OBSERVATIONS OF SINGLE EVENT FAILURE IN POWER MOSFETS

Donald K. Nichols, Kenneth P. McCarty, James R. Coss Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109

> Al Waskiewicz & Jerry Groninger Rockwell International Corporation Anaheim, CA 92803

Dennis Oberg, Jerry Wert, Peter Majewski The Boeing Company Seattle, WA 98124

> Rocky Koga The Aerospace Corporation Space Sciences Laboratory El Segundo, CA 90245

Abstract

This first compendium of single event test data for power MOSFETs provides failure thresholds from burnout or gate rupture for over 100 devices of eight manufacturers. Ordering the data has also provided some useful insights.

I. Introduction

Power transistor single event effects (SEE) test data obtained by The Aerospace Corporation, The Boeing Company, Jet Propulsion Laboratory, NWSC(Crane, IN), Rockwell International, and others have been organized into one compendium here. The intent is to present a nearly comprehensive set of MOSFET data through May, 1994. It is believed, *however*, that some other data may be available that has not been published or brought to our attention. Contributors who desire inclusion in this compendium should contact Don Nichols.

This data set includes both single event burnout (SEB) anti single event gate rupture or damage (SEGR or SEGD) of MOSFET power devices. There is no hard line of separation between power devices and lower power devices, nor is there a demonstrated immunity of the latter to SEE. There is some data (not shown) for SEB of npn bipolar devices but none (as yet) of burnout of pap bipolar devices. The bipolar data is still very limited and much of it was taken by Titus et al (1) who have refrained from identifying manufacturers. Thus the category of bipolar power transistors is still very rudimentary.

The purpose of the present work is to:

(1) provide design engineers with operating voltage limits (max V_{DS} for a specified V_{GS}) of tested devices.

(2) identify unspecified process variables relevant to $S1 \times F$ response

(3) identify those parameters characterizing SEE response

(4) present trends that permit extrapolation from the existing data set,

II. Testing Approaches

There are several possible testing approaches that have been considered, but two arc of fundamental importance. One approach attempts to measure the SEB/SEGR cross section vs V_{DS} of a device for a given test ion (or equivalently a given LET) for a fixed gate source voltage (V_{GS}) and temperature. This type of cross section should not be confused with the LET-dependent cross sections tabulated for soft errors in ICs. The transistor cross section equals zero at lower VDS and rises very rapidly only at its threshold V_{DS} (almost like a step function); then tends to level off at somewhat higher VDS. So far, no experiment has yet extended the data far beyond threshold, Then, to obtain SEE rates for a specified environment, onc must perform the same experiment for several other ions to establish the LET threshold and cross sections for a few different ions [LETs) above threshold. This approach requires a large sample size and still does not provide an adequate basis for calculating the device upset rate. All of the preceding cross sections must also be repeated for angles of beam incidence greater than zero.

The second approach seeks simply to identify the threshold voltage V_{IJS} (th) for failure for a given ion (usually Ni/Fe or Br/Kr), V_{GS} and temperature. The selected ion should represent a realistic worst case for the environment. The latter approach indicates a voltage operating limit to the designer who can apply a derating factor, but it also offers

"little chance, to estimate the failure probability if one operates above threshold.

The data tabulated here in one extended table presents threshold V_{DS} for several groups of ions at a few selected gate source voltages V_{GS} , following the second (recommended) approach.

A nearly standard technique* for measuring the threshold drain-source voltage V_{DS} consists of the following steps :

(1) Prior to any irradiation, measure the drain source current at rated BV for VGS=0, or alternatively measure the actual breakdown V_{DS} for the same conditions. One should also measure the gate-source current at maximum rated gate voltage (usually 20 V) for V_{DS}=0. These measurements establish the normal operating currents.

(2) Choose a single gate voltage V_{GS} (start with the least susceptible zero voltage) and hold it constant for each subsequent irradiation step, for successively larger V_{DS}. At the end of each irradiation step of 105 ions/cm², change the bias conditions to those used in step (1) to determine the two currents I_{GSS} and I_{DSS} .

(3) Failure is either (1) SEGR as evidenced by a large permanent increase in gate current ranging between a fraction of a milliamp up to the circuit limit (say, 10 amps) or (2) SEB (burnout) evidenced by a short across source. and drain as well as a gate short.

(4) Delayed Failures-- On several occasions JPL anti other test organizations have seen delayed types of SEGR. On some occasions, the gate currents increased to -1 mA during irradiation and then increased again to the circuit limit during post-beam tests where, as always, VGS was reset to 20V.
 "Another type of SEGR failure occurs when the drain-source voltage is incremented for the next test,

111. Supporting Studies

Several collateral tests have been performed by now. Nichols et al (2), Fischer (3) and Tastet (4) have demonstrated that higher grazing angles of ion incidence have less effect on SEB and SEGR than normally incident irradiation. Hence the complications involved in calculating SEE rates by dealing with an effective LET vs incident ion angle arc simplified. (In actuality, there is no known formal method for calculating rates under these conditions for a specified environment. Since the calculation is relatively easy when compared to those for incident ions on other microcircuits, it is expected that such a rate calculation method will be developed soon.) High temperature tests have been performed (2,S.6) showing that SEB is greatly reduced at higher temperatures due to phonon interference with the avalanche burnout mechanism. In contrast, high temperatures tend to promote SEGR to a varying degree.

Nichols anti Waskiewicz have noted that most transistors that are supposed to differ only by die size (e.g. by having a different number of the same size transistor elements or cells) have similar breakdown voltages as expected. However, there arc a few occasions when such devices yield widely different SEE results. Waskiewicz notes that the dielectric oxide breakdown voltage (an uncontrolled parameter) may be responsible for wafer-to-wafer anti deviceto-device variability to SEE.

Oberg has demonstrated that the failure threshold voltages increase with device rated breakdown voltage as expected, but not at a proportionate rate. The threshold voltage as a percentage of breakdown voltage BV tends to decrease as BV increases.

IV.Organization and Scope of Data

This paper presents SEB anti SEGR data for MOSFETS in Table 1 for all known data taken up to May, 1994. Eight manufacturers are represented, with especially extensive data for International Rectifier (INR) and Harris (IIAR). Most data arc for commercialparts; but Harris, Ixys and INR have developed devices which are resistant to total dose. These rad hard devices often turn out to be less susceptible to burnout as well, but some hardening techniques (such as oxide thinning) may cause the devices to be more susceptible to SEGR.

'I'he data have been provided directly by testers or taken from published records of tests performed by many organizations. Most data is taken at ambient temperature; data taken at higher temperatures is noted in the "Remarks" column. One advantage of this type of data compilation is to point out and exclude inconsistent data. Onc example is the data set taken in 1987 that used low energy ions at the University of Washington tandem Van de Graaff. More recent tests at that facility, by Boeing, with the "Booster" accelerator, utilized higher energy ions and arc therefore consistent with data taken at other accelerators. As can be seen, the remaining test results demonstrate a strong correlation between higher-I ET incident ions and a lower acceptable drain-source voltage threshold. I'here is aiso a strong correlation between higher off gate-source voltage VGS and lower VDS thresholds.

