

The Battelle Integrity of Nuclear Piping (BINP) Program Final Report

Appendices

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001

The Battelle Integrity of Nuclear Piping (BINP) Program Final Report

Appendices

Manuscript Completed: September 2003 Date Published: June 2005

Prepared by P.Scott¹, R.Olson¹, J.Bockbrader¹, M.Wilson¹, B.Gruen¹, R.Morbitzer¹, Y.Yang¹, C.Williams¹, F.Brust¹, L.Fredette¹, N.Ghadiali¹

G.Wilkowski², D.Rudland², Z.Feng², R.Wolterman²

¹Battelle 505 King Avenue Columbus, OH 43201

Subcontractor: ²Engineering Mechanics Corporation of Columbus 3518 Riverside Drive Suite 202 Columbus, OH 43221-1735

C. Greene, NRC Project Manager

Prepared for Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 NRC Job Code W6775

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material	Non-NRC Reference Material	
As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at <u>http://www.nrc.gov/reading-rm.html</u> . Publicly released records include, to name a few, NUREG-series publications; <i>Federal Register</i> notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments. NRC publications in the NUREG series, NRC regulations, and <i>Title 10, Energy</i> , in the Code of <i>Federal Regulations</i> may also be purchased from one of these two sources. 1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000	Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, <i>Federal</i> <i>Register</i> notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at— The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738 These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from— American National Standards Institute 11 West 42 nd Street New York, NY 10036–8002 www.ansi.org 212–642–4900	
A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows: Address: Office of the Chief Information Officer, Reproduction and Distribution Services Section U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail: DISTRIBUTION@nrc.gov Facsimile: 301–415–2289 Some publications in the NUREG series that are posted at NRC's Web site address <u>http://www.nrc.gov/reading-rm/doc-collections/nuregs</u> are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site	Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC. The NUREG series comprises (1) technical and administrative reports and books prepared by the staff or agency contractors, (2) proceedings of conferences, (3) reports resulting from international agreements, (4) brochures, and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG–0750).	

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

ABSTRACT

Volume I of the final report for the Battelle Integrity of Nuclear Piping (BINP) program provided a summary of the results from this program and a discussion of the implications of those results. This volume (Volume II -Appendices) provides the details from

the various technical tasks conducted as part of this program. Each individual appendix provides the details of a specific task conducted as part of the BINP program.

FOREWORD

Since 1965, the U.S. Nuclear Regulatory Commission (NRC) has been involved in research on various aspects of pipe fracture in nuclear power plant piping systems. The most recent programs are the Degraded Piping Program, Short Cracks in Piping and Piping Welds Program, and two International Piping Integrity Research Group programs. These programs have developed and validated "state-of-the-art" structural analysis methods and data for nuclear piping systems.

This report describes the results of the Battelle Integrity of Nuclear Piping (BINP) program, which was performed by Battelle Columbus Laboratories. The objective of the BINP program was to address the most important unresolved technical issues from the earlier research programs. The BINP program was initiated as an international program to enable fiscal leveraging and an expanded scope of work. Technical direction for the program was provided by a Technical Advisory Group composed of representatives from the funding organizations.

The BINP program was divided into eight independent tasks, each of which examined one of the unresolved technical issues. These eight tasks included both experimental and analytical efforts. The two pipe-system experiments examined the effects of secondary stresses (such as thermal expansion) and cyclic loading (such as during a seismic event) on the loadcarrying capacity of flawed piping. For these experiments, the pipe system had large flaws or cracks. The remaining six tasks were "best-estimate" analyses to examine the effects of other factors, such as pipe system boundary conditions, and weld residual stresses on the behavior of flawed pipes. Many of these analyses involved the use of finite element modeling techniques. One of these analytical tasks was to examine the actual margins that may exist in flawed pipe evaluations as a result of non-linear behavior. While the magnitude of these margins would vary on a case-by-case basis, the results of this task show that a potential for significant margins does exist.

In addition to developing a technical basis for more advanced inservice flaw evaluation procedures for use with Class 1 piping, as defined by the American Society of Mechanical Engineers (ASME), the BINP program considered the development of flaw evaluation procedures for ASME Class 2 and 3 piping and balance-of-plant piping.

This research supports the NRC's goal to improve the effectiveness and realism of the agency's regulatory actions.

Carl Paperiello, Director Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission

vi

Table of Contents

Abstractiii
Forewordv
Appendix A Evaluation of Procedures for the Treatment of Secondary Stresses in Pipe Fracture Analyses
Appendix B Pipe-System Experiment with an Alternative Simulated Seismic Load History
Appendix C BINP Task 3 – Determination of Actual Margins in Plant PipingC1
Appendix D Analytical Expressions Incorporating Restraint of Pressure-Induced Bending in Crack-Opening Displacement CalculationsD1
Appendix E Development of Flaw Evaluation Criteria for Class 2, 3, and Balance of Plant Piping
Appendix F The Development of a J-Estimation Scheme for Circumferential and Axial Through-Wall Cracked Elbows
Appendix G Evaluation of Reactor Pressure Vessel (RPV) Nozzle to Hot-Leg Piping Bimetallic Weld Joint Integrity for the V. C. Summer Nuclear Power PlantG1
Appendix H The Effect of Weld Induced Residual Stresses on Pipe Crack Opening Areas and Implications on Leak-Before-Break Considerations
Appendix I Round Robin Analyses

List of Figures

Figure A.1 Comparison of the results from the IPIRG-1 pipe-system experiments with companion quasi-static, four-point bend experiments demonstrating how global secondary stresses, such as thermal expansion and seismic anchor motion stresses, contribute to	r
fracture	A2
Figure A.2 Actuator time history for BINP Task 1 experiment and IPIRG-1 Experiment 1.3-5	A3
Figure A.3 Plot of crack section moment as function of time for BINP Task 1 experiment and IPIRG-1 Experiment 1.3-5	A4
Figure A.4 Comparison of the results from four stainless steel weld experiments showing the contributions of the various stress components to pipe fracture	A4

Figure B.1 for stai	Actuator displacement-time history for IPIRG-2 simulated seismic forcing function nless steel base metal experiment (Experiment 1-1)	n B2
Figure B.2 stainles	Moment-rotation response for IPIRG-2 simulated seismic forcing function for ss steel base metal experiment (Experiment 1-1)	В2
Figure B.3	Traditional seismic design process	B4
Figure B.4	Hypothesized worst case seismic loading	B6
Figure B.5	Typical SSE seismic floor-response spectra	B6
Figure B.6	Fracture toughness properties from pipe DP2-A8i	B7
Figure B.7	Fracture toughness properties from pipe DP2-A8ii	B7
Figure B.8	Spring-slider model for a surface crack	B8
Figure B.9	Kinematic hardening assumption under unloading conditions	B9
Figure B.10 A8ii-20) The effect of pressure on crack moment-rotation behavior (BINP Task 2 flaw,) dynamic monotonic J-resistance)	B9
Figure B.11	Crack unloading behaviorB	B 10
Figure B.12	P. IPIRG-2 Experiment 1-1 cracked-section moment-rotation responseB	B 12
Figure B.13	B IPIRG-2 Experiment 1-1 cracked-section moment-time historyB	B 12
Figure B.14 from th	IPIRG-2 Experiment 1-1 predicted cracked-section upper envelop moment-rotation e SC.TNP1 J-estimation scheme	on 813
Figure B.15 -0.3 J-I	Predicted IPIRG-2 Experiment 1-1 moment-rotation history using the dynamic R R curve with the new asymmetric moment-rotation modelB	c = 813
Figure B.16 J-R cur	For Predicted IPIRG-2 Experiment 1-1 moment-time history with the dynamic $R = -6$ reverse with the new asymmetric moment-rotation modelB	0.3 814
Figure B.17 -1.0 J-	Predicted IPIRG-2 Experiment 1-1 moment-rotation history with the dynamic R R curve with the new asymmetric moment-rotation model	= 814
Figure B.18 J-R cur	³ Predicted IPIRG-2 Experiment 1-1 moment-time history with the dynamic $R = -$ rve with the new asymmetric moment-rotation modelB	1.0 815
Figure B.19 history	Old (1993) IPIRG-2 Experiment 1-1 pretest design analysis moment-rotation results	815
Figure B.20 results.	Old (1993) IPIRG-2 Experiment 1-1 pretest design analysis moment-time	816
Figure B.21 simulat	The IPIRG-2 Round-Robin Problem C.1 floor-response spectrum (IPIRG-2 ted-seismic forcing function actuator acceleration at SSE loading)B	818
Figure B.22 Solutio	2 IPIRG-2 Round-Robin Problem C.1 predicted linear moment response from on F-3aB	818
Figure B.23 Solutio	IPIRG-2 Round-Robin Problem C.1 predicted linear momemt response from DB	819

