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ABSTRACT 

 
Volume I of the final report for the 
Battelle Integrity of Nuclear Piping 
(BINP) program provided a summary of 
the results from this program and a 
discussion of the implications of those 
results.  This volume (Volume II - 
Appendices) provides the details from  

the various technical tasks conducted as 
part of this program.  Each individual 
appendix provides the details of a 
specific task conducted as part of the 
BINP program.
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FOREWORD 

Since 1965, the U.S. Nuclear Regulatory 
Commission (NRC) has been involved 
in research on various aspects of pipe 
fracture in nuclear power plant piping 
systems.  The most recent programs are 
the Degraded Piping Program, Short 
Cracks in Piping and Piping Welds 
Program, and two International Piping 
Integrity Research Group programs.  
These programs have developed and 
validated “state-of-the-art” structural 
analysis methods and data for nuclear 
piping systems. 
 
This report describes the results of the 
Battelle Integrity of Nuclear Piping 
(BINP) program, which was performed 
by Battelle Columbus Laboratories.  
The objective of the BINP program was 
to address the most important unresolved 
technical issues from the earlier research 
programs.  The BINP program was 
initiated as an international program to 
enable fiscal leveraging and an expanded 
scope of work.  Technical direction for 
the program was provided by a Technical 
Advisory Group composed of 
representatives from the funding 
organizations. 
 
The BINP program was divided into 
eight independent tasks, each of which 
examined one of the unresolved 
technical issues.  These eight tasks 
included both experimental and 
analytical efforts.  The two pipe-system 
experiments examined the effects of 
secondary stresses (such as thermal 
expansion) and cyclic loading (such 

as during a seismic event) on the load-
carrying capacity of flawed piping.  For 
these experiments, the pipe system had 
large flaws or cracks.  The remaining six 
tasks were “best-estimate” analyses 
to examine the effects of other factors, 
such as pipe system boundary 
conditions, and weld residual stresses on 
the behavior of flawed pipes.  Many of 
these analyses involved the use of finite 
element modeling techniques.  One of 
these analytical tasks was to examine the 
actual margins that may exist in flawed 
pipe evaluations as a result of non-linear 
behavior.  While the magnitude of these 
margins would vary on a case-by-case 
basis, the results of this task show that a 
potential for significant margins does 
exist. 
 
In addition to developing a technical 
basis for more advanced inservice flaw 
evaluation procedures for use with Class 
1 piping, as defined by the American 
Society of Mechanical Engineers 
(ASME), the BINP program considered 
the development of flaw evaluation 
procedures for ASME Class 2 and 3 
piping and balance-of-plant piping. 
 
This research supports the NRC’s goal to 
improve the effectiveness and realism of 
the agency’s regulatory actions. 
 
 
                                                                
 Carl Paperiello, Director 
 Office of Nuclear Regulatory Research 
 U.S. Nuclear Regulatory Commission 
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A.1  BACKGROUND 
 
Currently, the flaw evaluation procedures 
embodied in ASME Section XI specify different 
safety factors for global secondary stresses, such 
as thermal expansion and seismic anchor motion 
(SAM) stresses, than they do for primary 
stresses, such as primary membrane or primary 
bending stresses.  The ASME Code specifies a 
safety factor of 2.77 for Service Levels A and B, 
and 1.39 for Service Levels C and D for primary 
stresses.  For cracks in ferritic materials (base 
metal and welds) and austenitic flux welds 
(submerge-arc and shielded-metal-arc welds), 
the Section XI procedures indicate that the 
thermal expansion stresses should be included, 
but with a safety factor of only 1.0.  In addition, 
for cracks in austenitic base metals, the ASME 
Code indicates that thermal expansion stresses 
need not be considered.  Furthermore, the 
current ASME Section XI procedures do not 
explicitly require SAM stresses to be considered, 
regardless of the material.   
 