The data arc grouped in rows by device manufacturer with the smallest manufacturer data groups listed first. Within each manufacturing group, devices with the lowest breakdown voltage are listed first-- first n-channel and then p-channel. Devices that arc very similar, or the same devices tested with different conditions (e.g. VGS) are grouped in touching,

^{*}At present, no standard test approach 'has been described. The second approach outlined here is recommended when a large number of device types must be evaluated for a proposed system.

adjacent rows. The columns list manufacturers, device number(s), channel type, and test sample size. It is observed that samples are never large enough to provide valid statistics, nor a characterization of maverick behavior that is occasionally noted. Most data, however, are fairly repeatable. Subsequent columns list the rated breakdown voltage (BV) and gate-source voltage VGS.

The next five columns group the ions. The first column is for low-I .FT ions having LETs less than that of the dominant Ni/Fe/Co/Cu group included in column two. This first group is useful in judging the adequacy of postulated theories (See for example, ref. 3). It is now often accepted that a characterization with a single ion of the second group may be all that is needed for project requirements. This view is supported by two facts: (1) those heavier ions having a higher LET have fluxes in outer space two or three orders of magnitude smaller than that of the Ni/Fe group, and (2) there is no need to account for enhanced effects from grazing-angle collisions having a high "effective" (angle-dependent) LET. The third group in the table includes Br and Kr (LET=37 MeV/mg/cm²), traditional high LET ions at the. Brookhaven Van Dc Graaff (BNL) and U. C. Berkeley 88-inch cyclotron (88), respectively. The fourth group includes the highest LET ions easily available at the aforementioned facilities. The fifth column includes data from very high energy (10- 100 MeV/amu) facilities: the Berkeley Bevalac (now defunct) and GANIL (France). It is this last group of ions that present some inconsistencies with the lower energy LET characterizations, for reasons that have not yet been fully explained.

The remaining set of columns provide the failure mode, the test group, test date, ion facility and "Remarks." It is useful to know that INR uses 7000 and 8000 numbers to specify n-channel devices with 100 Krad and 1 Mradtotal dose tolerance, respectively; 9000 numbers for p-channel devices with 100 Krad tolerance. The first INK mfr number (on the left) relates to the breakdown voltage; the second number is related to the dic size-- the larger this number, the larger the dic size and (usually) the larger number of individual cells. INK's letter "H" in the third place from the left of the prefix means that the devices arc especially designed to be radiation resistant to total dose. It turns out that such devices are also very resistant to single event effects as well. The fourth letter of INR (which may be "{1") and third letter of' HAR devices is a package designation not expected to affect SEB/SEGR data. Harris denotes rad hard tolerance with a suffix after the device number; R= 100 Krad and H=1 Mrad.

V. Future Directions

The large body of test data have led to generation of global models of SEB and SEGR. We know such models are not the whole story, for burnout data often show meltdown located at physical stress points, such as the edges of metal overlayers. We also note again that f~eld-dependent irradiation models are not sufficient to explain the delayed failures caused by bias changes following irradiation.

The SEB model first mentioned by Waskiewicz (5) and Hohl (7, 8) has been polished and extended by Wrobel (9). This model seemed sufficient, but it has been challenged, at least in part, by Ku boyama (1 O) with an experimentally-based numerical analysis. Hence the picture of SEB cannot be considered a closed subject.

The model for SEGR has yet to be produced. The most recent attack on the problem was provided by the group at the University of Arizona (1 1,12) who attempt to match a numerical analysis of the semiconductor region to properties of the gate oxide. Their computerized approach, using a nchannel cylindrical (r,z) transistor cell, describes a normally incident ion track along the z-axis whose holes migrate to the oxide-semiconductor interface. The model assumes that the holes are not trapped at the interface, but that they pile up there before drifting transversely to the grounded body. The charge buildup at the interface is thus a sensitive function of the hole mobility and the RC time constant of the interracial storage capacitor. The model shows the expected variation in voltages and currents; it also demonstrates that the maximum tirnc-dependent fields across the oxide are indeed sufficient to exceed the critical field characterizing oxide breakdown.

Some limitations of the above semiconductor model were amplified later (ref. 12) in order to explain the effect of grazing angle irradiation and higher temperatures on SEGR. Increased SEGR susceptibility at higher temperature is attributed to (1) increased concentration of holes at the interface due to decreased radial diffusion of deposited holes from the center of the ion's filament (track). and (2) a decrease of hoic mobility.

The reduced chance of SEGR at higher angles, according to numerical simulations indicated by ref. (12), comes from the fact that the holes deposited in the oblique track arc still driven vertically to the oxide-semiconductor interface. Because the hole charge is now spread over a wider area at the interface, a lower electric field is generated across the oxide.

Although neither description (of SEGR and SEB) can be considered complete, it seems clear that the greatest deficiency lies in our understanding of the oxide. Is there really a weil-defined critical field and if so, what mechanism causes the abrupt collapse (short-circuiting) of the oxide? How long must the critical field last in the oxide before breakdown occurs? What controlled and uncontrolled oxide fabrication parameters affect oxide breakdown? Is there a first-stage incipient breakdown induced by heavy ions that is triggered by a later change. to higher applied bias? What role do mechanical stresses, impurities, structures and surfaces play? Can we find an oxide process resistant to SEGR and to totalionizing dose?

Some possibilities for further numerical analysis still remain. 1s a fully 3-dimensional code required to explain why a change in bias across the oxide is observed to be more influential than an equal change in bias across the drainsource? Can we develop a 3-D code adequate to predict the performance of novel devices? Do possible interface traps play a significant role in SEGR models and their temperature dependence?

VI. Conclusion

This first compendium of SEE (SEB and SEGR) effects in power MOSFETs given here will be useful for designers of satcllite and space systems. Some extrapolations may be warranted, and some cautionary observations are also provided. Testing with only one ion may be acceptable for some system requirements.

Acknowledgment ts

JPL, wishes to thank Charles Barnes, radiation effects supervisor, Harvey Schwartz. and Mike O'Connor for test support and preparation. The research described in this publication was carried out in part by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics anti Space Administration. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply the endorsement by the United States government or the Jet Propulsion Laboratory, California Institute of Technology.

The Aerospace Corporation would like to thank K. Crawford, J. Groseth and M. Lalic for their assistance during the test preparation and the data collection periods.

Thanks are also due to staff at the Brookhaven National 1 laboratory Van dc Graaff, the University of Washington Van de Graaff, and the Lawrence Berkeley Laboratory 88-inch cyclotron.

Special thanks go to all of you who are supporting the much wider publication of these single event compendia in the IEEE Transactions of Nuclear Science.

References

(1) J. L. Titus, G. H. Johnson, R. D. Schrimpf & K. L. Galloway, "Single Event Burnout of Power Bipolar Junction Transistors," *IEEE Transactions on Nuclear Science*, <u>NS-38</u>, *No. 6*, 1315(Dec. 1991).