Figure B.24 IPIRG-2 Round-Robin Problem C.1 Solution F-3a actuator displacement force function	ing B19
Figure B.25 IPIRG-2 Round-Robin Problem C.1 Solution D actuator displacement forcing function	B20
Figure B.26 BINP Task 2 predicted cracked-section upper envelop moment-rotation from SC.TNP1 J-estimation scheme	the B21
Figure B.27 Predicted BINP Task 2 cracked-section moment-rotation behavior using the dynamic R = -0.3 J-R curve	B22
Figure B.28 Predicted BINP Task 2 moment-time behavior using the dynamic R = -0.3 J-R curve	B23
Figure B.29 Predicted BINP Task 2 cracked-section moment-rotation behavior using the q static R = -0.3 J-R curve	uasi- B23
Figure B.30 Predicted BINP Task 2 moment-time behavior using the quasi-static R = -0.3 curve	J-R B24
Figure B.31 The BINP simulated-seismic forcing function actuator displacement	B24
Figure B.32 The IPIRG-2 simulated-seismic forcing function actuator displacement at 3 SSE	B25
Figure B.33 Actuator displacement-time history for BINP Task 2 experiment	B26
Figure B.34 Crack section moment-time response for BINP Task 2 experiment	B27
Figure B.35 Crack section moment-CMOD response for BINP Task 2 experiment	B27
Figure B.36 Actuator displacement-time history for IPIRG-1 Experiment 1.3-3	B29
Figure B.37 Crack section moment-rotation response for IPIRG-1 Experiment 1.3-3	B29
Figure B.38 Comparison of J-R curves for two heats of DP2-A8 stainless steel	B30
Figure B.39 Ratio of quasi-static cyclic J values to J for quasi-static monotonic loading as a function of crack growth () a)	a B31
Figure B.40 Predicted moment-rotation behavior for 16-inch diameter schedule 100 stainles steel pipe for quasi-static monotonic and quasi-static cyclic (R = -1) J-R curves	ss B32
Figure B.41 Predicted moment-rotation behavior for 32-inch diameter carbon steel pipe for quasi-static monotonic and quasi-static cyclic (R = -1) J-R curves	B32
Figure C.1 New Production Reactor moment-time history from both a linear and nonlinear analysis: a large margin exists between these two analyses	C2
Figure C.2 Plasticity validation bend geometry nomenclature	C4
Figure C.3 Plasticity validation pipe cross-section nomenclature	C6
Figure C.4 Spring-slider model for a surface crack (or a through-wall crack)	C12
Figure C.5 Kinematic hardening assumption under unloading conditions	C12

Figure C.6 The effect of pressure on crack moment-rotation behavior (BINP Task 2 flaw, A 20 dynamic monotonic J-resistance)	48ii- C13
Figure C.7 Crack unloading behavior	C14
Figure C.8 IPIRG-2 Experiment 1-1 cracked-section moment-rotation response	C16
Figure C.9 IPIRG-2 Experiment 1-1 cracked-section moment-time history	C16
Figure C.10 IPIRG-2 Experiment 1-1 predicted cracked-section upper envelop moment-rot from the SC.TNP1 J-estimation scheme	tation C17
Figure C.11 Predicted IPIRG-2 Experiment 1-1 moment-rotation history using the dynamic R=-0.3 J-R curve with the new asymmetric moment-rotation model	C17
Figure C.12 Predicted IPIRG-2 Experiment 1-1 moment-time history with the dynamic R=- J-R curve with the new asymmetric moment-rotation model	-0.3 C18
Figure C.13 Predicted IPIRG-2 Experiment 1-1 moment-time history with the dynamic R=- J-R curve with the new asymmetric moment-rotation model	-1.0 C18
Figure C.14 Predicted IPIRG-2 Experiment 1-1 moment-time history with the dynamic R=- J-R curve with the new asymmetric moment-rotation model	-1.0 C19
Figure C.15 Old (1993) IPIRG-2 Experiment 1-1 pretest design analysis moment-rotation history results	C19
Figure C.16 Old (1993) IPIRG-2 Experiment 1-1 pretest design analysis moment-time results.	C20
Figure C.17 PWR model surge line with global reference axes	C21
Figure C.18 Side view of the surge line	C21
Figure C.19 Top view of the surge line	C22
Figure C.20 Front view of the surge line	C22
Figure C.21 View looking down the surge line, more or less along the #30 local coordinate system X axis	C24
Figure C.22 Top view of the surge line showing local coordinate system #30	C24
Figure C.23 View looking down the surge line, more or less along the rotated #30 local coordinate system X axis	C25
Figure C.24 Artist's rendition of the IPIRG pipe test facility	C26
Figure C.25 Dimensions of the IPIRG pipe loop	C27
Figure C.26 Actual Margins forcing function used for IPIRG pipe loop analyses	C29
Figure C.27 IPIRG pipe system reference moments	C31
Figure C.28 IPIRG pipe system large surface crack results	C31
Figure C.29 IPIRG pipe system small surface crack results	C32
Figure C.30 IPIRG pipe system large through-wall crack results	C32
Figure C.31 IPIRG pipe system small through-wall crack results	C33

Figure C.32	PWR system model piping	C35
Figure C.33	PWR System Model Reactor	C35
Figure C.34	PWR system model primary loop (one of three)	C36
Figure C.35	PWR plant model stream generator and coolant pump support	C36
Figure C.36	PWR plant model surge line and pressurizer	C37
Figure C.37	PWR system model safety injection system (SIS) line	C37
Figure C.38	PWR system model piping	C38
Figure C.39	PWR system model containment building internal concrete	C38
Figure C.40	PWR system model containment	C39
Figure C.41	PWR model X-axis loading	C40
Figure C.42	PWR model Y-axis loading	C40
Figure C.43	Beaver Valley PWR artificial time history horizontal SSE (Ref. C.16)	C41
Figure C.44	PWR primary piping margin evaluation locations, 1 of 2	C43
Figure C.45	PWR primary piping margin evaluation locations, 2 of 2	C43
Figure C.46	PWR surge line margin evaluation locations	C44
Figure C.47	Safety injection system line margin evaluation locations	C44
Figure C.48	Margins from the PWR hot leg locations	C45
Figure C.49	Margins from the PWR cross-over leg locations	C45
Figure C.50	Margins from the PWR cold leg locations	C46
Figure C.51	Margins from the PWR surge line locations	C46
Figure C.52	Margins from the PWR safety injection system line locations	C47
Figure D.1 pipe is	Rotation of unrestraint pipe due to pressure induced bending. The rotation of magnified by factor of 2	the D1
Figure D.2 pipe res	Reduction of COD in pressure-induced-bending of a restrained pipe. An asyn straint condition is shown. Displacement magnified by a factor of 5	nmetric
Figure D.3	Cracked-pipe geometry	D3
Figure D.4	Loading and boundary conditions of a symmetrically restrained pipe	D4
Figure D.5 (Ref. D	Beam model representing deformation of cracked pipe under restraint 0.5)	D6
Figure D.6	Normalized COD for different pipe diameters (Ref. D.4)	D6
Figure D.7	Comparison of the $I_b(\theta)$ values for different curve-fitting coefficients	D7
Figure D.8 calculat	Comparison of the normalizing factor between the analytical expression and tions. Symmetric restraint, $R_m/t=5$	the FE D7

