NATIONAL HIGHWAY TRAFFIC SAFETY

ADMINISTRATION

PUBLIC MEETING FOR ADVANCED GLAZING

RESEARCH

Holiday Inn Capitol

550 C Street, S.W.

Washington, D.C.

FEBRUARY 1, 1996 9:00 a.m.

AGENDA

PAGE

Introduction, Margaret L. Gill	3
<u>Welcome and Remarks</u> , Barry Felrice	5
History and Safety Need , Clarke Harper	13
<u>Research</u> , Steve Duffy	18
<u>Modeling</u> , Dinesh Sharma	57
<u>Alternative Glazing Costs</u> , Lillvian Jones	70
<u>Benefits</u> , Robert Sherrer, Linda McCray & John Winnicki	88
Non-NHTSA Presentations	
<u>Rigid Plastics</u> , Doug Nutter	136
Laminates , J.L. Bravet	151
Ejection Mitigation, Richard Morrison	156
<u>Side Vent Window Ejection Video,</u> Carl Clark	159
Other Performance Benefits Associated with Ejection Mitigation, Herbert Yudenfriend	173
<u>Closing Comments</u> , Stephen Summers	179

People Saving People

On the Road for a Healthier Future

Advanced Glazing Research Team

Glazing Team Goal

To develop a recommendation on whether the agency should regulate occupant retention through side-window glazing, and if so, details on how to regulate the industry. Work with the glazing industry to assess and encourage research on the alternative glazing system.

Ejection Status for Involved Occupants All Portals, In light Passenger Vehicles, Annual Average for 1988-1993 NASS Adjusted to 1993 FARS

	Fatalitie		
	S		
	Cases	Estimate	Percentage
Not Ejected	1,867	19,079	63%
Completely Ejected	583	6,205	21%
Partially Ejected	303	4,714	16%
Unknown	88	distributed	distributed
Total	2,841	29,998	100%

Glazing Related Fatalities 1988-1993 NASS Averaged Adjusted to 1993 FARS

Ejection Paths Annual Average, 1988-1993 NASS

Occupants

Total Annual Average Ejections: 61,010 Occupants

Fatal Glazing Ejections

Annual Average for 1988-1993 Adjusted to 1993 FARS

Belt Use For Ejection-Related Fatalities Police-reported Use, 1989 FARS

Percentage

97.7 100 90.6 80 60 40 20 9.6 2.3 0 Partial Ej. Complete Ej. Unbelted Belted

Complete Ejection Versus Belt Use FARS Data, 19-City Survey and State Belt Use

Injury Severity, by Ejection Type out of Glazing Annual Average for 1988-1993 NASS, Adjusted to 1993 FARS

	Fatality	Severe
		Injury
Complete	3,536	3,717
Ejection		
Partial	3,956	4,265
Ejection		
Total	7,492	7,982

NHTSA ADVANCED GLAZING RESEARCH PROGRAM

Research Objectives

Identify Countermeasures to Occupant Ejection Through Side Windows
Show Feasibility
Limit Increased Head and Neck Injuries by Glazing Contact and Laceration Potential by Broken Glass

Approach

* Identify Countermeasures
* Develop Certification Test(s)

retention
injury potential

* Evaluate Countermeasures

Glazing Types

* Tempered Glass
* Glass-Plastics (Bilaminates)
* Trilaminates
* Rigid Plastics

Glass-Plastic (Bilaminate) Glazing

Total Thickness = 4.2 mm

Total Thickness = 5.1 mm

Total Thickness = 4.46 mm

Total Thickness = 5.33 mm

Polycarbonates LEXAN MAKROLON

Thermosetting Silicone Resin Coating, both surfaces

Thickness = 4.5 mm

Thickness = 4.4 mm

Establish Impact Conditions (Mass & Speed)

Accident/Crash Test Data
Pendulum/Sled Test Data
Windshield Test Data

Impact Speed

Rollover Test Film Analysis
- range: 2.4 to 31.4 kmph (1.5 to 19.5 mph)
- average: 11.3 kmph (7.0 mph)

Accident Data Analysis (ΔV)
– range: 0 to 56 kmph (35 mph)
– average: 18 kmph (11.2 mph)
– most frequent: 30.6 kmph (19 mph)