(2) D. K. Nichols, James R.Coss, Kenneth P. McCarty, "Single Event Gate Rupture in Commercial Power MOSFETs," *RADECS93* (accepted for publication).

(3) T. Fischer, "Heavy-Ion-Induced Gate-Ruprure in Power MOSFETs," *IEEE Trans. on Nuclear Science*, <u>NS-34</u>, No. 601786 (Dec., 1987).

(4) P. Tastet & J. Garnier, "Heavy Ion Sensitivity of Power Mosfets," *RADECS91*, p 138 (1991)

(5) A. E. Waskiewicz & J. W. Groninger, "Burnout Thresholds and Cross Sections of Power MOS Transistors with Heavy Ions," Rockwell International Rept No. DNA-MIPR-88-507 (Feb., 1990).

(6) G. H. Johnson, R. D. Schrimpf, K. F. Galloway, R.Koga, "Temperature Dependence of Single-Event Burnout in N-Channel Power MOSFETS," *IEEE Trans. on Nuclear Science*, NS-39, No. 6, 1605 (Dec., 1992).

(7) J. H.Hohl & G. H. Johnson, "Features of the Triggering Mechanism for SEB of Power MOSFETs," *IEEE Trans. on Nuclear Science*, <u>NS</u>-36, *No.* 6,2260 (Dec., 1989)

(8) J. H. Hohl & K. F. Galloway, "Analytical Model for SEB of Power MOSFETs," *IEEE Trans. on* Nuclear Science, <u>NS-34</u>, No. 6, 1275, (Dec., 1987)

(9) T. F. Wrobel & D. E. Beutler, "Solutions to Heavy Ion Induced Avalanche Burnout in Power Devices," *IEEE Trans.* on *Nuclear Science*, <u>NS-39</u>, *No. 6*, 1636 (Dec., 1992)

(10) S. Kuboyama, S. Matsuda, M. Nakajima, T. Kanno, T. Ishii, "Numerical Analysis of SEB of Power MOSFETs," *IEEE Trans. on Nuclear Science*, NS-40, No. 6, 1872 (Dec., 1993)

(11) J. Brews, M. Allenspach, R. Schrimpf, K. Galloway, J. Titus, C. Frank Wheatley, "A Conceptual Model of SEGR in Power MOSFETs," *IEEE Trans.* on *Nuclear Science*, <u>NS-40</u>, *No.* 6, 1959 (Dec., 1993)

(12) M. Allenspach et ai, "Prediction of SEGR in Power MOSFETs," and I. Mouret et al, "Temperature and Angular Dependence in SEGR,"Two interrelated papers submitted to *IEEE Trans.* on *Nuclear Science*, <u>NS-41</u>, No. 6 ([Icc., 1994)

Comp	vitation of Sin	gle Event	Uara fi	or Power	r MUSI	-EIS	Threshold Voltages (Vds) for Normally Incident. Ior	is for Burnout (SEB) and Ga	ateRuptur	e (SEGR)			
							The Pass/FailVdsVolta	iges for indicated Beams	of ColumnsH through L					
Mfr	MfrNumber	Generic No	Channe	Sample	BVds	Vgs(o	f) Low Z tons Fe,Ni,Co	_ET=27BrofKr LET-38	High Z lons High Energy lo	onsFailur	e Test Org	Date	Locati	onRemarks
i Txys	20N60		n		50	0	5 280			SEB	8 WP 01	°11/93	88	Oberg Ambient . 25 deg C.
Ixys	20N60		n		500	5	300			SEB	BWP-01	-11/93	88	Oberg Temp=100 deg C
Ixys	10 FA100		n	- 3	1000	5	450			SEB/S	EGR B WP-0	16/93	88	W Will DC SC9019 Ambient = 45 deg C
lxys	10N100		n		1000	5	450			SEGR	B WP-01	6/93	88	W Will DC SC9019 Temp . 100 deg C
APT	APT40M42		n	3	400	12	200/225			SEB	HON WP	2 2/93	BNL	DC9302
	continued					+/-12	(dynamic)	200/225		SEB				
APT	1001R1AN		n	>2	1000	5	400			SEB/S	EGP B WP-0	1 4/93	88	DC 9126 W Will See next entry
APT	100 IR1AN		n	>2	1000	5	450			SEB/S	EGR B WP-0	4/93	88	DC 9126 W Will 100 deg C implies SEB
œc	IRF150	2N6764	n	2	100	10	>95(Ne),70(Ar) 7	0(Cu)		SEB	R/A	1990	88	
æ	IRF250	2N6766	n	1	200	10	180(N), 170(Ne), <80(Ar)		SEB	R/A	1990	88	
ហាម	IRFF320	2 N 6 7 9 2	n		300	2?	<26	0(Cu)		SEB	R	1990	88	Compare to INR device
SIL		2N6660	n		60	10	27			SEB	А	*6/88	88	Koga
S!L		2N6660	n	1	60	10	60(N),50(Ne),40(Ar)	22(Cu)		SEB	R/A	1990	88	
SIL		2N6660	n		60	5	40(N,)			SEB	Р	•7/93	BNL	Revised fab fast 2 yrs DC9230 Bob Ferndon
SIL	IRFE130	,2 N6796	n	2	100	10	100(N),100(Ne),70(Ar),	50(Cu)		SEB	R/A	1990	88	Compare to INR device
SIL	IRF150	2 N 6 7 6 4	n	1	100	10	80(Ne),<50(Ar)	40(Cu)		SEB	R/A	1990	88	
SIL	IRF250	2N6766	n	2	200	10	160(N), 60(Ar)			SEB	R/A	1990	88	
SIL	IRFF230	2N6798	n		200	12	180"			SEGR	9 WP-01	10/93"	UW .	Oberg 100 deg C Worst case for SEGR
SIL	IRF350	2N6768	n		400	10	<120	(Cu)		SEB	R	1990	88	
SIL	4 3 0 fami (continued)	i'y 2N680;	2 n		500	5 12	300 300			SEB SEB/SI	B WP01 EGR B WP-0	"4193 1*10/93	88 UW	Ambient≖45 deg C Temp≂100 deg C

4 Power MOSFET Data

Manufacturers APT= Advanced Power Technology, GE C=Gen Electric, HAR= Harris, INR=Int/IRect/Sect/Sect.sys=ExysCorp. RCA, PCA, S1I. Siliconix, UTR=Unitrode

Testers: A-Aerospace (R. Koga & W. Crain), B= Boeing (D. Oberg, J. L. Wert & W. Will), C=Crane NWSC (J. Titus), HON=Honeywelt (J. Pollock, MDSSC, Houston, 713-283-1934, J. JPL(D.Nichols, 818-354-5787). JH= John Hopkins APL (J. Kinnison), R=Rockwell (A. Waskiewicz), S=Sandia (T. Fischer), MM-AS= Martin Marietta Astrospace (James Coleman, Valley Forge, PA), ESA (Len Adams)