Figure D.9 Comparison of the normalizing factor between the analytical expression and the FE calculations. The FE results from different round-robin participants are indicated by different letters. Symmetric restraint, R _m /t=10
Figure D.10 Comparison of the normalizing factor between the analytical expression and the FE calculations. Symmetric restraint, R _m /t=20D8
Figure D.11 Comparison of the normalizing factor between analytical expression and the FE calculations. Symmetric restraint, R _m /t=40 D9
Figure D.12 Comparison of the normalizing factor between the analytical expression and the FE calculations. Symmetric restraint, R _m /t=40. NUREG/CR-4572 curve-fitting of coefficients of A _b , B _b , and C _b
Figure D.13 Comparison of Miura's analytical solution with FE results for asymmetric restraint cases. Letters indicate the FE results from different round-robin participants. $R_m/t=10$, $\theta=\pi/2$
Figure D.14 Equivalent normalized restraint length as function of the ratio of L_{R2}/L_{R1} D11
Figure D.15 PIB of a cracked pipe with one-sided restraint. $\theta = \pi/2$, $R_m/t=10$, $L_{R1}/D_m=1$, $L_{R2}/D_m \rightarrow \infty$
Figure D.16 General form of the correction function
Figure D.17 Reference restraint length as function of crack size $(R_m/t=10)$ D13
Figure D.18 Verification of analytical expression for asymmetric restraint cases ($R_m/t=10$, $\theta=\pi/8$)
Figure D.19 Verification of analytical expression for asymmetric restraint cases ($R_m/t=10$, $\theta=\pi/4$)
Figure D.20 Verification of analytical expression for asymmetric restraint cases ($R_m/t=10$, $\theta=\pi/2$)
Figure D.21 Moment about a hinge; bends and various supports affect the restraint lengths of the pipe about the hinge
Figure D.22 Schematic of ANSYS pipe model used to determine stiffness values given various restraint lengths
Figure D.23 Plot of restraint length in terms of stiffness for symmetric Case 1; k and L_R/D_m are related by a power function multiplied by a constant
Figure D.24 Plot of constant C in terms of second moment of area I for all symmetric cases (The second moment of area is linearly related to the constant C) D17
Figure D.25 Comparison of normalizing factors for parametric and stiffness-based L _R /D _m values in cases of symmetric restraint
Figure D.26 Plot of restraint length in terms of stiffness for asymmetric Case 1.a D19
Figure D.27 Comparison of normalizing factor between parametric and stiffness-based values of L_R/D_m for asymmetric restraint
Figure D.28 Critical flaw locations in the hot and cold legs

Figure D.29 Critical flaw locations in the crossover leg	D21
Figure D.30 Critical flaw locations in the surge line	D21
Figure D.31 Critical flaw locations in the safety injection system	D22
Figure E.1 Comparison of best-fit curve-fit expressions for F with numerical results from fit element analyses as a function of R/t ratio for various crack lengths for a constant crack depth of $a/t = 0.4$	nite
Figure E.2 Comparison of best-fit curve-fit expressions for F with numerical results from fit element analyses as a function of crack length for various R/t ratios for a constant crack depth of $a/t = 0.4$	nite E4
Figure E.3 Comparison of best-fit curve-fit expressions for F with numerical results from fit element analyses as a function of crack depth for various crack lengths for a constant R/ ratio of 20.	nite /t E4
Figure E.4 Differences in J-estimation scheme predictions for same diameter pipe with crac dimensions of $\theta/\pi = 0.5$, $a/t = 0.5$ and $n = 5$	k E7
Figure E.5 A typical model using shell and line-spring elements	.E11
Figure E.6 Focused view of the shell and line-spring model, looking at the cross-sectional p containing the line-spring elements	lane .E11
Figure E.7 A deformed shell and line-spring model	.E13
Figure E.8 Axial stress contours of a deformed shell and line-spring model	.E13
Figure E.9 J versus moment from finite element analyses for Rm/t = 5 and all a/t and θ/π values investigated. (Top) no internal pressure (Bottom) internal pressure (Notation: rt(Rm/t = 5, at 25 \rightarrow a/t = 0.25, cc25 \rightarrow θ/π = 0.25, p \rightarrow pressure)	05→ .E14
Figure E.10 J versus moment from finite element analyses for Rm/t = 20 and all a/t and θ/π values investigated. (Top) no internal pressure (Bottom) internal pressure (Notation: rt2 Rm/t = 20, at25 \rightarrow a/t = 0.25, cc25 \rightarrow θ/π = 0.25, p \rightarrow pressure)	20→ .E15
Figure E.11 J versus moment from finite element analyses for Rm/t = 40 and all a/t and θ/π values investigated. (Top) no internal pressure (Bottom) internal pressure (Notation: rt40 \rightarrow Rm/t = 40, at25 \rightarrow a/t = 0.25, cc25 \rightarrow θ/π = 0.25, p \rightarrow pressure)	.E16
Figure E.12 J versus moment from finite element analyses for Rm/t = 60 and all a/t and θ/π values investigated. (Top) no internal pressure (Bottom) internal pressure (Notation: rt60 \rightarrow Rm/t =60, at25 \rightarrow a/t = 0.25, cc25 \rightarrow θ/π = 0.25, p \rightarrow pressure)	.E17
Figure E.13a J versus moment from FEA and NRCPIPES J-estimation schemes for $R_m/t = 5$ a/t= 0.5 and $2/B = 0.25$, .E19
Figure E.13b J versus moment from FEA and NRCPIPES J-estimation schemes for $Rm/t = 2$ a/t = 0.5, and $2/B = 0.25$	0,
Figure E.13c J versus moment from FEA and NRCPIPES J-estimation schemes for $R_m/t = 40$ a/t= 0.5 and $2/B = 0.25$), .E20

Figure E.14 J versus moment from FEA (symbol) and the SC.TNP1 analysis in NRCPIPES (symbol and line) for Rm/t = 5 and all a/t and θ/π values investigated. (Top) no internal pressure (Bottom) internal pressure (Notation as previously described)
Figure E.15 J versus moment from FEA (symbol) and the SC.TNP1 analysis in NRCPIPES (symbol and line) for Rm/t = 20 and all a/t and θ/π values investigated. (Top) no internal pressure (Bottom) internal pressure (Notation as previously described)
Figure E.16 J versus moment from FEA (symbol) and the SC.TNP1 analysis in NRCPIPES (symbol and line) for Rm/t = 40 and all a/t and θ/π values investigated. (Top) no internal pressure (Bottom) internal pressure (Notation as previously described)
Figure E.17 J versus moment from FEA (symbol) and the SC.TNP1 analysis in NRCPIPES (symbol and line) for Rm/t = 60 and all a/t and θ/π values investigated. (Top) no internal pressure (Bottom) internal pressure (Notation as previously described)
Figure E.18 Length correction coefficient (C1) as a function of Rm/t and a/t for $\theta/\pi = 0.25$ and no internal pressure
Figure E.19 Length correction coefficient (C1) as a function of Rm/t and a/t for $\theta/\pi = 0.50$ and no internal pressure
Figure E.20 Length correction coefficient (C1) as a function of Rm/t and a/t for $\theta/\pi = 0.25$ with internal pressure applied to produce a longitudinal stress equivalent to Sm/2
Figure E.21 Length correction coefficient (C1) as a function of Rm/t and a/t for $\theta/\pi = 0.50$ with internal pressure applied to produce a longitudinal stress equivalent to Sm/2
Figure E.22 J versus moment as a function on strain-hardening exponent (n)
Figure E.23 C1 versus strain hardening exponent (n) relationship
Figure E.24 Comparison of J versus moment response between the revised SC.TNP analysis $(Lw = C1*t)$ and FEA analysis for the case of $a/t = 0.5$, $2/B = 0.25$, no pressure, and $R/t = 5$
Figure E.25 Comparison of J versus moment response between the revised SC.TNP analysis $(Lw = C1*t)$ and FEA analysis for the case of $a/t = 0.5$, $2/B = 0.25$, no pressure, and $R/t = 20$
Figure E.26 Comparison of J versus moment response between the revised SC.TNP analysis $(Lw = C1*t)$ and FEA analysis for the case of $a/t = 0.5$, $2/B = 0.25$, no pressure, and $R/t = 40$
Figure E.27 Comparison of J versus moment response between the revised SC.TNP analysis $(Lw = C1*t)$ and FEA analysis for the case of $a/t = 0.5$, $2/B = 0.25$, no pressure, and $R/t = 60$
Figure E.28 Comparison of J versus moment response between the revised SC.TNP analysis $(Lw = C1*t)$ and FEA analysis for the case of $a/t = 0.25$, $2/B = 0.50$, pressure = 3.055 MPa, and $R/t = 40$
Figure E.29 Plot of the ratio of the experimental stress to the predicted stress as a function of pipe R/t ratio for pipes expected to fail under limit-load conditions