Impacting Mass

Pendulum Tests (BioSID)
Head
Shoulder
Sled Tests (BioSID)
"rollover" configuration
"side Impact" configuration

Effective Mass (Pendulum Tests)

Head

- initially 4.5 kg (9.9 lbs)
- rises to 10-18 kg (22-40 lbs)
- Shoulder
 - initially 16-18 kg (35-40 lbs)
 - rises gradually to 25-27 kg (55-60 lbs)

Impacting Mass

Sled Tests (BioSID)
– "rollover" configuration
– "side impact" configuration

Effective Mass Measurement in Side Impact Simulation

Effective Mass Measurement in Rollover Impact Simulation

Effective Mass (Sled Tests Summary)

- * "Rollover" = 16.1 kmph (10 mph)
 - initially 18-20 kg
 - rises gradually to 41-43 kg
- Side Impact" = 24.1 kmph (15 mph)
 - initially 9 kg
 - rises to 16-20 kg
- 9 kg at 24.1 kmph = 200 N-m (150 ft-lb)
 18 kg at 16.1 kmph = 180 N-m (135 ft-lb)

Impact Conditions Preliminary Selection

* 18 kg (40 lbs)

* 16.1 to 24.1 kmph (10 - 15 mph)

Hemi-Spherical Impactor (18 kg)

 Resists Penetration Up To 22.7 kmph (14.1 mph)

* Windshield Reasonable Upper Bound

Impacting Mass Preliminary Selection 18 kg

Similar Energy Levels

* High Mass/Low Speed More Severe

Establish Performance Criteria

- Decide which criteria must be addressed in component test
 - Retention
 - Head Injury
 - Neck Injury
 - Laceration (minor injuries but disfiguring)

Establish Performance Criteria (Continued)

- Decide what type of measurement must be made for each criterion and establish pass/fail limits
 - Retention: max. dynamic deflection, energy containment, etc.
 - Head Injury: HIC, Mean Strain Criterion, etc.
 - Neck Injury: neck rotation, neck loading, etc.
 - Laceration: chamois cuts, developmental polymer face mask, etc.

Establish Performance Criteria (Continued)

- Decide what type of measurement must be made for each criterion and establish pass/fail limits
 - Retention: max. dynamic deflection, energy containment, etc.
 - Head Injury: HIC, Mean Strain Criterion, etc.
 - Neck Injury: neck rotation, neck loading, etc.
 - Laceration: chamois cuts, developmental polymer face mask, etc.

Select and Develop Impactor

& Guided

measure acceleration & displacement

Adjustable Mass
Changeable Faces
Usable In Vehicles

Establish Test Procedures Initial Testing

Rigidly Mounted

* 10 - 15 mph Range

Erroneous Accelerometer Output

Solution to Erroneous Output

* High Frequency Accelerometers

Free-Motion Headform (FMVSS 201)

FMH Response

Certification Test Development Summary

Retention Test

- guided impactor
- 18 kg (40 lbs)
- 16.1 to 24.1 kmph (10 to 15 mph)
- Head Injury
 - FMH
 - 24.1 kmph

Other Certification Test Issues

Impactor Orientation
Impact Location
Window Position
Pass/Fail Limits

Countermeasure Evaluation Previous Work

T-Edge Encapsulation
Modified LTD Door

clamped window frame

Successful Retention

40 lbs at 20 mph

Impactor Angle Effect

Angled Impact Impact

Dynamic Deflection

FMH Impact Test Data

GLAZING	HEAD FORM		HIC	MATERIAL	DISENGAGED
MATERIAL	IMPACT	SPEED	VALUE	BREAKAGE	FROM WINDOW
	(km/h)	(mph)			FRAME
LTD Tempered Glass	25.4	15.2	27	Yes	Yes
LTD Tempered Glass	19.8	12.3	37	Yes	Yes
Dupont Bilaminate	24.6	15.3	137	Yes	Yes
Dupont Bilaminate	24.4	15.2	178	Yes	Yes
St-Gobain Bilaminate	24.9	15.5	106	Yes	Yes
St-Gobain Bilaminate	24.6	15.3	122	Yes	Yes
Monsanto Trilaminate	24.6	15.3	570	No	No
Monsanto Trilaminate	29.1	18.1	858	Yes	No
Monsanto Trilaminate	29.1	18.1	308	Yes	No