Facilities 88- 88-in cyclotron (Berkeley). Bev= Berkeley Bevalac, BNL= Brookhaven Natl Lab Van de Graatt, GANIL-French National High Energy cyclotron, UW= U. of Wash , Van de G. (low & medium energy modes)

						4-Pow	er MOSEET	Data					
Mfr	Mfr Numbe	r Generich	Ic Chani	nel Sample E	Vds V	gs(off)Low Z tons Fe,Ni,CoLET=27Br or KrLET=	38 ¹ High Z loi	mns Hinrouant nsHighEnergy Ion	is Failur	e Test Org	Dale	Locatio	on Remarks
RCA	19N1	o	n	,10	0 ?				SEB	R	1990	Cf 252	2 data exists
RCA	IRF150	'2 N6764	n	10	່າວ	100(N),100(Ne),50(Ar),<50(Cu)			SEB	R	1990	88	
PCA	12P10		Ρ	1 10	0 1 0	Hard(Cu)			N/A	R/A	1990	88	DC8445
ACA	IRF9130	'2 N6798	р	1 10	0 1 0	Hard (Cu)			N/A	ΡΙΑ	1990	88	
RCA	30N15		n	?5	0 7				SEB	R	1990	C1 252	data exists
PICA	REM12N18		n	18	9 0	100 90 6	5		SEB	A	*5/88	88	Кода
QCA	IRF230	2N6758	n	20) 1 0	105			SEB	А	*6/88	88	Кода
RCA	IRF230	2 N 6 7 5 8	n	20	27	< 100(Cu)			SEB	Q	1990	88	
RCA	IRFF230	2N6798	n	20	02?	<90(Cu)			SEB	R	1990	88	
RCA	IRF250	2 N 6 7 6 6	'n	1 20	0 10	180(N),120(Ar), 80(Cu)			SEB	R/A	1990	88	
RCA	25N20		n	1 20	0 1 0	"200(N), 200(Ne), 180! Ar),<70(Cu)			SEB	R/A	1990	88	
INR	IRFM054		n	60	5	No failure at 60"			N/A	B WP-01	4/93"	88in	DC 9212 W Will
INR	IRHM7054		n	60	0	60(Nt)			N/A	R WP 04	-7/93-	BNL	DC9242 Bob Ferndon 7/1 3/93
	continued				5	60(N))			N/A	R WP-04	"7/93-	BNL	DC9242 Bob Feindon 7/1 3/93
INR	IRF110	2N6782	n	10	0 0	70/80(Ni) 50/70(Br)			SEB	ESA	*1/94	BNL	9039B, Harwell Rept AEA BS 1348
INR	IRFF110	2N6782	n	1 100) 10	100(N),100(Ne),90(Ar) 60(Cu)			SEB	R/A	1990	88	
INR	IRF120	2N6788	n	1 00) "o	Hard(Ni) 80/90(Br)			SEB	ESA	-1/94	BNL	9228G, Harwell Rept AEA RS 1348
INR	IRF120		n	1.0	27	95(Ar) <55(Cu)			SEB	R	R 1990	88	
INR	IRF120	2N6788	n	10) 5	90			SEB	в	12/92	UW	Oberg 23 deg C Note failure mode vs temp
	continued				5	80			SEGR	в	12/92	UN	Oberg 80 deg c
INR	IRFF120	2N6788	n	10	27	<60(Cu)			SEB	R	1990	88	
INR	IRH130		n	100	0	Hard @ 100/Bri	501 60(1)		?	С	unknown	BNI	
	continued				10	Hard # 100(Br)			N/A	С	unknown	BNL	
INR	IRHE130		n	100) o	Hard@100(8r)			N/A	t	1991	BNL	
	continued				75	= 100(Br)			ST-GP	J	1991	BNL	
	continued			-	15	~100/BD	₽age 2		SEGP	J	1991	BNL	

I.

٠

— —	4 Power MOSFET Data The Pass/FaitVdsVoltages for Indicated Beams of Columns Hithrough L														
Mfr	Mfr Number	GenericN	C Chan	nel Samp	le B	Vds Vg	s(off) Low Z lons Fe,Ni,C	o LET.27 BrorKrLET=:	38 High	Z ions High Energy for	sFaitur	e Test Org	Date	Locatio	onRemarks
INR	IRF130	2N6756	n	3	100) 10	100(N),100(Ne),90(Ar)	60(Cu)			SEB	R/A	7990	88	
INR	IRF130	2N6796	n		100	0 0	70/8	0(Ni) 60/70(Br)			SEB	EsA	-1/94	BNL	8915A, Harwell Rept AEA RS 1348
INR	IRF130	2N6796	n		100) 0		85			SEB	A	6/87	88	Koga
INR	(RF130	2N6796	n		100) 5	Hard				N/A	8 WP-01	3/93	88	Oberg DC9236
INR	IRFE130	2N6796	n	5	100) 10	100(N),100(Ne),90(Ar)	60(Cu)			SEB	R/A	1990	88	Compare to SIL part
INR	IRFF130	2N6796	n		100) o		82(Br)			SEB	s	1990	BNL	220 MeV Br has range=28 mic rons
	continued					10		105(Br)	58(Au)	SECP	S		BNL	330 MeV Au has range=3+microns
INR	IRF140		n		100) o	Hard(Ni)	70/80(Br)			SEB	ESA	"1/94	BNL	9203E, Harwell Rept AEA RS-1348
INR	IRF150	2N6764	n		100	0 0	90/100(Ni)	70/80(Br)			SEB	E 5A	"1/94	BNL	9228G, Harwell Rept AEA RS 1348
INR	IRF150	2N6764		3	100) 10	100(Ne),70(Ar),	50(Cu)		40/60(12 GeV La	a Bev.)S	EB R/A &J	1990	88	JPL Bevalacion L ET=30.6/88
inte:	IHE150	2N6764	n		100) 0	105 75	75			SEB	Α	*5/92	88	Koga
iNЯ	IRF150	2N6764	n	3 each	100) off	1001208 MeV CI) 70(/	Ni) 65(Br)	55(I)	50(! to 4 GeV Xe G	ANIL) SE	ECNES	11/90	BNL	3 GANIL IONS Taster, RADECS91
INR	IRF150	2N6764	n		100) 0	100(208 MeV CI) >80	(Fe)		80/100/>1 GeV F	e! Bev	SEB J	6/88	BNL	Two Fe at Bevaluc, each 1 ET<6
INR	IRH150		n		100	0 (100(Fe) 100	(Cu) 100(Kr)		60/100 (12GeV) La Bev	/ SEB	J& R	1990	88	JPL atBevalac-June1988
	continued		n		100	0 10	100	0(Cu) 90/100(Kr)			?	R	1990	88	Waskiewicz & Groninger, DNA Rept 2/90
INR	IRHE7110		n		100) 2	Hard a, 10	0(Ni) Hard al 100(Br)			N/A	R	7/92	BNL	90 deg C
	continued					15	Hard at 100	D(NI) 70(Br)			SEGR	R	7/92	EYVL	90 deg c
INR	IRHE7130		n		100) 2	Hard at 10	D(NI) Fail at 100(Br)			SEGP	R	7/92	BNL	90 đeg c
	continued					15	Hard at 100	(Ni) 60(Br)			ÆGR	R	7/92	BNL	90 deg C
INR	IRHM7130		n		100) 5	80				SECR	9 WPO1	1/93*	UW	100 deg C DC 9112
INR	IRH7150		n	6	100) 0		Br Only one o!	6 fails,	with 60/70 VDS	SEB	J	91/92	BNL	A maverick
	continued			4		15		60/80(Br)			SFCH	J	91/92	BNI	Data @100 deg C exists for Vgs=15 only
INR	IRH7150		n	2/3 ea	100) ott	100(Ni)			>-80(Xe) GA NIL	N/A	ONES	11/90	GANII	3 GANIL ions Tastet, RADECS91
INR	IRH7150		n		100) 0		Hard up 100/Br)	.1 O()(I)	2	с	unknown	BNL	
INR	IRH7150		n		100	0		Hard @ 100 (Kr)	>100(X	e)	N/A	Α	*5/92	88	Koga reports no SEB up to 150V
INP	IRFG6110		n&p C l	MOS	100	2	85(Fe)p.c*	onty.			SEB on	I'MM AS WP	2 "5/93"	BNL,	DC 9118 No SEGH No SEB p-ch devices
INR	9120 fami	ly2N6845	Ø		100	2	Hard @ 100	(Ni) Haid @ 100/Br)			N/A	R WP 4	8/92	BNL	DC9218. 90 deg. C
	continued					15	Hard @ 100-	(Ni) 60(Br)			SER	R WP-4	8792	BNI	DC9218 90 deg C
INR	IRF F9122		p	1	100	10	н	ard(Cu)			N/A	R/A	1990	88	DC8511

