn
studies,52, 53 the carbon dimer exhibits an intricate
electronic structure due to a near degeneracy of the
fifth σ orbital and first π orbital.

Specification of the various diagonalization
schemes starts with the choice of the CI correction
vector, given either by the Davidson [DVD, eq. (8)]
or Olsen [OLS, eq. (12)] update prescription. For
the next option, the generalized Davidson (GDVD)
preconditioner (precon) includes off-diagonal cou-
pling terms in eq. (14), while the original Davidson
(DVD) approach includes only diagonal elements.

TABLE II.
Performance of Zeroth-Order Blocksize in the Generalized Davidson Preconditioner.a

X̃ 1A1 H2O 2 1	+
g C2 X̃ 1	+ HCN X 1	+ SiO X̃ 1	+

g C2H2 X̃ 1A1 NH3
H00 Blocksize/Dets 19,604,169 16,786,215 4,601,819 1,938,774 4,681,508 2,333,495

1 12 21 15 16 13 13
400 10 18 12 14 11 11

1000 10 16 12 13 11 11
2000 10 15 11 13 11 10
3000 9 15 11 13 10 9
4000 9 15 11 12 10 9

10,000 9 15 11 12 10 9

a Performance is quantified in the table by the number of iterations necessary for 10−10 Eh convergence. All computations involved
the same CI spaces specified in Table I and utilized a (precon, update) = (GDVD, DVD) approach with a (2,3) collapse scheme.
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TABLE III.
Performance of Diagonal Element Approximations in the Preconditioner.a

Methodb X̃ 1A1 H2O X 1	+
g C2 X̃ 1	+ HCN X 1	+ SiO X̃ 1	+

g C2H2 X̃ 1A1 NH3

A 11 15 12 14 12 11
B 10 15 12 14 11 11
C 11 16 12 14 12 12
D 12 20 14 19 14 12
E 18 44 20 23 19 17

a Performance is quantified in the table by the number of iterations required for 10−10 Eh convergence. All computations involved the
same CI spaces specified in Table I and utilized a (GDVD, DVD) approach with a (2,3) collapse scheme. An H00 block size of 1000
was used throughout. The various approximations were only applied to diagonal elements of the Hamiltonian outside the H00 block.
b A = exact diagonal energies; B = diagonal energies with averaged exchange integrals within each spin-coupling set; C = Evange-
listi approximation, eq. (22); D = corrected orbital energy approximation, eq. (21); E = simple orbital energy sum approximation.

Combining (precon, update) choices yields four ba-
sic methods for testing in Table I. Variations of these
methods are denoted by the notation (x, y), which
signifies collapsing the vector subspace to x vec-
tors per root with a maximum of y vectors per
root in the subspace prior to collapse. For compar-
ison purposes, secondary diagonalization runs for
each algorithm variant were performed by invoking
least-squares extrapolation via eq. (10) of the resid-
ual vectors every third iteration after the energy had
converged to 10−4 Eh. Finally, the specialized Olsen
[OLS(1,1)]15 and Mitrushenkov [MIT(2,1)]26 meth-
ods designed for exceptionally large CI problems
were added to the set of algorithms subjected to per-
formance testing. For all computations reported in
Table I, the initial guess vector was selected from the
diagonalization of a small subblock of the Hamil-
tonian matrix, chosen according to the lowest di-
agonal elements, with dimension ranging from 400
to 1000 determinants. In addition, the diagonal ele-
ments in the preconditioning matrix were approx-
imated, by averaging the exchange integrals over
entire spin-coupling sets, thereby maintaining spin
symmetry of the CI vectors at each iteration. In our
analysis of the performance data in Table I, we fo-
cus on percent variations in the number of iterations
required to achieve 10−10 Eh convergence, although
this simple criterion is certainly not the only factor
to consider when comparing different methods. For
example, additional I/O operations incur a signifi-
cant amount of overhead and, therefore, must also
be considered in the selection of the most efficient
methods, an aspect addressed separately below. The
relatively stringent 10−10 Eh primary threshold is
representative of the convergence levels required to
tightly optimize geometric structures, to compute
force fields by finite difference schemes, or to accu-

rately evaluate various molecular properties; it also
more clearly exposes differences in algorithmic ca-
pabilities. On the other hand, a 10−6 Eh secondary
threshold is used here to assess performance in
circumstances only requiring chemically significant
comparisons of single-point energies.