(Rigid Plastic Glazing)

Partial Vs. Full Encapsulation

Full Encapsulation Effect

Preliminary Test Observations

Retention Test

- guided impactor shows good repeatability
- impact angle influence
- top edge subject to large deflections
- FMH Test
 - good repeatability on some materials
 - impact location influence on HIC values

Future Research

- Further LTD Encapsulation Development
- Explore Encapsulation on Other Vehicles
- HIC Validation
- Neck Injury Potential
- Laceration Potential
- Other Certification Issues

Computer Modeling of Rollover Accidents

Objectives

- Simulate typical rollover accidents to
 - estimate the benefits of alternative glazing
 - estimate the occupant into glazing impact velocity

Introduction

- Rollover accidents selected for modeling:
 - NASS investigated cases
 - Single vehicle rollovers
 - Occupant ejection or severe contact with side glazing

Methodology

- Estimate vehicle motion at the onset of rollover using VDANL
- Estimate complete rollover motion of vehicle using MADYMO
- Simulate occupant kinematics to match with the NASS reported interior contacts
- Set up parametric runs with different glazing materials

Simulation set up

Vehicle trajectory during rollover

Matrix of Parametric Runs

	Belted	Unbelted
No glazing	X	X
Tempered Glass	X	X
Rigid plastic	X	X
Trilaminate, 7mm	X	X
Bilaminate	X	X

Rollover of Volkswagen Jetta

Unrestrained Passenger

	Open	Tempered	Rigid plastic	Trilaminate	Bilaminate
HIC	197	414	171	233	269
Neck load (N)	3416	3416(wns) 500(glaz)	3416(wns) 800(glaz)	3416(wns) 800(glz)	3416(wns) 1000(glz)
Retention	No	No	yes	yes	yes

Restrained Passenger

	Open	Tempered	Rigid plastic	Trilaminate	Bilaminate
HIC	66	98	191	340	249
Neck load (N)		3222(hdr) 250 (glaz)	3222(hdr) 1000(glaz)	3222(hdr) 1500(glaz)	3222(hdr) 500(glaz)
Retention	No	No	Yes	Yes	Yes

Rollover of Toyota Pickup

Restrained Driver

	Open	Tempered	Rigid plastic	Trilaminate	Bilaminate
HIC	78	200	276	369	217
Neck load (N)	369	2413	1994	2256	2927
Retention	Νο	No	yes	yes	yes

Unrestrained Driver

	Open	Tempered	Rigid plastic	Trilaminate	Bilaminate
HIC		303	439	727	214
Neck load (N)		6086(hdr) 500 (glaz)	5915(hdr) 1000(glaz)	6086(hdr) 1500(glaz)	5924(hdr) 500(glaz)
Retention	Νο	No	Yes	Yes	Yes

Conclusions

- In rollover accident simulations with alternative side glazing
 - Most HICs are less than 500
 - Neck loads due to the direct contact with glazing are less than 3000 N.
 - All glazing prevented ejection
 - Head to glazing impact velocity varied from 14 kph to 20 kph

Side Impact Simulation

MDB into Chevrolet Achieva

	Open	Tempered	Rigid plastic	Bilaminate
HIC	132	168	320	422
Neck load (N)	413	643	1352	2935
Retention	Νο	Νο	Yes	Yes
ТТІ	125	125	125	125

Cost, Weight and Lead Time Analysis

Alternative Glazing in Side Windows

Study Sources

- Management Engineering Associates Conducted
 - Literature Searches Regarding Advances in Encapsulation and Abrasion Resistant Coatings
 - Teleconferences with authorities in flat glass, automotive glazing fabrication, polymer molding, plastic coating, encapsulation and automobile assembly industries
 - Plant visits to AP Technoglass, Excel Industries, Guardian Industries and United Glass
- Corporate Financial Analysis

Study Parameters

- Window and Door Configurations are for a 1995 Ford Taurus
- Cost, Weight and Lead Time Analysis of:
 - Tempered Glass
 - Trilaminate
 - Two Bilaminates
 - DuPont "Sentry-Glas"
 - St. Gobain's film
 - Rigid Plastic
 - Encapsulation
 - Abrasion Resistant Coating

COST OF VEHICLES EQUIPPED WITH ALTERNATIVE GLAZING

COST OF WINDOWS EQUIPPED WITH ALTERNATIVE GLAZING

CAPITAL INVESTMENT PER INDUSTRY

CAPITAL INVESTMENT PER INDUSTRY PER PART

WEIGHT ESTIMATES

Materials Tempered Glass Trilaminate Bilaminate - DuPont "Sentry-Glas" Bilaminate - St. Gobain Vitrage Rigid Plastic Weight
8.82 lbs.
8.82 lbs.
8.21 lbs.
8.20 lbs.
4.32 lbs.