•

ĺ

٦

r							The Dees	Fail Vde Vallanse	4-Pow	er MOSEET Data	uch I				
Mti	Mfr Numbe	r Generic!	√⊂ Cha	innel Sam	nple E	3Vds Vg	gs(off)Low Z	Lions Fe, Ni, Co Li	ET.27 BrorKrLET	38High Z ions HighEr	nergylons Failure	e TestOrg	Date	Locat	ionRemarks
INF	9130 fa	mi!v2N680	4 p		100	02		Hard 🕼 100(N	I) Hard@100(Br)		N/A	P WP 4	8/92	BNL	DC9141 90 deg c
	continued					15		Hard @ 100(Ni) 50(Br)		SEGR	R WP-4	8/92	BNL	DC914 190 (leg C
INA	IRHF9130		0	5	100	0 0		Hard @ 100(Ni)			N/A	R	4/93	BNL	90 deo C First INR hardened o channel
	continued			5		5		Hard @ 100(Ni)			N/A	R	4/93	BNL	90 deg C
INR	IRFF9130	2N6849	D	2	100	0 10		Hard ((Cu)		N/A	R/A	1990	88	₩ DC8533, 8547
INR	IREE9130	2N6849	Ð		100) 0			Hard Wa 100(Br)		N/A	s	1987	BNI	
	continued		-			0 to 3	35			pass (#0(Au)	SEGR	s	1987	BNL	
	continued					36				Fail (# 0(Au)	SEGP	s	1987	BNL	
INR	IRF9130		p	2	100	0 10			Hard(Cu)		N/A	R/A	1990	88	DC8406, 8545
INA	continued					10			Hard @ 100(%)		N/A	S	unknown	BNL	
INR	IRE9140		p	382	100	0 0		60/70(Fe)	70/80(Br)		SEGP		91/92	BNL/8	8in Anomalous comparison Vidis of Br and Ar
	continued			3&3		15	Hard(Ar)		40/60(Kr)		SEGR		91/92	BNL/8	38in
INR	IRF9150		P	5	100	0 0		Hard@ 100(NI)			N/A	R	12/92	BNL	90 deg C
				5	100) 5		Hard @ 100(Ni)			N/A	R	12/92	BNL	90 deg c
INR	IRH9150		0		10	00s5		Hard @ 100(N,)			N/A	Q	8/93	BNL	D C A9330 Bob Ferndon
INR	IRF210	2N6784	n		200	0		140/150(Ni)	? 00/120(5,)		SEB	ESA	"1/94	BNL	9228G Harwell Rep! AEA RS-1348
INR	IRF210	2N6784	n		200	off		<130(Cu)		SEB	R	1990	88	
INR	IBF220		n		200	5		145(Co)			SEB	B WP-01	*6/93	88in	Am bient=45 deg C DC 921.8G W Will
	continued					5		150(Co)			SEB	B WP-01	*6/93	88m	100 deg C W Will
INR	IRFF220	2N6790	n		200	5		145(Ni)			SEB	R WP-04	"7/93	BNL	DC 9040 Bob Ferndon
INR	IFIF230	2N6798	n		200	0		160/170(Ni)	<140(Br)		SEB	ESA	'1/94	BNL	9228G, Harwell Rept AEA RS 1348
INR	IREF230	2N6798	n		200	2?		<120(Cu.)		SEB	R	1990	88	
INR	IRFF230	2N6798	n		200	0 & 5		135(Ni)			SEB	R	"7/93	BNL	DC 9146 Bob Ferricton
INR	THEF230	2N6798	n		200	0			169(Br)	107(Au)	SEB(Br)/SEGR (Au) S unknow	n BNL	
INR	IRFF230	2N6798	D		200	0		140			SEB	B WP-01	10/93"	UW -	DC 9217 Oberg 22 deg C
INP	IRFF230	2N6798	"		200	5		120			SE B/S	EGR B WF	9.01 1 0/93	"Uw	Oberg 80 deg l c
INR	IRF240				200	0		140/150(Ni)	120/130(Br)		SEB	ESA	"1/94	BNL	9228G, Harwell Rept. AEA RS 1348