The first observation in Table I is that for all
molecules the traditional (precon, update) = (DVD,
DVD) method with no subspace restrictions (∞, ∞)
converges the energy to 10−10 Eh in 12–20 itera-
tions. By adding coupling in the preconditioner, the
(GDVD, DVD) method decreases the number of re-
quired iterations by a substantial 17±5%, the largest
improvement occurring, as expected, for the mul-
tireference C2 system. Without subspace restriction,
the choice of the DVD vs. OLS update vector has vir-
tually no effect on performance, as in only two cases
do the [(DVD, DVD), (DVD, OLS)] results differ and
in no cases do the [(GDVD, DVD), (GDVD, OLS)]
entries vary. The superiority of the GDVD precon-
ditioner waxes with truncation of the vector space,
particularly if the OLS update is employed. In the
extreme (1,2) truncation, the GDVD reduction in the
number of iterations, for the 10 cases excluding C2,
grows to (22%, 31%) for the (DVD, OLS) updates.
More strikingly, for X 1	+

g C2, the iterations required
with (1,2) truncation are reduced from 60 to 28 by
the GDVD preconditioner, regardless of the update
vector, and the number of iterations saved in the
2 1	+

g C2 case is even larger.
The data in Table I for the (x, y) truncation series

provide both unequivocal support for the efficacy
of subspace collapse and clear demonstration of pit-
falls to be avoided in this process. For both the
(precon, update) = (DVD, DVD) and (GDVD, DVD)
algorithms, the (2,4) and (2,3) collapse schemes in-
crease the number of iterations over the (∞, ∞)
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benchmark by less than 1 and 2%, respectively. This
remarkable performance shows that the full conver-
gence characteristics of the unrestricted Davidson
approach can indeed be maintained with subspaces
no larger than three expansion vectors. Truncation
beyond the (2,3) level does come with a cost, how-
ever. For the 10 cases excluding C2, the (1,4), (1,3),
and (1,2) collapses cause 13, 22, and 83% increases
over (∞, ∞) within the (DVD, DVD) method. Even
with preconditioner coupling in the (GDVD, DVD)
approach, these same iteration increases due to
truncation remain at 9, 12, and 69%, in order. More-
over, the C2 cases reveal the possible deleterious
effects of all procedures that collapse to only a sin-
gle vector; for example, the set of [(1,4), (1,3), (1,2)]
truncations for X 1	+

g C2 results in prodigious (72,
83, 330%) and (29, 43, 100%) increases for the (DVD,
DVD) and (GDVD, DVD) methods, in order. From
the data in Table I we may conclude that (2,3)
truncation provides no noticeable deterioration in
performance at all; (1,3) truncation may result in
efficiency loses less than 25%, but only for well-
behaved systems; and (1,2) truncation is expected
to require at least 50% more iterations, with possi-
ble catastrophic failure for multireference systems.
Finally, one observes that there are no systematic
differences in collapse behavior between the DVD
and OLS update procedures, except in the (1,2) ex-
treme with the GDVD preconditioner. In Table I,
(GDVD, OLS) provides substantial savings of up
to 31% over (GDVD, DVD) within the (1,2) scheme
for O3, C2H4, SO2, NH3, and F2, but not for the re-
maining molecules. Thus, as noted above, for (1,2)
collapse the OLS update appears to take greater
advantage of the GDVD preconditioner in certain
cases.