Figure E.30 Photo showing a Charpy and full-thickness DWTT specimens on a pipe
Figure E.31 Comparison of fracture appearances (percentage of shear area on the fracture) from full-scale dynamic crack propagation results to impact results from the DWTT
Figure E.32 Results showing the transition curve differences between a 2/3-thickness Charpy specimen and DWTT specimens of different thicknesses from the same material
Figure E.33 Experimental results from several investigators showing the effect of thickness on the difference between the Charpy and DWTT 85% SATT, Ref. E.16
Figure E.34 Axial through-wall-cracked pipe and DWTT data showing the temperature shift from the FITT to the FPTT for linepipe steel – Case 1, Ref. E.17
Figure E.35 Axial through-wall-cracked pipe and DWTT data showing the temperature shift from the FITT _(TWC) to the FPTT for linepipe steel – Case 2, Ref. E.17
Figure E.36 Comparison of t x 2t CTOD transition temperature with axial through-wall-cracked 48-inch (1,219-mm) diameter pipe fracture data, Ref. E.18
Figure E.37 Results from Kiefner showing surface-flawed pipe results relative to FPTT from DWTT data, Ref. E.17
Figure E.38 Results from Sugie showing surface-flawed pipe results relative to bend-bar FITT, Ref. E.19
Figure E.39 Fixed-grip SEN(T) specimen (Side-grooves in photo not illustrated in sketch) E42
Figure E.40 Results from Ref. E.20 in comparing transition temperatures of bend-bar specimens and fixed-grip SEN(T) specimen
Figure E.41 Charpy energy curves for A106B – WRC Bulletin 175 (Ref. E.22) (Orientation D is for circumferential surface flaw Orientation A is for axial through-wall flaw – typically reported)
Figure E.42 Normalized fit of Charpy shear area transition curves from lower-strength linepipe steels (Ref. E.15)
Figure E.43 Relationship between DWTT and Charpy 85% shear area transition temperatures (SATT) as function of Charpy specimen thickness (Ref. E.15)
Figure E.44 Shear area versus temperature from full-thickness Charpy test data for A106B taken from PIFRAC database, Ref. E.23
Figure E.45 Preliminary FITT relationship as a function of material thickness and crack depth (Based on upper-bound A106B data in PIFRAC database – L-C orientation)
Figure E.46 Charpy data from PIFRAC for A516 Grade 70 pipe and welds
Figure E.47 Charpy data from PIFRAC for one A106B pipe weld
Figure E.48 Shear area as a function of test temperature for the Charpy specimen tests for material DP2-F93 and F94
Figure E.49 Shear area as a function of test temperature for the DTT specimen tests for material DP2-F93 and F94
Figure E.50 Load versus displacement records for compact (tension) tests

Figure E.51 Load versus actuator displacement data for the SEN(T) specimens
Figure E.52 Ductile crack growth as a function of temperature for the SEN(T) specimens E57
Figure E.53 Crack geometry for the surface-cracked pipe experiments
Figure E.54 Loading fixture used in the surface-cracked pipe experiments
Figure E.55 Cooling apparatus used in the surface-cracked pipe experiments
Figure E.56 Load versus displacement records for the three surface-cracked pipe experiments
Figure E.57 Plot of the ratio of the maximum experiment moment normalized by the Net-Section-Collapse moment (M_{max}/M_{NSC}) as a function of the test temperatures for the three surface-cracked pipe experiments
Figure F.1 Crack geometries considered for elbows
Figure F.2 Typical finite element mesh and model geometry for (a) a 90-degree circumferential crack and (b) a 15-degree axial flank crack
Figure F.3 Typical mesh (circumferential crack, 45-degree crack) (a) one element through thickness and (b) four elements through thickness
Figure F.4 Illustration of ovalization effects on stresses near the crack tip (Numbers represent crack opening stresses normalized with yield strength)
Figure F.5 Summary of ovalization effects on crack opening response of circumferential cracks in elbows subjected to bending
Figure F.6 Illustration of ovalization effects for 15-degree axial flank crack
Figure F.7 Crack opening plots for axially cracked elbows – bending
Figure F.8 Crack opening profile for axial cracks
Figure F.9 Convergence of h-functions versus applied load
Figure F.10 Convergence of h-functions versus lamba
Figure F.11 Comparison between Ramberg-Osgood relationship and typical flow theory representation
Figure F.12 Validation check ($R/t = 20$, axial crack 2 $2 = 15$ degrees, $n = 5$)
Figure F.13 Validation check ($R/t = 5$, axial crack, $22 = 15$ degrees, $n = 5$)
Figure F.14 Validation check ($R/t = 5$, axial crack, $22 = 30$ degrees, $n = 5$)
Figure F.15 Validation check ($R/t = 5$ circumferential crack, 2 2 =90degrees, n=5)
Figure F.16 Validation check ($R/t = 20$, circumferential crack, $22 = 90$ degrees, $n = 5$)
Figure F.17 Validation check (R/t = 20, circumferential crack, $2\theta = 180 \delta \epsilon \gamma \rho \epsilon \epsilon \sigma$, $\nu = 5$) F23
Figure F.18 Comparison of J versus moment curves for a circumferential through-wall crack in a straight pipe and centered on the extrados of an elbow with an $R/t = 20$ and $2\theta=90$ degrees

Figure F.19 Comparison of J versus moment curves for a circumferential through-wall crack in a straight pipe and centered on the extrados of an elbow with an $R/t = 20$ and $2\theta = 180$
Figure F.20 Comparison of J versus moment curves for a circumferential through-wall crack in a straight pipe and centered on the extrados of an elbow with an $R/t = 5$ and $2\theta=90$ degrees
Figure F.21 Comparison of J versus moment curves for a circumferential through-wall crack in a straight pipe and centered on the extrados of an elbow with an $R/t = 5$ and $2\theta = 180$ degrees
Figure F.22 Comparison of J versus moment ratios for a circumferential through-wall crack in a straight pipe and centered on the extrados of an elbow with an $R/t = 20$ and $2\theta=90$ degrees
Figure F.23 Comparison of J versus moment ratios for a circumferential through-wall crack in a straight pipe and centered on the extrados of an elbow with an $R/t = 20$ and $2\theta = 180$ degrees
Figure F.24 Comparison of J versus moment ratios for a circumferential through-wall crack in a straight pipe and centered on the extrados of an elbow with an $R/t = 5$ and $2\theta=90$ degrees
Figure F.25 Comparison of J versus moment ratios for a circumferential through-wall crack in a straight pipe and centered on the extrados of an elbow with an $R/t = 5$ and $2\theta=180$ degrees
Figure F.26 Ratio of circumferentially through-wall-cracked pipe-to-elbow moments for constant applied J values versus the ASME B ₂ index for the elbow
Figure F.27 Comparison of J versus moment curves for an axial through-wall crack in a straight pipe and an axial through-wall crack on the flank of an elbow with an $R/t = 20$ and $2\theta=15$ degrees
Figure F.28 Comparison of J versus moment curves for an axial through-wall crack in a straight pipe and an axial through-wall crack on the flank of an elbow with an $R/t = 20$ and $2\theta=30$ degrees
Figure F.29 Comparison of J versus moment curves for an axial through-wall crack in a straight pipe and an axial through-wall crack on the flank of an elbow with an $R/t = 5$ and $2\theta=15$ degrees
Figure F.30 Comparison of J versus moment curves for an axial through-wall crack in a straight pipe and an axial through-wall crack on the flank of an elbow with an $R/t = 5$ and $2\theta=30$ degrees
Figure F.31 Comparison of J versus moment ratios for an axial through-wall crack in a straight pipe and an axial through-wall crack on the flank of an elbow with an $R/t = 20$ and $2\theta=15$ degrees