+

•

1

ì

1							The Pass	/Fail Vds Volta	4-	Power MOSFET	Data nns. Hithrough I					
Mfr	Mfr Number	Generic	IcChannel	Sample	BVd	s Vgs(o	ff)Low Z lor	ns Fe, Ni Co LE	T.27 Bror Kr LE	T.38 High Z lons	High Energy Ion	s Failure	e Test Org	Date	Locatio	nRemarks
INR INR INR INR	IRF250 IRF250 IRF250 continued continued IRF250	2N6766 2N6766 2N6766 '2 N7225	ʻn n ʻn	2 3 each	"200 200 '200 '200	o 0 0? 10 off 5	190(N),2 200(C1-2	"120/ 140(N,) 1 140(Fe),120((00(Ne),120(Ar 1)135(Ni) 150 160	<120(Br) 50 Cu) 100(Kr) 90(Cu), 100(N 112(Br)	135 h),85(Br)150(('1 07(l)	80(La1),80(La2 CI-252) 100(Xe)- GA	SEB SEB 2) SEB SEB NIL SEB SEB SEB	ESA A A & B R/A ONES 9 WP-01 8 WP.01	<pre>'1/94 '9/89 1988 1990/1 992 11/90 11/93 11/93</pre>	BNL 88 88/Bev 88/BNL BNL 88	9228G, Harwell Rept AEA- RS-1348 Koga Oberg & Kolasinski Waskiewicz 3 GANILionsTastet, RAE) ECS91 Temp= 25 deg C
INR	IRH7230 copntinued		n	5 5	200	ʻo 5		Hard a! 200 V Hard at 200 V	(Ni) (Ni)			N/A N/A	R R	12{92 1 2/92	BNL BNL	DC 9042 90 deg C DC 9042 90 deg C
INR	IRHF7230 2 continued	N7262	n	'5	200	2 '15		Hard al 200V 1 fad al 200 \	(Ni 160(Br) /(Ni) 90(Br)			segr Segr	R R	7/92 7/92	BNL BNL	IR 7xxx ≃Rad tolerant 90 deg C 1 of 5 failNi 90 deg C
INR I	IRH7250 continued continued		n	4 3.2,4 2	200 I	0 15 "20	180/200(A	ar) 160/200(Hard @ 200() Fe) 120/140(B,) 80(Br)	Br)		N/A SEGR	J J	91/92 91/92 91/92	BNL BNL BNI	Data @100 deg C exists for Br Vgs=15 only ¹
INR INR INR	IRH7250 IRH7250 continued IRHM7250		n n	2/3 ea	'200 200 200	off 0 '5 '5 "12		200(Ni) 180(Ni) 120(Ni) No failure@ : 170	:00		200(Xe) GANIL	N/A SEGR SEGR N/A SEGR	CNES R R B WP-01 B WP-01	1 1/90 8/93 8/93 1/94 .1 /94	GANIL BNL BNL 88in 88in	3 GANIL tons Tastet, RADECS91 T=90 deg C. DC A9316 Ferndon 818-586-2607 T=90 deg C DC A9316 Ferndon 818.5862607 1 Oberg 100 deg C Oberg 100 deg C
INR	IRHM8250 continued		n '	4	"200 200	ʻo 5		140 110			•	SEGR SEGR	B WP-01 B WP-01	1/93" 1/93"	UW Lw	Oberg 100 deg C Oberg 100 deg C
INR INR INR INR	9230 fami 9230 fam IRF9230 IRFF9230 continued continued IRFF9230	lý2N6851 hly2N685 2N6851 2N6851	р 1 ф Р Ф		200 200 200 200 200	5 10 0 0 to 35 36 0 & 5		160 fails at 200 Hard(Ni)	Hard @200(! Hard @ 200(!	3r) 3r) Passal O Failat O ((Au) Au)	? SEGR N/A N/A SEGR SEGR None	BWP01 BWP01 s s S R	*1993 *11/93 unknown 1987 1987 1987 *8/16/93	UW? 88 BNL BNL BNL BNL BNL	SSF Table Oberg Temp .80 deg C DC A9330 Redesigned Bob Ferndon
INR	IRFF9230 IRF9240 continued IRF9240 continued	2N6851 2N7237	P P	2&2 3,1,3	200 200	1 () 0 15 5 5	Haid(Ar)	Hard(Cu) 80/100(Fe) 100/120(Fe) <200(No failu re	80/100(Br) 80/100(Kr) Co)			None SEGR SEGR SEGR	P/A J B WP 01 B WP 01	1990 91/92 91/92 8/93 11/93	88 BNL BNL&88 2 88m	DC8607 Same Vds range for Br at 125 deg. C n Fe datum @Vgs= 0(above) is anoma lous W Will 100 deg C Temp dependence is SEGR Oberg Ambient Compare preceding
										₽aga 5 —	–					

. .

į

								4:Power MOSFET W -						<u></u>
Mfr	Mfr Number	Generic No	Chann	el Sample	BVds	The Pa Vgs(off)Low Z	ss/FailVds Voltag Ions Fe,Ni,CoLE	es for Indicated Beams of Columns H T=27 Br or Kr LET=38 [°] High Z lons Hi	through I gh Energy	L Ions Failu	re Test Org	Date	Locatio	onRemarks
INR	IRH254		n		250	27		Hard(Cu) >225/ Kr)		7	R	1990	88	
1	continued		n		250	10 Hard(Ar)	Hard(Cu) 225/250 (Kr)		?	R	1 ,9%	88	
INR	?	2N6780	n		400	0		200/240(Br)		SEB	ESA	"1/94	BNL	Commercial, Harwell Rept AEA RS 1348
INR	IRF310	2N6786	n		400	0	260/270(Ni)	250/260(Br)		SEB	ESA	"1/94	BNL	9228G, Harwell Rept AEA RS- 1348
INR	IRFF320	2 N 6 7 9 2	n		400	2?		<260(Cu)		SEB	R	1990	88	Compare UTR device
INR	IRF330	2N6800	n		400	0	240/260(Ni)	200/240(90		SEB	ESA	-1/94	BNL	9228G, Harwell Rept AEA RS-1348
INR	IRFF330	2N6800	n		400	2	<235 (Cu) 235(Br)		SEB	Р	7/92	BNI	90 dey C
	continued					15		235(Br)		SEB	R	7/92	BNL	90 deg C
INR	IRFF330	2N6800	n		400	5	240(LET=28)			SEB	B WPO1	12/92	UW	100 deg C DC E9115
INR	IRF340		n		400	0	250/260(Ni)	240/280(Br)		SEB	ESA	1/94	BNL	9228G, Harwell Rept AEA RS-1348
INR	IRF340		n		400	2?	245			SEB	MM-AS w	P2 " 8/93	BNL?	DC 8924,9031,9110 Dr T Rao Sahib
INR	IRF350	2N6768	n		400	2		1 3	0(LET=	32) SEB	CNES	1 992	GANIL	Dufouret al 921EEE Workshop
INR	IRF350	2N6768	n		400	5	260			SEB	B WP-01	6/93	88in	Oberg Vth=280 at 100 deg C
INR	IRF350	2N6768	n		400	0	260/2 80(Ni)	200/240(Br)		SEB	ESA	-1/94	BNL	9228G, Harwell Rept AEA RS 1348
INR	IRH7360		n		400	7 Hard @	400			N/A	INR	1/93	BNL	IR 7xxx Rad tolerar it
INR	IRHM7360		n	6(Ni)	400	0 to 2	175/200(Ni)	220(Br)		SEGR	R	7/92&4/93	BNL	90 deg C
l	continued			5(Ni)		5	175/200(Ni)			SEGR	R	12/92&4/93	BNL	90 deg C
	continued			5(Ni)		7	175/200(Ni)			SEGP	R	4/93	BNL	90 deg c
	continued					15	No data	125(Br)		SEGR	R	7/92	BNL	90 deg C
INR	IRF360		n	4	400	?2	225/250			SEGR	HON WP 2	2/93	BNL	DC9238G
	continued					12		<250		SEB				
	continued					+/-12 (dynamic	>300	.250		SEB				
INR	IRF360		n	5&4	400	0	220/230(Ni)	225/250(Br)		SEB	R	9 & 12/92	BNL	DC9143 B, 90 deg C N, @ room T
	continued			5&1		5	220/250(N+)	225/250(Br)		SEB				-
INR	IR 420	2N6794	n		500	5	300 athighT			SEB	B WP-01	11/93	88	Oberg D atum at 1 00 deg C only

i

•

i.