An assessment of least-squares extrapolation
prior to collapse in the diagonalization procedure
is provided by the entries in parentheses in Table I.
If the limitations on the subspace are not extreme,
as in the (2,4), (2,3), and (1,4) schemes, least-squares
extrapolation generally has a neutral effect, with de-
terioration of perhaps an iteration for two-vector
collapse but with comparable improvement for one-
vector collapse. The multireference C2 cases con-
stitute vivid exceptions to this trend, especially if
the GDVD preconditioner is not used. For example,
for ground-state C2 with the (DVD, DVD) method,
least-squares extrapolation within the [(2,4), (2,3),
(1,4)] schemes changes the number of required it-
erations from (18, 19, 31) to (22, 26, 21). As the
limitations on the subspace becomes extreme, the
extrapolation procedure gains real merit, once again
more pronounced if only the DVD preconditioner

is used. For the 12 cases presented in Table I, in-
voking extrapolation before collapse in the (DVD,
DVD) (1,3) method reduces the number of iterations
by an average of 11%. Finally, the 2 1	+

g C2 exam-
ple demonstrates dramatic improvements afforded
by least-squares extrapolation if the block Davidson
algorithm is subjected to extreme (1,2) collapse for
each root. To wit, with precon = DVD, extrapolation
results in an immense 63% reduction in iterations,
and even with precon = GDVD, the reduction is
around 40%. This observation is consistent with the
conclusions of Murray et al.28 that if multiple roots
are sought and the size of the vector space is limited,
then least-squares extrapolation of residual vectors
can substantially reduce the number of iterations in
the block Davidson procedure.

The OLS(1,1) and MIT(2,1) diagonalization meth-
ods for very large CI problems are designed to sac-
rifice CPU time for reduced storage requirements,
and the data reported in Table I reveal the extent of
the compromise. For the ground states of C2, HCN,
and SiO, both methods prove problematic. They are
effectively incapable of achieving tight (10−10 Eh)
convergence for these molecules, minimally requir-
ing over 70 iterations, or in the C2 multireference
system never reaching convergence at all. However,
for the eight other examples in Table I, both diago-
nalization methods are viable for tight convergence.
For OLS(1,1), the percentage increase in the number
of iterations compared to the (GDVD, OLS) (∞, ∞)
standard ranges from 50 to 250%, with an average
of about 100%, among the eight well-behaved mole-
cules. In the same comparison, the MIT(1,2) method
reduces the mean increase to 74%. With respect to
the (GDVD, OLS) (1,2) method of collapse, OLS(1,1)
and MIT(1,2) are more competitive, but still require
on average 40 and 23% more iterations, respectively.
The OLS(1,1) and MIT(1,2) methods are most effi-
cacious when only µEh convergence is sought. For
nine of the molecules in Table I, both algorithms de-
liver µEh convergence within 13 iterations. For SiO,
the OLS(1,1) method requires 33 iterations, whereas
MIT(1,2) completes the task in only 12 cycles. Fi-
nally, for X 1	+

g C2, OLS(1,1) fails for µEh conver-
gence, but MIT(1,2) is able to achieve this criterion
in only 10 cycles, provided the model space H00 is
increased to 750 determinants. Overall, in the best-
behaved cases of our study, MIT(1,2) reduces the
number of OLS(1,1) iterations required for µEh con-
vergence by 16% on average, but more importantly,
for ground-state C2 and SiO, MIT(1,2) averts the
convergence difficulties of the Olsen single-vector
approach. In summary, we find the OLS(1,1) and
MIT(1,2) methods to be effective diagonalization
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alternatives under the restricted conditions that a
minimal number of expansion vectors is possible,
limited energy convergence is acceptable, and the
wave function is not of extreme multireference char-
acter. For tight convergence and multireference sys-
tems, MIT(1,2) is clearly more robust than OLS(1,1),
but unless no other alternatives are feasible, neither
method can be recommended under these circum-
stances.