The R6 analysis classifies certain secondary 
stresses, such as thermal expansion and other 
displacement-induced stresses (SAM), as 
effectively being primary stresses if there is 
significant elastic follow-up at the crack section.  
These stresses will not generally be self-
equilibrating as is typically assumed for 
secondary stresses, such as weld residual 
stresses. 
 
In a similar view, the LBB procedures specified 
in draft Standard Review Plan (SRP) 3.6.3 have 
an option that allows the thermal expansion 
stresses to be considered in the stability analysis 
of cracks in austenitic submerge-arc and 
shielded-metal-arc welds, but not in the stability 
analysis of cracks in austenitic wrought base 
metals and TIG welds.  For ferritic materials, 

this option is not given so that secondary and 
primary stresses are combined. 
 
A.2  RESULTS OF PRIOR PIPE-SYSTEM 
EXPERIMENTS 
 
The results from the IPIRG pipe-system 
experiments indicate that for large cracks, where 
the failure stresses are below the general yield 
strength of the uncracked pipe, the thermal 
expansion and SAM stresses contributed just as 
much to fracture as did the primary stresses, see 
Figure A.1.  Figure A.1 shows a plot of the 
maximum experimental stress normalized by the 
Net-Section-Collapse (NSC) stress for five 
quasi-static bend and five pipe-system 
experiments conducted as part of the IPIRG 
(Refs. A.1 and A.2) and related programs (Refs. 
A.3 and A.4).  The crack sizes in each of these 
experiments were relatively large, such that the 
failure moments were low enough that plasticity 
was restricted to the crack section.  The 
maximum experimental stresses have been 
normalized by the NSC stress to account for 
slight differences in pipe size and crack size.  
For each experiment, the maximum stress has 
been broken down into its various stress 
components, i.e., primary membrane, primary 
bending (inertial), seismic anchor motion, and 
thermal expansion  (For the quasi-static bend 
companion experiments, the only stress 
components applicable are primary membrane 
and primary bending [quasi-static bending]).  
From Figure A.1 it can be seen that if the 
thermal expansion and SAM stresses are ignored 
in the stress terms for the pipe-system 
experiments, then the normalized failure stresses 
for the pipe-system experiments would only be 
40 to 50 percent of normalized failure stresses 
for the quasi-static bend experiments.  
Consequently, it appears from these results that 
secondary stresses do contribute to fracture, at 
least for the case of large surface cracks where 
plasticity is limited.   
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Figure A.1  Comparison of the results from the IPIRG-1 pipe-system experiments with companion 

quasi-static, four-point bend experiments demonstrating how global secondary stresses, such as 
thermal expansion and seismic anchor motion stresses, contribute to fracture 

 
 
A.3  BINP TASK 1 EXPERIMENT 
 
As part of this effort in the BINP program, 
another pipe-system experiment (BINP 
Experiment 1) was conducted.  For this 
experiment the actuator was intentionally offset 
at the beginning of the experiment, prior to the 
application of the dynamic cyclic load history, to 
simulate a larger thermal expansion stress.  
Figure A.2 is a plot of the actuator time history 
for this experiment along with the actuator time 
history for its companion pipe-system 
experiment from the First IPIRG program, i.e., 
Experiment 1.3-5.  The crack for both of these 
pipe-system experiments (1.3-5 from IPIRG-1 

and BINP Experiment 1) was located in the 
center of a stainless steel submerge-arc weld.  
The crack sizes for both experiments were 
nominally the same, i.e., 50 percent of the pipe 
circumference in length and 66 percent of the 
pipe wall thickness in depth.  From Figure A.2 it 
can be seen that the actuator for the BINP 
experiment was offset an additional 56 mm (2.2 
inches) at the start of the experiment with 
respect to the actuator displacement for the 
IPIRG-1 experiment.  This additional static 
offset in displacement resulted in an additional 
255 kN-m (2,257 in-kips) of static moment at 
the crack section.   
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Figure A.2  Actuator time history for BINP Task 1 experiment and IPIRG-1 Experiment 1.3-5 

 
 