LEAD TIME

 We estimate that the automobile industry should be able to incorporate the use of alternative glazing in side windows within 36 months

SUMMARY

51 of the 78 STUDY cases were potentially addressable

Findings indicate that it is possible for alternative glazings to remain intact given the structural damage seen in real-world crashes

NEXT STEP

Maximum Magnitude of Intrusion	Projected Rate of Retention for the Advanced Glazing		
<i>No Relevant Intrusion:</i> Rollover	0.667		
Non-Rollover	0.750		
Cases with Relevant Intrusive Damage:			
3 - 8 cm	1.000		
8 -15 cm	0.750		
15 -30 cm	0.500		
30+ cm	0.000		

NEXT STEP

 Hardcopy cases were used as a template to extend retention capabilities to the remaining automated cases.

An analysis was performed evaluating related intrusion codes (roof, roof side rail, window frame, A&B pillars).

Each STUDY case was tallied according to its respective category AND max. intrusion code.
BENEFITS ESTIMATION PROCEDURE

- HARDCOPY ANALYSIS OF SPECIFIC CRASHES TO ANSWER QUESTION: WOULD ADVANCED GLAZING HAVE REMAINED IN PLACE?
- CASE-BY-CASE REVIEW OF DETAILED VEHICLE DAMAGE DATA IN AUTOMATED NASS FILES.
- ESTIMATE NUMBER OF EJECTIONS IN CRASHES IN WHICH ADVANCED GLAZING WOULD HAVE REMAINED IN PLACE.

BENEFITS ESTIMATION PROCEDURE (CON'T)

- ESTIMATE NUMBER OF FATALITIES AND NONFATAL SERIOUS INJURIES THAT WOULD BE PREVENTED BY PREVENTING EJECTION
- REDISTRIBUTE PREVENTED FATALITIES AND SERIOUS INJURIES TO LESS SEVERE INJURY LEVELS.
- ESTIMATE SAFETY BENEFITS BY SUBTRACTING THE PROJECTED (MITIGATED) INJURY DISTRIBUTION FROM THE PRESENT INJURY DISTRIBUTION

Annual Number of Ejections Through Front Side Windows by Max Inj. Severity

CRITERIA FOR ESTIMATING ADV. GLAZING RETENTION IN CRASHES

MAGNITUDE OF INTRUSION PROJECTED RATE OF RETENTION FOR ADVANCED GLAZING

NO RELEVANT INTRUSIONROLLOVER0.667NON-ROLLOVER0.750

CASES WITH RELEVANT INTRUSION

3 - 8 cm	1.000
8 - 15 cm	0.750
15 - 30 CM	0.500
30+ CM	0.000

PRESENT STUATION-TOTAL E.ECTIONS AND N.M. FOR WHCH ADVANCED GLAZNG WOULD HOLD

Present Ejections in Which Advanced Glazing Would Hold

ABBREVIATED INJURY SCALE*

AIS 0 = NO INJURY AIS 1 = MINOR AIS 2 = MODERATE AIS 3 = SERIOUS AIS 4 = SEVERE AIS 5 = CRITICAL AIS 6 = UNSURVIVABLE

* ASSOCIATION FOR THE ADVANCEMENT OF AUTOMOTIVE MEDICINE (1990)

STATES' INJURY RATING SCALE "KABCO"

A = INCAPACITATINGB = NON-INCAPACITATINGC = POSSIBLE INJURYK = KILLEDO = NO INJURYISU=INJURED, BUT SEVERITYUNKNOWN IF INJURED

INJURY SEVERITY OF EJECTED OCCUPANT PRESENT CRASHES- ADV GLAZ WOULD HOLD

ESTIMATION OF BENEFITS

APPLICATION OF MATCH-PAIR RESULTS:

EXAMPLE: PARTIALLY EJECTED, UNRESTRAINED DRIVERS INJURY SEVERITY ANN. NUMBER 56 $\left(\right)$ 1 1755 2 818 3 276 4 45 5 179 FATAL 602

FATAL. PREV. 602 x 0.712 = 429

ESTIMATION OF BENEFITS

REDISTRIBUTION OF PREVENTED FATALITIES TO LESSER INJURY SEVERITY LEVELS

PARTIALLY EJECTED, UNRESTRAINED DRIVERS 429 FATALITIES PREVENTED

MAIS	REDIST. FATALITIES
0	83
1	253
2	60
3	26
4	4
5	3
FATA	L 429

SUMMARY

BENFITS OF ADVANCED GLAZ. IN FRONT SIDE WINDOWS

		ADVANCED	DIFF. = NET
MAIS	PRESENT	GLAZING	SAF. BEN.
0	76	720	-644
1	3928	4845	-917
2	3111	3028	83
3	1506	1387	119
4	137	114	23
5	389	366	23
FATAL	1864	551	1313
TOTAL	11011	11011	0

SUMMARY - EFFECT OF ADVANCED GLAZING IN FRONT SIDE WINDOWS

SUMARY - NET SAFETY EFFECT OF ADVANCED GLAZING

EST. COST PER "EQUIVALENT" FATALITY PREVENTED FOR ALTERNATIVE ADVANCED GLAZINGS INSTALLED IN FRONT SIDE WINDOWS

TYPE OF ADVANCED	EST. INCREM.	ANNUAL	DISC. "EQUIV."	EST. COST PER
GLAZING	CONS. COST	CONS. COST	FAT. PREV.	FATALITY PREVENTED
	A 100 000			
TRILAYER GLASS	\$48.00	\$768 MILLION	979	\$784 THOUSAND
DUPONT "SENTRY GLAS"	\$50.50	\$808 MILLION	979	\$825 THOUSAND
ST. GOBAIN BILAYER	\$51.34	\$821 MILLION	979	\$839 THOUSAND
RIGID PLASTIC	\$79.38	\$1,270 MILLION	979	\$1,297 THOUSAND

ESTIMATED COST PER "EQUIVALENT" FATALITY PREVENTED FOR SOME RECENT RULEMAKINGS

RULEMAKING PREV.

EST. COST PER "EQUIV" FATALITY

IMPACT PROTECTION; \$2,940,000 REAR SEAT FMVSS NO. 214

LIGHT TRUCKS; SIDE DOOR BEAM; FMVSS NO. 214

PASSENGER CARS, SIDE \$ 470,000 FRONT SEAT (1989\$) \$ 730,000 FRONT AND REAR SEATS

\$1,500,000 - \$2,500,000 (1989\$)

UPPER INTERIOR HEAD **PROTECTION;** FMVSS NO. 201

LT TRUCKS, AIR BAGS; FMVSS NO. 208

\$ 402,000 - \$ 459,000 FRONT SECT. (1993\$) \$3,121,000 - \$3,568,000 REAR SECTION \$ 687,000 - \$784,000 FRT. AND REAR SECT.

\$560,000 - \$660,000 (1989\$)

ESTIMATED FRONT SIDE WINDOW EJECTIONS COMPARED TO REAR SIDE

NET SAFETY EFFECT - FRONT VS. REAR SIDE WINDOW ADVANCED GLAZING

ROUGH ESTIMATE - ANNUAL FATALITIES PREVENTED BY CRASH TYPE

ESTIMATED ANNUAL FATALITIES PREVENTED CAR-LIGHT TRUCK SPLIT

STATISTICAL ESTIMATION OF THE BENEFITS OF ADVANCED GLAZING

- Ejection is associated with the most severe consequences in traffic accidents.
- Advanced glazing prevents ejection, thereby reducing injuries.

PROBLEM: Using the available traffic accident data, determine fractional reduction in fatalities and serious injuries if advanced glazing is installed in the fleet of light vehicles.

BASIC APPROACH: Matched pair analysis

From database containing records of traffic accidents, select the cases involving pairs of driver and front seat passenger, one of whom was ejected and the other was not ejected.

Determine the fraction of fatalities among ejected occupants and among the non-ejected occupants.