Diagonalization performance relative to the H00

block size of the generalized Davidson precondi-
tioner is presented in Table II. For the six molecu-
lar examples therein, expanding the dimension of
H00 from 1 to 1000 reduces the number of itera-
tions required for tight convergence by a substantial
15–24%, or 18% on average. Further expansion of
the zeroth-order block size from 1000 to 4000 gar-
ners an additional mean reduction of 10%, giving
an overall reduction of 27% with respect to the di-
agonal (DVD) preconditioner. Because the rate of
recovery decays, the effects of adding more cou-
pling in the preconditioner level off, and a point
of diminishing return is soon reached, wherein the
number of iterations saved does not pay for the ex-
tra CPU time spent in solving the expanded H00

linear system for δk
0 in eq. (14). This point of dimin-

ishing return is clearly dependent on the size of the
CI problem. For computations involving up to 100
million determinants, we found it to generally be
reached for block sizes less than 1000. Moreover, in
exploratory computations on the effect of adding an
intermediate coupling space in eq. (14), we found
little improvement in convergence by the addition
of H01 terms. In most of our computations, over half
of the feasible benefit of GDVD preconditioning was
achieved with an H00 block size of merely 400. In
brief, we recommend the use of a GDVD precon-
ditioner, with H00 block size of 400–1000, not only
for obtaining substantial reductions in the number
of required iterations for well-behaved systems but
also for ensuring convergence in more taxing mul-
tireference applications.

Various methods for approximating diagonal
elements in the preconditioner are compared in
Table III for six molecules. The first salient feature
of the data is that the use of average exchange in-
tegrals in a spin-coupling set (Method B) not only
matches the performance obtained with exact diag-
onal elements, but in two of the examples actually
reduces the number of iterations by 1. Therefore,
Method B is able to maintain spin symmetry in the
CI vector at each iteration in the diagonalization
procedure while maintaining or even improving the
rate of convergence. Among the three more approx-

imate methods (C–E), the Evangelisti approach of
eq. (22) (Method C) is clearly superior, suffering es-
sentially no compromise in convergence compared
to the exact method. In particular, in our test cases
the number of iterations required by Method C
never exceeds that required by either Method A
or B by more than 1. For four of the molecules
in Table III, Method D [eq. (21)] performs well,
but it is inadequate for C2 and SiO; on average,
Method D requires 20% more iterations than the ex-
act Method A. Finally, Method E, involving simple
sums of orbital energies, is entirely unsatisfactory
for all of the molecules, increasing the number of it-
erations anywhere from 50 to 200% over Method A.
From our data we strongly recommend the use of
average exchange integrals over spin-coupling sets
(Method B), or the Evangelisti approach (Method C)
if diagonal elements are to be computed on the fly.
Both methods preserve spin symmetry in the expan-
sion space.

Because the formation of one σ vector per root
per iteration is the most CPU-intensive part of
Davidson methods, simple iteration counts for var-
ious schemes, as presented in Tables I–III, are a
primary indicator of efficiency. However, to ensure
feasibility and to minimize the total wall time for
any specific diagonalization problem, it is also nec-
essary to weigh the costs of I/O operations and
the external storage space requirements against the
CPU expense of forming σ vectors. The implemen-
tation of collapse schemes is essential to reducing
both I/O operations and storage requirements. The
differences in I/O costs for various collapse schemes
can be assessed by counting the minimum num-
ber of required operations (rIO, wIO) involving a
(read,write) from/to disk of an entire vector of the
dimension (N) of the CI problem, assuming only
two storage buffers are available in memory whose
lengths are some fraction of N. For our purposes
we compare only single-root algorithms, started by
diagonalizing a small H00 block, implemented with
computation of diagonal Hamiltonian elements on
the fly, and tested for convergence by an energy cri-
terion and perhaps a residual vector norm from the
previous iteration.