Figure A.3 is a plot of the crack section moment 
as a function of time for these two pipe-system 
experiments up to the instant when the surface 
crack penetrated the pipe wall thickness.  From 
this figure it can be seen that the total moment at 
the crack section at the instant of surface crack 
penetration was comparable for the two 
experiments.  This further supports the 
contention that these global secondary stresses 
(thermal expansion and SAM stresses) 
contribute just as much to fracture as do the 
primary stresses, at least for the case where the 

stresses in the uncracked pipe are below the 
yield strength of the pipe.  From Figure A.4, 
which is a similar plot as Figure A.1, except it 
shows the results for the four stainless steel weld 
experiments (Experiment 4141-4 from the 
Degraded Piping Program, Experiment 1.3-5 
from IPIRG-1, Experiment 1-5 from IPIRG-2, 
and the BINP Task 1 experiment), it can be seen 
that the primary stresses for the BINP Task 1 
experiment represented only 35 percent of the 
total stress at maximum load. 
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Figure A.3  Plot of crack section moment as function of time for BINP Task 1 experiment  

and IPIRG-1 Experiment 1.3-5 
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Figure A.4  Comparison of the results from four stainless steel weld experiments showing the 

contributions of the various stress components to pipe fracture 
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These findings support the contention that the 
thermal expansion and seismic anchor motion 
(SAM) stresses (secondary stresses) are as 
detrimental as the primary stresses, at least for 
these test conditions for which the stresses at 
failure for the uncracked pipe were less than the 
yield strength of the material.   
 
For such conditions, there is the potential for 
elastic follow-up.  Section III of the ASME code 
recognizes this potential in its local overstrain 
criteria in paragraph NC-3672.6(b).  This 
paragraph implies that global secondary stresses, 
such as thermal expansion and seismic anchor 
motion stresses, can act as primary stresses 
under certain conditions, such as when the 
weaker or higher stressed portions of the piping 
system are subjected to strain concentrations due 
to elastic follow-up of the stiffer or lower 
stressed portions.  One such obvious example of 
this is the IPIRG pipe system in which a large 
crack is introduced into a weaker material (lower 
yield strength) than the surrounding materials.  
Consequently, the resultant stresses for the 
uncracked pipe sections were less than the yield 
strength at the time of failure of the cracked 
section.  The implication is that the safety 
margins for secondary stresses may be a 
function of the ratio of the failure stress to the 
yield strength.  If the failure/yield stress ratio is 
less than 1.0, then global secondary stresses 
should probably be treated the same as primary 
stresses for fracture in the stability/critical crack 
size analyses.  If the opposite holds true, then the 
global secondary stresses may become less 
important with some nonlinear function. 
 
A.4  REFERENCES 
 
A.1  Scott, P., Olson, R., and Wilkowski, G. 
Marschall, C., and Schmidt, R., “Crack Stability 
in a Representative Piping System Under 
Combined Inertial and Seismic/Dynamic 
Displacement-Controlled Stresses – Subtask 1.3 
Final Report,” NUREG/CR-6233, Vol. 3, June 
1997. 
 
A.2  Scott, P., Olson, R., Marschall, C., 
Rudland, D., Francini, R., Wolterman, R., 
Hopper, A., and Wilkowski, G., “IPIRG-2 Task 
1 – Pipe System Experiments with 

Circumferential Cracks in Straight-Pipe 
Locations,” NUREG/CR-6389, February 1997. 
 
A.3  Wilkowski, G., and others, “Degraded 
Piping Program – Phase II, Summary of 
Technical Results and Their Significance to 
Leak-Before-Break and In-Service Flaw 
Acceptance Criteria – March 1993 – December 
1994,” NUREG/CR-4599, Vol. 8, March 1989. 
 
A.4  Kanninen, M., and others, “Instability 
Predictions for Circumferentially Cracked Type 
304 Stainless Steel Pipes Under Dynamic 
Loadings,” EPRI Report NP-2347, April 1982. 


	Table of Contents
	Abstract
	Foreword
	Appendix A Evaluation of Procedures for the Treatment of Secondary Stresses in Pipe Fracture Analyses