Figure F.32 Comparison of J versus moment ratios for an axial through-wall crack in a str pipe and an axial through-wall crack on the flank of an elbow with an $R/t = 20$ and 2θ degrees	∙aight)=30 F46
Figure F.33 Comparison of J versus moment ratios for an axial through-wall crack in a str pipe and an axial through-wall crack on the flank of an elbow with an $R/t = 5$ and $2\theta =$ degrees	aight =15 F47
Figure F.34 Comparison of J versus moment ratios for an axial through-wall crack in a str pipe and an axial through-wall crack on the flank of an elbow with an $R/t = 5$ and $2\theta =$ degrees	aight =30 F47
Figure F.35 Ratio of axially through-wall-cracked pipe-to-elbow moments for constant ap values versus the ASME B ₂ index for the elbow	plied J F48
Figure G.1 Geometry of VC Summer hot leg/RPV nozzle bimetallic weld joint	G3
Figure G.2 Piping system geometry	G4
Figure G.3 Photo of cold leg weld cross section (top) and computational weld model of co leg	old G6
Figure G.4 Welding process analysis flow chart for cold leg	G8
Figure G.5 Cold leg axis-symmetric cladding (buttering) and weld model	G9
Figure G.6 Weld process simulation	G10
Figure G.7a Temperature dependent true stress-strain curves of Inconel 182 tested by ORNL	G14
Figure G.7b Temperature dependent true stress-strain curves at A516 Grade 70	G15
Figure G.7c Temperature dependent true stress-strain curves of A508 Class 3 tested by ORNL	G15
Figure G.7d Temperature dependent true stress-strain curves of Type 316 and Type 309	G16
Figure G.7e Temperature dependent true stress-strain curves of Type 304	G16
Figure G.8 Axial stresses during heat treat process	G18
Figure G.9 Hoop stresses during heat treat process	G18
Figure G.10 Equivalent plastic strains	G19
Figure G.11 Equivalent creep strains	G19
Figure G.12 Residual stresses final (axial) at room temperature 22C (70°F)	G20
Figure G.13 Residual stresses final (axial) at operating temperature 291°C (556°F)	G20
Figure G.14 Residual stresses final (hoop) at room temperature 22°C (70°F)	G21
Figure G.15 Residual stresses final (hoop) at operating temperature 291°C (556°F)	G21
Figure G.16a Residual stresses final (axial) at operating temperature 291°C (556°F)	G23
Figure G.16b Residual stresses final (axial) at operating temperature 291°C (556°F)	G23

Figure G.16	c Residual stresses final (hoop) at operating temperature 291°C (556°F)C	324
Figure G.16	d Residual stresses final (hoop) at operating temperature 291°C (556°F)G	24
Figure G.17	Residual equivalent plastic strains in cold leg at room temperature	G25
Figure G.18 tempera	Residual axial (a), hoop (b), and shear (c), plastic strains in cold leg at room ture	G26
Figure G.19	Geometry of V.C. Summer bi-metallic weld joint	G28
Figure G.20	Axis-symmetric model of V.C. Summer bimetallic weld joint	G28
Figure G.21	Welding process simulated on hot leg	G29
Figure G.22	Cladding (butter) and rejected weld model	G30
Figure G.23	Finite element analysis process flow	G31
Figure G.24	Full finite element model	G33
Figure G.25	Cladding simulation stresses (after cooling to room temperature)	G33
Figure G.26	Cladding simulation – effective plastic strains	G34
Figure G.27	Post cladding heat treatment simulation – creep strains	G34
Figure G.28	Rejected weld and bridge simulation	G35
Figure G.29	Comparison of rejected weld and bridge simulation	G35
Figure G.30	Axial stress comparison between two sequences	G36
Figure G.31	Hoop stress comparison between two sequences	G36
Figure G.32	Effective plastic strain comparison between two sequences	G37
Figure G.33	Axial plastic strain comparison between two sequences	G37
Figure G.34	Hoop plastic strain comparison between two sequences	G38
Figure G.35	Shear plastic strain comparison between two sequences	G38
Figure G.36	Effect of hydro-test – axial stresses (pressure = 3.125 ksi, then unload)	G39
Figure G.37 tempera	Effect of hydro-test – hoop stresses (pressure = 3.125 ksi, then unload at room ture)	G40
Figure G.38 Top: roo welding	Axial residual stresses at operating temperature (after all welding and hydro-test) om temperature before heat up to 324°C (615°F); Bottom: after heat up; left is for inside then outside, right is for welding outside then inside) : G41
Figure G.39 Top: roo welding	Hoop residual stresses at operating temperature (after all welding and hydro-test) om temperature before heat up to 324°C (615°F); Bottom: after heat up; left is for inside then outside; right is for welding outside then inside) : G41
Figure G.40 and (b). mesh. Toutside	Operation residual stresses $(324^{\circ}C (615^{\circ}F) - no loading)$ for inside first weld (a) (c) and (d) mapped residual stresses at operating temperature from fine to coarse These stresses are then mapped to a three dimensional mesh (inside weld first, the weld)) ; n G42

Figure G.41 Operation residual stresses $(324^{\circ}C (615^{\circ}F) - no loading)$ for outside first weld (a) and (b). (c) and (d) mapped residual stresses at operating temperature from fine to coarse mesh. These stresses are then mapped to a three dimensional mesh (outside weld first, then Figure G.42 Mapped hoop residual stresses at operating temperature from coarse axissymmetric mesh to 3D mesh (inside weld first, then outside weld). (This 3D model is then Figure G.43 Comparison of mapped hoop residual stresses at operating temperature from coarse Figure G.44 Comparison of mapped hoop residual stresses at operating temperature from coarse Figure G.45 Comparison of mapped equivalent plastic strains at operating temperature from Figure G.47Axial stresses – used for FEAM analyses: inside weld first then outside Figure G.48 Hoop stresses – used for FEAM analyses: inside weld first then outside Figure G.49 Axial stresses – used for FEAM analyses: outside weld first then inside Figure G.50 Hoop stresses – used for FEAM analyses: outside weld first then inside Figure G.51 Stress intensity factors; a = 0.3, 0.4, 0.5; c/a = 1.5. 'NO LOAD' = 'Residual Stress Figure G.52b Approximation for the impact of the residual stress field on the crack size and shape......G50 Figure G.52c Three and six month crack growth shapes......G51 Figure G.53 Approximation for the impact of the residual stress field on the crack size and shape. The 'red' shape represents the crack shape for the case of loading and residual stresses (for the I-O case) and the 'white' shape is the crack shape for the residual stress only case after 6 months of PWSCC growth. The 'red' curve (I-O case) can be compared to Figure G.55a The impact of using a conservative PWSCC law on crack growth -Figure G.55b The impact of using a conservative PWSCC law on crack growth - circumferential