Let (nc, nb) denote the (lower, upper) limits of
the subspace in the chosen collapse scheme, and let
v be the current number of expansion vectors for
a given iteration. Then an iteration of the David-
son method, with focus only on the I/O operation
count, can be laid out as follows: (1) If v = nb,
expend (rIO, wIO) = (2nbnc, 2nc) to collapse each of
the sets of b and σ vectors down to size nc, assum-
ing a straightforward quadratic contraction scheme
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is invoked rather than a reordered, linear contrac-
tion algorithm;54 (2) Expend (rIO, wIO) = (2v, 2) to
form and write the correction vector δ to disk, while
in the process rewriting the last b vector from the
previous iteration to disk in normalized form (un-
necessary immediately after a collapse); (3) Expend
(rIO, wIO) = (2v + 2, 1) to Schmidt orthogonalize the
δ vector against the existing expansion space and to
write the result in unnormalized form to disk as a
new b vector; (4) Perform an unspecified amount
of I/O to form and write a new σ vector to disk,
while simultaneously computing the next diagonal
element of the G matrix; (5) Expend (rIO, wIO) =
(v + 1, 0) to compute the off-diagonal elements of G
for the new b vector; (6) Diagonalize the expanded
G matrix of dimension v + 1 to obtain new α coef-
ficients and new eigenvalue estimates. Test for con-
vergence and perform another iteration if necessary.

The I/O requirements for step (4) do not depend
on the collapse scheme and are thus immaterial for
our comparisons. Moreover, the very first iteration
actually requires only rIO + wIO = 2 full operations
because the first b vector has nonzero elements only
in the small, zeroth-order space. By summing up
the I/O operations for successive iterations, we can
arrive at the following formula for the total cost,
NIO = rIO + wIO, incurred if n iterations are required
to converge the diagonalization procedure:

NIO = m(5m + 17)
2

− 9

+ q
[

nb(5nb + 7) − nc(5nc + 7)
2

]

+ p
(

5p + 10nc + 7
2

)

+ (q + 1 − δp,0)
[
2nc(nb + 1) − 1

]
(24)

where m = Min(n, nb − 1), q is the greatest integer
not exceeding [Max(n, nb − 1) − nb + 1](nb − nc)−1,
p = Max(n, nb − 1) − nb + 1 − q(nb − nc), and n > 1.
In essence, m is the number of startup iterations, q is
the number of full collapse cycles of duration nb−nc,
and p is the number of leftover iterations prior to
convergence.

In Table IV, eq. (24) is applied to model the
comparative I/O costs of the collapse schemes in-
vestigated in this article. It is worth emphasizing
that using a linear contraction algorithm54 rather
than the straightforward quadratic approach would
give reduced I/O costs, especially for larger (na, nb)
choices, but the data in Table IV are nonetheless in-
structive. For the full subspace method (∞, ∞), the
I/O costs start to dramatically increase past 10 iter-
ations. Indeed, in eq. (24) a large value of nb gives

q = 0, p = 0, and hence, NIO = (5n2 + 17n − 18)/2,
showing that the I/O requirements for the full sub-
space method grow quadratically with the number
of iterations. In contrast, in all collapse schemes
there is only a linear dependence of I/O operations
on n, and accordingly, past iteration 7, all such pro-
cedures involve a smaller NIO count, in the general
order (1, 2) < (1, 3) < (1, 4) < (2, 4) < (2, 3) <

(∞, ∞). To obtain benchmarks for typical tight di-
agonalization runs, note that at 10 iterations the
I/O reduction compared to (∞, ∞) is (55, 53, 47,
26, 18%) for [(1,2), (1,3), (1,4), (2,4), (2,3)] collapse,
and at 20 iterations these savings increase to (74, 72,
69, 55, 50%). As seen in the analysis of the data in
Table I above, both the (2,4) and (2,3) schemes retain
the convergence characteristics of the full subspace
method, with the former slightly more efficient than
the latter. Consideration of I/O loads enhances the
preference for the (2,4) approach, because it requires
about 10% fewer disk operations than (2,3). Increas-
ing the number of collapse vectors (nc) to 3 or
greater increases NIO of the (2,4) scheme over 50%,

TABLE IV.
Comparative I/O Costs (NIO) of Various Collapse
Schemes for the Davidson method.a

Iter (∞, ∞) (2,4) (2,3) (1,4) (1,3) (1,2)

2 18 18 18 18 18 18
3 39 39 49 39 36 34
4 65 74 80 59 52 50
5 96 95 111 75 70 66
6 132 130 142 96 86 82
7 173 151 173 116 104 98
8 219 186 204 132 120 114
9 270 207 235 153 138 130

