Streams, Rivers, and Nonpoint Source Pollution **Barry Tonning** Tetra Tech ## Uses of Rivers Common Designated Uses Cultural uses Swimming (primary contact) Boating (secondary contact) Fishing (secondary contact) Fish habitat (aquatic life support) Water supply (drinking, ag, industrial, etc.) | STE | REAM NAME | | LOCATION STREAM CLASS RIVER BASIN | | | | | | | | |--|---|---|---|--|---|---|--|--|--|--| | STA | ATION#I | RIVERMILE | | | | | | | | | | LA | T L | .ONG | | | | | | | | | | STO | ORET# | | AGENCY | | | | | | | | | INV | ESTIGATORS | | | | | | | | | | | FOI | RM COMPLETED BY | | DATE AM | PM | REASON FOR SUR | VEY | | | | | | | Habitat | Condition Category | | | | | | | | | | | Parameter ' | Optimal | Suboptimal | Cate | Marginal Marginal | Poor | | | | | | | - | Greater than 50% of | 30-50% mix of stable | 40.0 | 0% mix of stable | Poor
Less than 10% stable | | | | | | | 1. Epifaunal
Substrate/
Available Cover | substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | habitat; well-suited for
full colonization potential;
adequate habitat for
maintenance of
populations; presence of
additional substrate in the
form of newfall, but not
yet prepared for
colonization (may rate at
high end of scale). | habit
avail
desir
frequ
remo | tat; habitat
lability less than
able; substrate
nently disturbed or
oved. | habitat; lack of habitat is
obvious; substrate
umstable or lacking. | | | | | | reac | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 | 9 8 7 6 | 5 4 3 2 1 0 | | | | | | neters to be evaluated in sampling reach | 2. Pool Substrate
Characterization | Mixture of substrate
materials, with gravel and
firm sand prevalent; root
mats and submerged
vegetation common. | Mixture of soft sand, mud,
or clay; mud may be
dominant; some root mats
and submerged vegetation
present. | botto
mat; | nud or clay or sand
om; little or no root
no submerged
tation. | Hard-pan clay or bedrock;
no root mat or vegetation. | | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 | 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | 3. Pool Variability | Even mix of large-
shallow, large-deep,
small-shallow, small-deep
pools present. | Majority of pools large-
deep; very few shallow. | | low pools much more
alent than deep pools. | Majority of pools small-
shallow or pools absent. | | | | | | 9 | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 | 9 8 7 6 | 5 4 3 2 1 0 | | | | | | 8. Bank Stability
(score each bank) | Banks stable; evidence of
erosion or bank failure
absent or minimal; little
potential for future
problems. <5% of bank
affected. | | | Moderately stable;
infrequent, small areas of
erosion mostly healed
over. 5-30% of bank in
reach has areas of erosion. | | | Moderately unstable; 30-
60% of bank in reach has
areas of erosion; high
erosion potential during
floods. | | | Unstable; many eroded
areas; "raw" areas
frequent along straight
sections and bends;
obvious bank sloughing;
60-100% of bank has
erosional scars. | | | |--|--|----|--|--|---|---|---|---|---|---|---|---| | SCORE (LB) | Left Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SCORE (RB) | Right Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 9. Vegetative
Protection (score
each bank)
Note: determine left
or right side by
facing downstream. | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | | 50-70% of the streambank
surfaces covered by
vegetation; disruption
obvious; patches of bare
soil or closely cropped
vegetation common; less
than one-half of the
potential plant stubble
height remaining. | | | Less than 50% of the
streambank surfaces
covered by vegetation;
disruption of streambank
vegetation is very high;
vegetation has been
removed to
5 centimeters or less in
average stubble height. | | | | | | SCORE (LB) | Left Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SCORE (RB) | Right Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 10. Riparian
Vegetative Zone
Width (score each
bank riparian zone) | Width of riparian zone
>18 meters; human
activities (i.e., parking
lots, roadbeds, clear-cuts,
lawns, or crops) have not
impacted zone. | | Width of riparian zone 12-
18 meters; human
activities have impacted
zone only minimally. | | Width of riparian zone 6-
12 meters; human
activities have impacted
zone a great deal. | | | Width of riparian zone <6
meters: little or no
riparian vegetation due to
human activities. | | | | | | SCORE (LB) | Left Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SCORE (RB) | Right Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | #### Stream Visual Assessment Protocol (NRCS) One assessment tool provides basic stream health evaluation. Scores are assigned for the following: Channel condition Hydrologic alteration Riparian zone width Canopy cover Water appearance Nutrient enrichment Manure presence Salinity Fish movement barriers Instream fish cover Pools and riffles Invertebrate habitat Macro invertebrates http://www.ncg.nrcs.usda.gov/pdf/svapfnl.pdf #### Measuring Water Quality Indicators - We can define what we want to use the water for (designated uses) - We can measure how clean the water has to be to support those uses (water quality criteria) - We can measure what the water quality is now (ambient water quality conditions) - Then, we can compare . . . Physical, chemical, and biological factors are most often measured, but flow and energy (mostly sunlight) can be important considerations Figure 6: Monitoring Types and Pollutants or Conditions That They Measure Biological **Physical** Chemical Tests for levels of: Assesses: Measures: · Structure and function of Pesticides of riparian vegetation Health and abundance of aquatic species or aquatic communities Habitat, such as condition - fish populations - Temperature - Conductivity - Transparency - Total suspended solids - Organics - · Metals (cadmium, arsenic, etc.) - Nutrients (phosphorous, nitrogen) - Toxic materials in fish tissue #### Failing Septic Systems - Pipe from septic tank to ditch - Fairly common for older, rural homes - Direct discharges to creeks, field tiles/drains, ditches should have NPDES permit coverage # Common NPS pollutants: sediment ### Other measures: pH - Measure of hydrogen ion concentration - Typically 6.5 s.u. to 9.0 s.u. needed for most biota - Determines the solubility and bioavailability of various chemicals #### Summary - Lots of ways to characterize water bodies - Biological indicators - Habitat surveys - Geomorphic assessments - Chemical parameters - Polluted (nonpoint source) runoff is one of the biggest problems in California and nationwide - Nutrients: cause algae growth & oxygen depletion - Pathogens: bacteria can cause illnesses - Sediment: smothers habitat, muddles the water, lots of sources