Figure G.56 Hot leg 3D analysis geometry	G57
Figure G.57 Two-length and two-depth repair analyses	G57
Figure G.58 Weld directions	G58
Figure G.59 An example of the grinding and weld repair model during analysis	G58
Figure G.60 Baseline weld – axial stresses	G59
Figure G.61 Baseline weld – axial stresses	G59
Figure G.62 Baseline weld – Z-component stresses (these represent hoop stresses on the planes).	e cut G60
Figure G.63 Comparison of axial and hoop stresses between the axis-symmetric and 3D solutions.	G60
Figure G.64 Comparison of axial stresses for repair case number 1	G61
Figure G.65 Comparison of axial stresses for repair case number 1	G61
Figure G.66 Repair L2 depth d1 – axial stresses	G62
Figure G.67 Repair L2 depth d1 – mean stress $(\sigma_{kk}/3)$	G62
Figure G.68 Repair L2 depth d1 – axial stresses	G63
Figure G.69 Repair L2 depth D2 – mean stress $(\sigma_{kk}/3)$	G63
Figure G.70 Repair L2 depth d2 – equivalent plastic strain	G64
Figure H.1 Typical axi-symmetric weld model construction	H4
Figure H.2 The thermal analysis showing weld build-up	Нб
Figure H.3 Weld residual stress - axial stress	H7
Figure H.4 Weld residual stress hoop stress	H7
Figure H.5 Measured axial stress data versus analysis	Н8
Figure H.6 Measured hoop stress data versus analysis	Н8
Figure H.7 Model development - fine mesh - coarse mesh - 3-D mesh	Н9
Figure H.8 Crack sizes	Н9
Figure H.9 3-D crack mid-surface closed under zero load (top) and ready to open under tension loading (bottom)	critical H9
Figure H.10 Crack OD opening profile under tension load, $\theta = \pi / 8$	H10
Figure H.11 GE/EPRI tension equation modification	H11
Figure H.12 Mesh density study results	H15
Figure H.13 Axial stress results from heat input study	H16
Figure H.14 Hoop stress results from heat input study	H16
Figure H.15 GE/EPRI bending equation modification	H18

Figure H.16 Comparison of results from combined loading example
Figure H.17 Start Stop weld analysis model
Figure H.18 Baseline weld axial stresses
Figure H.19 Baseline weld axial stresses
Figure H.20 Crack displacement results for π /16 crack in start-stop location and 180 degrees away from the start-stop location
Figure H.21 Crack displacement results for π /8 crack in start-stop location and 180 degrees away from the start-stop location
Figure H.22 Crack displacement results for π /4 crack in start-stop location and 180 degrees away from the start-stop location
Figure H.23 Crack displacement results for π /2 crack in start-stop location and 180 degrees away from the start-stop location
Figure H.24 Stress intensity factors for a surface crack growing through a residual stress field. Crack length, a1, remained constant while the crack depth, a2, increased (Taken from References H.7 and H.8)
Figure H.25 COD analysis including residual stresses and plastic strain history (thin lines) and only including residual stresses (denoted 'test')
Figure I.1 Photograph of fracture from aged cast stainless experiment (Experiment 1.3-7) from IPIRG-1
Figure I.2 Net-Section-Collapse analyses predictions, with and without considering induced bending, as a function of the ratio of the through-wall crack length to pipe circumference
Figure I.3 FE mesh used in past Battelle COD/Restraint effect study
Figure I.4 Normalized graph showing the effects of restraining ovalization and rotations at different distances from the crack plane
Figure I.5 Normalized COD versus restraint length for two different sets for FE analyses
Figure I.6 Calculated maximum loads for LBB with and without restraint of the pressure- induced bending from the pipe system
Figure I.7 Cracked-pipe geometry
Figure I.8 Representative finite element mesh used by Participant A
Figure I.9 Finite element mesh used by Participant B for symmetric restraint cases
Figure I.10 Finite element mesh used by Participant B for asymmetric restraint cases
Figure I.11 Boundary conditions for restraining the bending induced tension in the symmetric FE model
Figure I.12 Boundary conditions for restraining the bending induced tension in the asymmetric FE model
Figure I.13 The "Distributing Coupling Element" in ABAQUS

Figure I.14 for the	The finite element mesh and associated boundary conditions used by Participant C symmetric restraint cases	6
Figure I.15 for the	The finite element mesh and associated boundary conditions used by Participant C asymmetric restraint cases	17
Figure I.16 to impo	Axial displacement and stress distributions using the distributing coupling element ose the axial load (Case 1a, L/D=1, $\theta/\pi=1/8$, Participant C)	17
Figure I.17	Boundary conditions and mesh used by Participant DI1	8
Figure I.18	Typical finite element mesh for the symmetric case by Participant EIl	9
Figure I.19	Typical finite element mesh for the asymmetric case by Participant E I2	20
Figure I.20	Typical finite element mesh used by Participant F I2	20
Figure I.21 investig	Effect of pipe length on COD of unrestrained pipe for the longest crack length gated in this program. Participant F	22
Figure I.22 normal	Comparison of the unrestrained COD values for Cases 1a-1c. The COD values are ized with respect to the averaged COD value of all participants	22
Figure I.23 1a-1c. the sam	Comparison of the unrestrained COD values from Participant C, E, and F for Cases. The COD values are normalized by the mean COD value of the three participants of the case.	s f 23
Figure I.24	Normalized COD values for Case 1a-1c from Participant A	24
Figure I.25	Normalized COD values for Case 1a-1c from Participant C	24
Figure I.26	Comparison of normalized COD in Case 1, half crack length = $\pi/8$	25
Figure I.27	Comparison of normalized COD in Case 1, half crack length = $\pi/4$	26
Figure I.28	Comparison of normalized COD in Case 1, half crack length = $\pi/2$	26
Figure I.29 results	Comparison of normalized COD for all round-robin cases in Case 1, excluding the from participant D and NUREG/CR-6443 (Ref. I.1)	27
Figure I.30	Effect of R _m /t ratio on normalized COD. Participant F, OD=28-inch	28
Figure I.31	Effect of R _m /t ratio on normalized COD. Participant E, OD=28-inch	28
Figure I.32	Effect of R _m /t ratio on normalized COD. Participant C, OD=28-inch	29
Figure I.33	Effect of R _m /t ratio on normalized COD. Participant D, OD=28-inch	29
Figure I.34	Normalized COD under asymmetric restraint length from Participant F	31
Figure I.35	Normalized COD under asymmetric restraint length from Participant E	31
Figure I.36	Normalized COD under asymmetric restraint length from Participant C	32
Figure I.37	Pipe test analyzed in 1986 ASME PVP round robin	33
Figure I.38 displac	Results for 3D FE analysis of 1986 ASME PVP round robin - J versus load-line ement	34

Figure I.39 displac	Results for 3D FE analysis of 1986 ASME PVP round robin - <i>J</i> values at initiation ement versus number of nodes in ligament of FE model	4
Figure I.40	Results for estimation analysis of 1986 ASME PVP round robin	5
Figure I.41 line-spi	Comparison of Brickstad and Miyoshi results showing good agreement between ring and very refined 3D FE results	5
Figure I.42 probler	Comparison of Mohan FE analyses of 1986 ASME PVP round-robin nI38	3
Figure I.43	Comparison of Mohan FE analyses of surface crack in an elbow	3
Figure I.44 dimens	Differences in <i>J</i> -estimation scheme predictions for same diameter pipe crack ions of $\theta/\pi=0.5$ and $a/t=0.5$ and $n=5$)
Figure I.45	A typical model using shell and line-spring elements from Participant P1 I43	3
Figure I.46 contain	Focused view of the shell and line-spring model, looking at the cross-sectional plane ing the line-spring elements	; 3
Figure I.47	A typical 3-D solid element model from Participant P2	1
Figure I.48 P2	A focused view of the cracked region of a 3-D solid element model from Participant I44	4
Figure I.49	The 3-D solid element model of Problem A-2 from Participant P3 145	5
Figure I.50 A-2 fro	The focused view of the flawed area of the 3-D solid element model for Problem om Participant P3	5
Figure I.51	Application of bending and internal pressure by Participant P3 I47	7
Figure I.52	A deformed shell and line-spring model from Participant P1 I49)
Figure I.53 P1	Contours of axial stress of a deformed shell and line-spring model from Participant)
Figure I.54 large d	The <i>J</i> versus moment relations of Case A-1. LS and LD stand for large strain and isplacement, respectively)
Figure I.55	The J versus moment relations of Case A-2)
Figure I.56	The J versus moment relations of Case A-3	1
Figure I.57	The <i>J</i> versus moment relations of Case B-1	2
Figure I.58 small d	The <i>J</i> versus moment relations of Case B-2. SS and SD stand for small strain and isplacement, respectively	2
Figure I.59	The J versus moment relations of Case C-1	4
Figure I.60	The <i>J</i> versus moment relations of Case C-2	1
Figure I.61	The <i>J</i> versus moment relations of Case C-3	5
Figure I.62 results	Comparison of the line-spring results of Participant P1 with the 3-D solid element of Anderson for a pipe section loaded in tension	5