•

Mfr	Mfr Numbe	r GenericN	c Channe	l, Sampl	le, B	Vds V	The Pass/ gs(off) Low Z	Ions Fe Ni Co L	s for Indicated Bea ET=27BrorKrLET=3	ms of Co 38 High Z	lons HighEnergy lor	ns Faitu	re Test Org	Dale	Locatio	onRemarks
INR	IRF430	2N6802	n		500	<i>'0</i>		300/350(Ni)	320(Br)		SEB	ESA	.1 /94	BNL	9228G, Ha rwell Rept AEA-RS- 1348
INR	IPF430	2 N 6 7 6 2	n		,500	"7			<310(Cu)			SEB	R	1990	88	
INR	IRFF430	'2 N6802	n		,500	?				500(Au)		JH		BNL	Au has inadequate range =27 mic
INR	IRFF430	'2 N6802	"n		500	?				275(LE	T=100)	SEB	JH		BNL	J Kinnison
INR	IRFF430	'2 N6802	n		500	'5		325				SEB	B WP-01	"4/93	88in	Oberg ambient .45 deg C>
	(con t	inued)				"1	2	325				SEB	B WP-01	"10/93	uw	Oberg Temp= 100 deg C
INR	IRF440		n		′5 C	0 0	″ O	300/350(Ni)	250/300(Br)			SEB	ESA	1/94	BNL	9228G, Harwell Rept AEA- RS-1 348
INR	IRF440		n		500	5		300				SEB	B WP-01	6/93	88	Oberg ambient .45 deg C
INR	IRF440		n		500	"12		325				SEB	B WP-01	6/93	88	Oberg Temp =100 deg C
INR		2N6820?	?n		'?	5		"350				SEGP	B WP-01	6/93	UW?	W Will DC 9225
INR	IREM450	2N7227	n		50	0	" o370(LET=	15)350(LET=30)	320 (LET=40)			SEB	A	*9/93	88	Koga has cross sections for each LE
INR	IHFM450	2 N 7 2 2 7	n		500	?	350(CI)	300(Ni)	275(Br)	250(1)		SEB	CNES	1 1/90	BNL	
INR	IQ F450	2N6770	n		500	0		300/350(Ni)	300 (Br)			SEB	ESA	.1 /94	BNL	9228G, Harwell Rept AEA RS 1348
INR	IRF450	2 N 6 7 7 0	n	5 & 1	500	"О		290/300(N,)	275/300(Br)			SEB	R	9 & 12/92	BNL	Br @ 90 deg C., Ni @ room T
	continued			5 & 3		5		290/300(Ni)	275/300(Br)			SEB	R	9 & 12/92	BNL	Br @ 90 deg C ;Ni @ rooin T
INR	IRF450	2 N 6 7 7 0	n		,500	?					250(LET=23) SEB	ONES	1992	GANIL	Dufour et al 92/EEE Workshop
INR	IRH450		n	2/4 ea	"500	off			350(Br)	325(!)	250(Xe)-GANIL	SEB	CNES	11/90	BNL	3 GANIL Ions TastetRADECS91
1117	1047460		_			2			210 (0-)			600	are	1000	2	
IND	1807450	216770	n	595	500	" • ••	•	200/225/NO	310 (Br) 250/275/Ra)	~120(1)		365		1990 		B 90 deg C Evi-40 50 min the block Manada
[INNER	cont inu	2110770	n	584	500	5	2	275/200(NJ)	230/273(BT) 225/250(Br)	<120(1)		acce.	R & C(ron-	9 7,9,12/92		Po deg C 2DI=40:50 Michornigh V parts
1	continued	00		344		15		"No data	155(Br)			aece.	R	·7/92	BNH	90 deg C
INR	IRHM7450		n		500	'5		300				SEGR	B WP-01	1/93	UW	ObergTemp= 100 deg C
INR	IRGAC50U	IGBT	n	2(Ni)	600	0		340/350(Ni)				SEB	R	12/92	BNL.	room T
	continued	IGBT		2(Ni) '	600	5		340/350(Ni)				SEB	R	12/92	BNL	room T
INR	IRGAC50U	IGBT	n		600	5		380(Co)				SEB	B WP-01	6/93	88	DC 9300 W WillTemp .25 deg C
INR	IRFAG30		n		100	D 5		400				SEGR	SEB B WP-0	1 6/93	88	DC 9227, W Will Temp .45 deg C
INR	IRFAG30		n		1000	5		450				SEGR/	SEB B WP-0	1 6/93	88	DC 9227 W WillTemp . 100 deg C

4-Power MOSEET Data

•

· · · · · ·

Page-7-- —

r						T L - D	(C-3) Material and a		I Data				
Mfr	Mfr Number	Generic N	l< Channe	I Sample	BVds Vo	gs(off)Low Z I	onsFe,Ni,Co_LET	=27 BrorKrLET=38 [°] High Z	imns H inrough L 'ens High Energy IonsFail	ureTestOrg	Date	Locali	onRemarks
HAR HAR HAR	IRF130 FRM130 1 3 0 family	2N6796 2N7271 2N6756	n n n	10 10 10	05 05 05		40(Co) 100 41		SEB None ?	BWP-01 Harris Harris	4/93 -?993" .,1993-	88in BNL? BNL?	M9226 Oberg: Same: result at: 45 & 100 deg: C SSF Table SSF Table
HAR H ar	FRM140D1 continued FRM140	2N7283 2N7283	n n	2 10 3" 10	0 0 15 0 5		98	. 70/80 (Br) 20/4Q(Kr)	æct æct	J J Harris	91/92 91/92 "1993"	BNL 88-in BNL?	Data @100 deg C exists for Vgs≃0 & 15 *HAR says these are not latest technology SSF Table
HAR HAR	FRK150R continued FRK150	2N7291 2N7291	n d	5 10 4 10	00 5 05		80/100(Ni) 80/100(Ni) 97		3 ÆC 1 ÆC 1	R WP-4 R W P 4 Ha, ris	12/92 12/92 *1993-	BNL BNL BNL?	90 deg C 90 deg c SSF Table
HAR HAR	FRK 1600 FRK 160	2N7299 2N7299	n : n	2 1(10	000 05		No failure at 10	70/80(Br) 0	SEGF N/A	J Harris	91/92 "1993"	BNL BNL?	SSF Table
HAR MAR	9 i1 o. famil 9130 - famil	yRFL1P10 y2N6849	D P	10 10	0 =10<br 0 5	0	No failure at10	Hard 62 100 D	N/A	R B WP 01	'1992 -3/93	BNL 88in	for device coded data Oberg Rm Temp
HAR	FRM9140R continued		P	4 10 3&3	00 15	90/100(Ar	•)	60/70(Br) 30/40(Br)	ECF ECF	J J	91/92 91/91	BNL BNL	I of 3 SEGR IOT A,
HAR	FRK9150R con lir	2N7322 wed	P	5&5 10 5&5	00 5		Hard @ 100(NI) Hard @ 100(NI) 5	60/70(Br) 50/60 (Br)	SECF SECF	R WP-4	12/92	BNL	DC928x 90 deg C> 90 deg c
HAR	IRF9150 continued		P	10	0 -o 10			Hard 🕫 100V Fail 🕼 100	N/A SECF	R	1992	BNL	DC9010
HAR	FRK9160 FRK9160R continued	2N7328	р р	3 10 5 to 3	00 00 5		80/90(Ni) 70/80(Ni)	60/70(Br)	SECH SECH SECH	J R R	91/92 12/92 12/92	BNL BNL BNL	90 deg. C. Compare FRK9150R 90 deg. C. Compare FRK9150R
HAR HAR HAR	FRM230R continued FRM230 FRK230R continued	2N7274 2N7274	n 2 n n	2 20 2 20 20	0 0 5 0 5 0 0 5		160/180(N _F) 160/180(Ni) 166 140(Ni) 120(Ni)		SECA SECA 2	R R Harris R- WP-04 R- WP-04	12/92 12/92 "1993"	BNL BNL BNL? BNL BNL	90 deg C Compare FRK250R 90deg C Compare F RK250R SSF Table Temp - 2 Lemm 2