10 326 242 266 173 154 146
11 387 263 297 189 172 162
12 453 298 328 210 188 178
13 524 319 359 230 206 194
14 600 354 390 246 222 210
15 681 375 421 267 240 226
16 767 410 452 287 256 242
17 858 431 483 303 274 258
18 954 466 514 324 290 274
19 1055 487 545 344 308 290
20 1161 522 576 360 324 306
21 1272 543 607 381 342 322
22 1388 578 638 401 358 338
23 1509 599 669 417 376 354
24 1635 634 700 438 392 370
25 1766 655 731 458 410 386

a Modeled according to eq. (24), and assuming a straightfor-
ward quadratic contraction scheme.
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whereas increasing the expansion vector limit (nb) to
5 results in I/O changes of only ±2%. Both of these
observations argue for the (2,4) scheme as the opti-
mal choice. However, if only three expansion and σ

vectors can be stored, then the (2,3) alternative is al-
most as good, unless I/O costs dominate over σ vec-
tor formation, in which case the (1,3) approach will
reduce the (2,3) I/O by over 40% at the expense of
only 25% or fewer iterations for well-behaved cases.

Although the (2,3) approach requires more I/O
operations than the (2,4) scheme, its performance is
quite remarkable. In fact, the (2,3) approach opens
up the possibility of retaining the convergence of
the full subspace method when carrying out large-
scale CI computations; if all six vectors can be stored
in core memory, then the I/O costs associated with
the (2,3) method are eliminated. As an example,
consider the largest CI computation to date, a 10 bil-
lion determinant FCI energy.18 The half a terabyte of
memory necessary to store six vectors of that length
currently exceeds that available on most computer
clusters. However, several supercomputers at vari-
ous national laboratories and supercomputing cen-
ters have up to eight times this storage capacity.
For distributed computing, the (2,3) method does
not incur any additional communication overhead
relative to the Olsen single-vector iterator; the only
nonlocal data operations are in the formation of the
σ vector, which depends on the current δ vector,
not the total number of expansion vectors. There-
fore, with the (2,3) method benchmark FCI property
studies containing at least 10 billion determinants
are now feasible.

Recommendations and Conclusions

The following conclusions are drawn from the
current study.

1. In typical applications, placing coupling in the
preconditioner via the generalized Davidson
(GDVD) method accelerates convergence by
about 20% for zeroth-order block sizes of 400–
1000. The use of the GDVD preconditioner
increases in importance, and may become crit-
ical for convergence, in multireference appli-
cations, when several roots are sought, or un-
der severe constraints of the expansion space.

2. A point of diminishing return in expansion of
the H00 block size in the GDVD preconditioner
appears to be reached by 1000 determinants
for CI problems less than 100 million, because

the rate of convergence exhibits a pseudologa-
rithmic dependence on the dimension of H00.

3. Invoking the (2,4) and (2,3) subspace collapse
schemes achieves dramatic improvements in
storage and I/O requirements at virtually no
expense (<5%) in convergence rate. In typ-
ical applications, (1,4) and (1,3) collapse is
expected to increase the number of iterations
for tight convergence by less than 15 and 25%,
respectively, the loses being reduced by us-
ing a GDVD preconditioner. The extreme (1,2)
approach suffers from efficiency loses greater
than 50%, and is prone to divergent behavior
in multireference systems.

4. The Davidson (DVD) and Olsen (OLS) update
vectors exhibit virtually identical convergence
properties and no systematic differences in
collapse behavior, except in the (1,2) extreme,
where OLS may be preferred by up to 30%.

5. The use of least-squares extrapolation prior
to subspace collapse has a neutral effect in
typical applications, but in accord with the
observations of Murray et al.,28 it may yield
substantial benefit if multiple roots are sought,
the GDVD preconditioner is not employed, or
the subspace size is severely limited.