Figure I.63 Comparison of the 3-D solid element results of Participant P2 with the 3-D solid element results of Anderson for a pipe section loaded in tension	. 156
Figure I.64 Comparison of the line-spring results of Participant P1 with the 3-D solid element results of Anderson for a pipe section loaded in bending	t 156
Figure I.65 Comparison of the 3-D solid element results of Participant P2 with the 3-D solid element results of Anderson for a pipe section loaded in bending	. 157
Figure I.66 Comparison of the normalized <i>K</i> solutions from the line-spring solution of Wang	. 157

List of Tables

Table B.1	Test conditions for BINP Task 2 simulated seismic pipe-system experiment	B26
Table B.2	Test conditions for three stainless steel pipe-system experiments	B28
Table B.3 ratios	Test results from three stainless steel pipe-system experiments in terms of fracture	B28
Table C.1	Plasticity validation analysis parameters	C6
Table C.2	Plasticity validation theoretical values for pure bending	C7
Table C.3	Plasticity validation deviation from theoretical values for pure bending	C8
Table C.4	Plasticity validation theoretical values for tension plus bending	C9
Table C.5	Plasticity validation deviation from theoretical values for tension plus bending	C10
Table C.6	IPIRG pipe loop system Actual Margins task cracks	C27
Table C.7	IPIRG pipe loop system Actual Margins runs	C29
Table C.8	IPIRG pipe system analysis margins	C33
Table D.1	Analysis matrix for symmetric restraint cases in round-robin FE calculations	. D4
Table D.2	Analysis matrix for asymmetric restraint cases in round-robin FE calculations	. D4
Table D.3	Additional Symmetric Cases used in Pipe Stiffness Analysis	D16
Table D.4 plant	Dimensional and loading conditions for 18 critical locations considered in sample piping system test cases	e D23
Table D.5	Comparison between restrained and unrestrained COD values	D24
Table E.1 for va	Best-fit curve fitting coefficients and 15 percent conservative curve fitting coefficients and loading conditions	ients E3
Table E.2	Analysis matrix and dimensional and material parameters	E9
Table E.3	Surface regression coefficients	E29
Table E.4	Definition and equivalence of different transition temperature fracture parameters	E35

Table E.5 Circumferentially cracked A106B pipe test results and comparison to minimum temperature for ductile fracture	E50
Table E.6 Circumferentially cracked ferritic pipe test results and comparison to minimum temperature for ductile fracture	E51
Table E.7 Summary of the methodology and how the experimental data agreed with the anticipated transition temperatures for each specimen geometry	E61
Table F.1a Elbow with circumferential crack – combined pressure and bending compilation $(R/t = 5, \theta = 45^{\circ})$	n F24
Table F.1b Elbow with circumferential crack – combined pressure and bending compilation $(R/t = 10, \theta = 45^{\circ}$	ı F24
Table F.1c Elbow with circumferential crack – combined pressure and bending compilation $(R/t = 20, \theta = 45^{\circ})$	ι F25
Table F.2a Elbow with circumferential crack – combined pressure and bending compilation $(R/t = 5, \theta = 90^{\circ})$	n F26
Table F.2b Elbow with circumferential crack – combined pressure and bending compilation $(R/t = 10, \theta = 90^{\circ})$.	ı F26
Table F.2c Elbow with circumferential crack – combined pressure and bending compilation $(R/t = 20, \theta = 90^{\circ})$	F27
Table F.3a Elbow with axial crack – combined pressure and bending compilation $(R/t = 5, \theta = 15^{\circ})$	F28
Table F.3b Elbow with axial crack – combined pressure and bending compilation $(R/t = 10, \theta = 15^{\circ})$	F29
Table F.3c Elbow with axial crack – combined pressure and bending compilation $(R/t = 20, \theta = 15^{\circ})$	F30
Table F.4a Elbow with axial crack – combined pressure and bending compilation $(R/t = 5, \theta = 30^{\circ})$	F31
Table F.4b Elbow with axial crack – combined pressure and bending compilation $(R/t = 10, \theta = 30^{\circ})$	F32
Table F.4c Elbow with axial crack – combined pressure and bending compilation $(R/t = 20, \theta = 30^{\circ})$	F33
Table F.5 Elbow with circumferential crack – pure bending compilation ($\theta = 45, 90^\circ$) for u with Equations E.19 and E.20 (a) R/t = 5, (b) R/t = 10, (c) R/t = 20	se F34
Table F.6 Elbow with axial crack – pure bending compilation ($\theta = 15, 30^{\circ}$) for use with Equations E.19 and E.20 (a) R/t = 5, (b) R/t = 10, (c) R/t = 20	F35
Table G.1 Material properties for Inconel 182 weld material	G12

Table G.2 Temperature dependent material properties for A516-70	G12
Table G.3 Temperature dependent material properties for A508 Class 3	G13
Table G.4 Temperature dependent material properties for Type 316 and Type 309	G13
Table G.5 Temperature dependent material properties for Type 304	G14
Table G.6 Temperature dependent creep constants for all the materials	G17
Table H.1 Pipe geometries studied	НЗ
Table H.2 Crack sizes studied	НЗ
Table H.3 Energy inputs used in the current analysis	Н5
Table H.3a Energy inputs used in the current analysis.	Н5
Table H.4 Weld pass power input per unit volume for 0.590 inch thick pipe	Нб
Table H.5 V ₁ values for tension from Table 2-1 of Reference H.1	H10
Table H.6 V ₁ values for bending from Table 2-5 of Reference H.1	H10
Table H.7 V_1 values for bending from Tables 4.3 and 4.8 of Reference H.6	H10
Table H.8 σ^{∞} _{Critical} values for tension loads kPa, (psi)	H11
Table H.9 C ₁ values for tension (C _T)	H12
Table H.10 I _{OD} values	H12
Table H.11 I _{ID} values	H13
Table H.12 C ₁ values for moment loading (C _B)	H19
Table H.13 σ^{∞} _{Critical} values for moment loads kPa, (psi)	H19
Table H.14 Combined loading example factors	H20
Table H.15 Calculated results for modified equation and GE / EPRI	H21
Table I.1 Differences in leakage flaw sizes due to restraint of pressure-induced bending	I6
Table I.2 Symmetric restraint cases	I8
Table I.3 Asymmetric restraint cases	I8
Table I.4 Problems analyzed by the participants	I9
Table I.5 Matrix of FE runs by Participant A – Case 1a	I12
Table I.6 Matrix of FE runs by Participant A – Case 1b	I12
Table I.7 Matrix of FE runs by Participant A – Case 1c	I13
Table I.8 Summary of model features	I21
Table I.9 Observations on unrestrained pipe case	I23
Table I.10 Observations on the round-robin case comparisons	I27

Table I.11	Normalized COD under asymmetric restraint length, OD=28-inch	I30
Table I.12	Normalized COD under asymmetric restraint length, OD=12.75-inch	I30
Table I.13	Normalized COD under asymmetric restraint length, OD=4.5-inch	I30
Table I.14	Post round-robin analyses of the 1986 ASME round-robin problem	I35
Table I.15	Initiation load predictions from IPIRG-1 round-robin using estimation schemes	I37
Table I.16	Maximum load predictions from IPIRG-1 round-robin using estimation schemes	137
Table I.17	Summary of the problem sets and dimensional and material parameters	I42
Table I.18	Summary of the analysis procedures of all participants	I48

APPENDIX A

EVALUATION OF PROCEDURES FOR THE TREATMENT OF SECONDARY STRESSES IN PIPE FRACTURE ANALYSES

A.1 BACKGROUND

Currently, the flaw evaluation procedures embodied in ASME Section XI specify different safety factors for global secondary stresses, such as thermal expansion and seismic anchor motion (SAM) stresses, than they do for primary stresses, such as primary membrane or primary bending stresses. The ASME Code specifies a safety factor of 2.77 for Service Levels A and B. and 1.39 for Service Levels C and D for primary stresses. For cracks in ferritic materials (base metal and welds) and austenitic flux welds (submerge-arc and shielded-metal-arc welds), the Section XI procedures indicate that the thermal expansion stresses should be included, but with a safety factor of only 1.0. In addition. for cracks in austenitic base metals, the ASME Code indicates that thermal expansion stresses need not be considered. Furthermore, the current ASME Section XI procedures do not explicitly require SAM stresses to be considered, regardless of the material.