1

•

стальные Ради Вольные стальные стальные стальные стальные стальные стальные стальные стальные стальные стальные

i

...

							The Pass/Fr	ail Vds Voltages	4 Pow	er MOSFET Data					~
Mir	Mfr Number	r GenericN	Chann	nel Sampl	e BVo	ds Vg	s(off)Low Z lon	is Fe.NI,Co.LET=	27 Br or Kr LET=38	B ¹ High Z lons HighEnergy lon	is Failure	e Test Org	Date	Locatio	nRemarks
HAR HAR HAR	230 famil 230 famil 230 famil continued	ly 2N6758 ly 2N6798 ly 2N6798	n n n		200 200 200	5 5 5 *5		64 70 70 80			? 7 SEB/SE SEB/SE	Harris Harris EGR B WP-01 EGR B WP-01	"1993" *1993* 3/93 /93	BNL? BNL? 88in 88in	SSF Table SSF Table W Will DC M9227 T= 45 deg C W Will DC M9227 T. 100 deg C
HAR	FRM240D1 continued	2 N 7 2 8 5	n	2.s2	200	0 15	180/2oo(AT	60/t00(Fe))	" 80/ 100(Br)		SEGR SEB	J J	91/92 91/92	BNL 88-in	100 deg C data has Vds(th)60/80(Br) 100 deg C data has no SEB "Not lates!
HAR	FRK250R continued	2N7293	n	483 481	200	0 5	•	140/160(Ni) 120/140(Ni)	80/100(Br) 80/100(Br)		SEGR SEGR	8 WP.4	1 & 9/92	9NL	90 deg C Compare FRK2309 90 deg C
HAR	IRF9230		Р		200	,				80/90(1)	2	с	unknown	BNL	
HAR	FRM9240R continued	2N7318	Р	583	200	0 15	60/80(Ar)	Hard @ 200(Fe) 100/120(Fe)	80/100(Br) 50(Br)		SEGR SEGR	J J	91 /92 91/92	BNL BNL/88-i	At 8 5 deg C , Vds(Fe)=120/180 @ Vgs=0 : ™ Hard @200 for Ne
HAR	FRM9250 continued		D	3 3	200	0 15		Hard @ 200(Ni) Hard @ 200 (Ni)			N/A N/A	J J	12/93 12/93	BNL BNL	1 of 3 older version failed at Vds=200/Vgs= 0 Older version not lested at Vds=15
HAR HAR	FRL234R FRM234		n n	5	250 250	0 5	:	175/200 (Ni) 238(Pass)			SEGR 2	R Harris	3/93 "1993"	BNL BNL?	90 deg C DC 9312 SSF Table
HAR	FRK264D	2N7303			250	5		160			SEGR	9 WP-01	1 1/93	UW&88	Room temp & 100 deg C
HAR	IRHM7360 continued		n	2 & 4 2 & 3	400	0 5	:	225/250(Ni) 1 75/200 (Ni)	175/200(Br) 200/225(Br)		SEGR SEGR	R	9/92	BNL	90 deg C 90 deg C
HAR		2N6800 continue	n din		400	5 5		130 130			SEB SEB	B WP-01 B WPO,	1/93 1/93	UW UW	DC8830 Temp = 28 deg C Temp : 100 deg C See preceding
HAR	4 2 0 fami continued	ity 2N6794	n		500	0 5		220 250			SEB SEB	B WP01 B WP-01	-12/92 "12/92	UW UW	Oberg Temp= 22 deg C Oberg Temp= 80 deg C
HAR	430 fam	nily 2N680	2 n		500	0	2	250		SEB	& SEGR	B WP 01	12/92	UW	Oberg 100 deg C
HAR	430 family	y 2N6762	n		500	5	2	280			?	Harris	*1993	BNL?	SSF Table
HAR	IR450		{1		500	0					SEB	Α	*9/93	88in	Koga

- -

Ι

								4 Poy	er MOSFET Data						
r						The Pass/F	ail Vds Voltages	for Indicated Bea	ms of Columns H t	through L					
1Mfr	MtrNumber Generic ^N	Channel	Sample	BVds	Vgs(off)Low Z fens	^{Fe,} Ni,Co LET=2	7 Bror KrLET=3	BHigh Z lons High	Energy ions	Failure	etest Org	Date	Locatio	n Remarks
HAR	FRL430D continued continued	n		500	0 Dynami 0	c?	>400	>400 <400			SEB SEB Unk.	HON WP-2	2/93	BNL	
	continued				5			<250			Unk		0/0382/03	B N I	
HAR	FRM450R continued	n	5&4 5&1	500	0 5		275/300(Ni) 200/225 (Ni)	175/200(Br) 100/125 (Br)			SEGR SEGR	R	9/92&3/93 9/92&3/93	BNL	90 deg C Ni DC9232 90 deg C Ni: DC9232
HAR	EN460	n		500	0			300(Br)			SEGR	R	1992	BNL	Deleted from WP.04 design
HAR	TA6768	n	1	500	0	<320(C')			<320(!)		Gate le	akage C	1989	BNL	Early parts; ambiguous data LET(CI)=12
HAR	[⊤] A9768	n		500	0	<320(CI)			<320(1)		Gate le	akage C	1989	BNL	Early parts; ambiguous data LET(CI) -12
HAP	TA9783 IGBT	n	2	600	5		325/350(Ni)				SEGR .	я	12/92	BML	room T

Ì

٠

1