6. The Olsen [OLS(1,1)] and Mitrushenkov
[MIT(1,2)] one- and two-vector iterators,
or similar alternatives,55 are reasonable
approaches for obtaining µEh accuracy in
very large CI problems, where storage and
I/O requirements must be reduced in favor
of additional CPU demands. However, these
methods, particularly OLS(1,1), should be
used with caution because they suffer severe
convergence problems when there are near
degeneracies in the eigenspectrum.

7. The diagonal element approximations involv-
ing averaged exchange integrals over a spin-
coupling set and orbital energy differences
referenced to the Hartree–Fock determinant
[eq. (22)] both retain the convergence charac-
teristics of the exact method while ensuring
the maintenance of proper spin symmetry. The
Evangelisti method16 of eq. (22) is particularly
well suited for efficient on-the-fly evaluation.
The orbital energy sum approximation per-
forms poorly and should be avoided.

For typical applications the (2,4) and (2,3) col-
lapse schemes are highly recommended, and should
be implemented with generalized Davidson pre-
conditioners involving H00 blocks up to 1000, with
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either Davidson or Olsen update vectors, and with
one of the two preferred diagonal element approxi-
mations. The (2,3) scheme is particularly promising
for applications where six vectors can be stored in
memory, thus eliminating all I/O overhead with-
out loss of convergence efficiency. The full subspace
approach will provide no significant improvements
in convergence over the (2,3) and (2,4) truncations
and will carry substantially greater storage and
I/O requirements. Collapsing the subspace to one
vector brings slower rates of convergence, and car-
rying more than two vectors after a collapse has
the same drawbacks as the full subspace method,
i.e., greater storage and I/O burdens for no return.
Least-squares extrapolation in typical applications
not involving numerous roots is unnecessary.

Finally, although not considered in the present
study, compression techniques and better initial
guesses can improve the overall efficiency of
the diagonalization procedure. Compression algo-
rithms can be used to minimize I/O overhead
by only storing to disk the coefficients larger
than a given threshold39, 47 or by employing other
techniques.45, 46 Improved initial guesses could be
obtained by using a smaller CI wave function as an
initial guess to a larger CI computation, for example,
using a CISDTQ wave function as an initial guess
for a CI computation including single through six-
fold substitutions (CISDTQPH).

Although the recommended schemes were cal-
ibrated for symmetric (CI) matrices, the gen-
eral techniques are extendable to nonsymmetric
eigenvalue problems56 found in electronic struc-
ture theory (e.g., EOM-CC, TD-DFT, and TD-
HF). The recommended schemes have been used
within the PSI3 package51 to carry out FCI bench-
marks on systems involving over a billion Slater
determinants.19, 20, 52, 53, 57, 58

Appendix A: THE DAVIDSON–LIU
ITERATIVE METHOD FOR THE LOWEST
FEW EIGENVECTORS AND
EIGENVALUES OF REAL, SYMMETRIC
MATRICES (ADAPTED FROM REF. 27)

1. Select a set of L orthonormal guess vectors, at
least one for each root desired, and place in the
set {bi}.

2. Use a standard diagonalization method to
solve the L × L eigenvalue problem

Gαk = ρkαk, k = 1, 2, . . . , M (25)

where

Gij = (bi, Hbj) = (bi, σ j), 1 ≤ i, j ≤ L (26)

and M is the number of roots of interest.
3. Form the correction vectors {δk}, k = 1,

2, . . . , M, defined as

δk
I = −(

HII − ρk)−1r k
I , I = 1, 2, . . . , N (27)

where

rk =
L∑

i = 1

αk
i

(
H − ρk)bi (28)

and N is the number of determinants or con-
figuration state functions.

4. Normalize {δk}.
5. Schmidt orthonormalize the first δk-vector

against the set {bi} and append the result
to {bi}. Repeat this process for each of the other
M − 1 correction vectors, neglecting any new
vector whose norm after Schmidt orthogonal-
ization is less than some threshold T ∼ 10−3.
This results in the addition of m new b vectors,
with 1 ≤ m ≤ M.

6. Increase L by m and return to step 2.
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