The R6 analysis classifies certain secondary stresses, such as thermal expansion and other displacement-induced stresses (SAM), as effectively being primary stresses if there is significant elastic follow-up at the crack section. These stresses will not generally be selfequilibrating as is typically assumed for secondary stresses, such as weld residual stresses.

In a similar view, the LBB procedures specified in draft Standard Review Plan (SRP) 3.6.3 have an option that allows the thermal expansion stresses to be considered in the stability analysis of cracks in austenitic submerge-arc and shielded-metal-arc welds, but not in the stability analysis of cracks in austenitic wrought base metals and TIG welds. For ferritic materials, this option is not given so that secondary and primary stresses are combined.

A.2 RESULTS OF PRIOR PIPE-SYSTEM EXPERIMENTS

The results from the IPIRG pipe-system experiments indicate that for large cracks, where the failure stresses are below the general yield strength of the uncracked pipe, the thermal expansion and SAM stresses contributed just as much to fracture as did the primary stresses, see Figure A.1. Figure A.1 shows a plot of the maximum experimental stress normalized by the Net-Section-Collapse (NSC) stress for five quasi-static bend and five pipe-system experiments conducted as part of the IPIRG (Refs. A.1 and A.2) and related programs (Refs. A.3 and A.4). The crack sizes in each of these experiments were relatively large, such that the failure moments were low enough that plasticity was restricted to the crack section. The maximum experimental stresses have been normalized by the NSC stress to account for slight differences in pipe size and crack size. For each experiment, the maximum stress has been broken down into its various stress components, i.e., primary membrane, primary bending (inertial), seismic anchor motion, and thermal expansion (For the quasi-static bend companion experiments, the only stress components applicable are primary membrane and primary bending [quasi-static bending]). From Figure A.1 it can be seen that if the thermal expansion and SAM stresses are ignored in the stress terms for the pipe-system experiments, then the normalized failure stresses for the pipe-system experiments would only be 40 to 50 percent of normalized failure stresses for the quasi-static bend experiments. Consequently, it appears from these results that secondary stresses do contribute to fracture, at least for the case of large surface cracks where plasticity is limited.

Figure A.1 Comparison of the results from the IPIRG-1 pipe-system experiments with companion quasi-static, four-point bend experiments demonstrating how global secondary stresses, such as thermal expansion and seismic anchor motion stresses, contribute to fracture

A.3 BINP TASK 1 EXPERIMENT

As part of this effort in the BINP program, another pipe-system experiment (BINP Experiment 1) was conducted. For this experiment the actuator was intentionally offset at the beginning of the experiment, prior to the application of the dynamic cyclic load history, to simulate a larger thermal expansion stress. Figure A.2 is a plot of the actuator time history for this experiment along with the actuator time history for its companion pipe-system experiment from the First IPIRG program, i.e., Experiment 1.3-5. The crack for both of these pipe-system experiments (1.3-5 from IPIRG-1 and BINP Experiment 1) was located in the center of a stainless steel submerge-arc weld. The crack sizes for both experiments were nominally the same, i.e., 50 percent of the pipe circumference in length and 66 percent of the pipe wall thickness in depth. From Figure A.2 it can be seen that the actuator for the BINP experiment was offset an additional 56 mm (2.2 inches) at the start of the experiment with respect to the actuator displacement for the IPIRG-1 experiment. This additional static offset in displacement resulted in an additional 255 kN-m (2,257 in-kips) of static moment at the crack section.

Figure A.2 Actuator time history for BINP Task 1 experiment and IPIRG-1 Experiment 1.3-5

Figure A.3 is a plot of the crack section moment as a function of time for these two pipe-system experiments up to the instant when the surface crack penetrated the pipe wall thickness. From this figure it can be seen that the total moment at the crack section at the instant of surface crack penetration was comparable for the two experiments. This further supports the contention that these global secondary stresses (thermal expansion and SAM stresses) contribute just as much to fracture as do the primary stresses, at least for the case where the stresses in the uncracked pipe are below the yield strength of the pipe. From Figure A.4, which is a similar plot as Figure A.1, except it shows the results for the four stainless steel weld experiments (Experiment 4141-4 from the Degraded Piping Program, Experiment 1.3-5 from IPIRG-1, Experiment 1-5 from IPIRG-2, and the BINP Task 1 experiment), it can be seen that the primary stresses for the BINP Task 1 experiment represented only 35 percent of the total stress at maximum load.

Figure A.3 Plot of crack section moment as function of time for BINP Task 1 experiment and IPIRG-1 Experiment 1.3-5

Figure A.4 Comparison of the results from four stainless steel weld experiments showing the contributions of the various stress components to pipe fracture

These findings support the contention that the thermal expansion and seismic anchor motion (SAM) stresses (secondary stresses) are as detrimental as the primary stresses, at least for these test conditions for which the stresses at failure for the uncracked pipe were less than the yield strength of the material.

For such conditions, there is the potential for elastic follow-up. Section III of the ASME code recognizes this potential in its local overstrain criteria in paragraph NC-3672.6(b). This paragraph implies that global secondary stresses, such as thermal expansion and seismic anchor motion stresses, can act as primary stresses under certain conditions, such as when the weaker or higher stressed portions of the piping system are subjected to strain concentrations due to elastic follow-up of the stiffer or lower stressed portions. One such obvious example of this is the IPIRG pipe system in which a large crack is introduced into a weaker material (lower yield strength) than the surrounding materials. Consequently, the resultant stresses for the uncracked pipe sections were less than the yield strength at the time of failure of the cracked section. The implication is that the safety margins for secondary stresses may be a function of the ratio of the failure stress to the yield strength. If the failure/yield stress ratio is less than 1.0, then global secondary stresses should probably be treated the same as primary stresses for fracture in the stability/critical crack size analyses. If the opposite holds true, then the global secondary stresses may become less important with some nonlinear function.

A.4 REFERENCES

A.1 Scott, P., Olson, R., and Wilkowski, G. Marschall, C., and Schmidt, R., "Crack Stability in a Representative Piping System Under Combined Inertial and Seismic/Dynamic Displacement-Controlled Stresses – Subtask 1.3 Final Report," NUREG/CR-6233, Vol. 3, June 1997.

A.2 Scott, P., Olson, R., Marschall, C., Rudland, D., Francini, R., Wolterman, R., Hopper, A., and Wilkowski, G., "IPIRG-2 Task 1 – Pipe System Experiments with Circumferential Cracks in Straight-Pipe Locations," NUREG/CR-6389, February 1997.

A.3 Wilkowski, G., and others, "Degraded Piping Program – Phase II, Summary of Technical Results and Their Significance to Leak-Before-Break and In-Service Flaw Acceptance Criteria – March 1993 – December 1994," NUREG/CR-4599, Vol. 8, March 1989.

A.4 Kanninen, M., and others, "Instability Predictions for Circumferentially Cracked Type 304 Stainless Steel Pipes Under Dynamic Loadings," EPRI Report NP-2347, April 1982.