ASSUMPTION: Injuries suffered by the non-ejected occupant are of the same severity as the injuries that would have been suffered by the ejected occupant if the vehicle had the advanced glazing.

RATIONALE: Non-ejected occupant avoids ejection because interior parts of vehicle (pillars, dashboard, door, etc.) prevented ejection.

We assume that in a crash contact with the break-resistant advanced glazing is not more harmful than contact with other parts of vehicle interior.

CRASH SEVERITY: The matched pair analysis approach takes into account crash severity, since both ejected and non-ejected occupants are in the same crash.

RESTRAINT USE: Only data on crashes in which the occupants were reported as using no restraints entered into the analysis.

Ejection is primarily associated with non-restrained motor vehicle occupants.

Data on occupants reported as restrained is unreliable due to overreporting of the belt use.

SEATING POSITION: Benefits of ejection prevention are analyzed separately for drivers and passengers.

The risk of injury and fatality are different for drivers and passengers.

BASIC CALCULATION:

Consider all pairs, say N_1 , involving ejected driver and ejected passenger and all pairs, say N_2 , involving non-ejected driver and ejected passenger.

Calculate the frequency of fatalities among drivers in the first group (say, d_1 out of N_1), and in the second group (say, d_2 out of N_2).

U.S. Department of Transportation National Highway Traffic Safety Administration

Relative risk of death for ejected compared with non-ejected driver is:

$\mathbf{R} = \frac{\mathbf{d}}{\mathbf{n}} / \mathbf{N}_{1}$ $\mathbf{d}_{2} / \mathbf{N}_{2}$

Ratio of the probability of death for ejected driver to the probability of death for the non-ejected driver.

Data on passengers serve in exposure normalizing role.

- If the roles of drivers and passengers are reversed, we can obtain an analogous estimate of the relative risk of death for passengers (using information on drivers to normalize for risk exposure).
- If instead of fatalities, the frequencies of serious (incapacitating)injuries are considered, the same method allows to calculate the relative risk of serious injury for ejected compared with non-ejecteddrivers (or passengers).

That is, let a_1 and a_2 be the counts of A-injuries on KABC0 scale. In this calculation, only the data on non-fatal accidents are used.

Relative risk of serious injury for ejected compared with non-ejected driver is:

$\frac{a}{R} = \frac{a}{N} \frac{N}{N}$

Ratio of the probability of serious injury for ejected driver to the probability of serious injury for the non-ejected driver.

Evans (1986) suggested the above type of calculation, calling it double-pair comparison method.

EVANS CALCULATION:

Consider $r_1 = \frac{d_1}{p_1}$ - driver to passenger fatality ratio when driver is ejected and passenger is ejected, and $r_2 = \frac{d_2}{p_2}$ - driver to passenger fatality ratio when driver is not ejected and passenger is ejected.

U.S. Department of Transportation National Highway Traffic Safety Administration

Then we can estimate:

Ratio of the probability of death for ejected driver to the probability of death for the non-ejected driver.

The estimate of the relative risk of fatality *R* can be used to obtain fractional reduction in fatalities due to ejection prevention

 $f=1-\frac{1}{R}$

(fraction of ejected fatalities that would be prevented by eliminating ejection).

If *R* is the relative risk of incapacitating injury, then *f* is the fractional reduction in incapacitating injuries.

DATA: The analysis utilized the State Data files of the National Center for Statistics and Analysis at NHTSA.

State data files - records of all police accidents reports filed in the submitting states (currently, 17 states participate in State Data Program).

Problems with state data: different reporting criteria and different data elements coded in different states.

States chosen for the present analysis: California, Florida, Georgia, Indiana, Louisiana, Maryland, Missouri, Ohio, Pennsylvania, Utah, Virginia, Washington.

U.S. Department of Transportation National Highway Traffic Safety Administration

KABC0 scale:

- K fatality
- A incapacitating injury
- **B** non-incapacitating evident injury
- C possible injury
- 0 no injury

RESULTS: Distribution of injuries for drivers compared with passengers. Complete ejections.

Driver: completely ejected Passenger: not ejected (1,535 pairs)					
	K A B C O				
Driver	15.37%	36.22%	27.30%	10.68%	10.42%
Passenger	5.34%	21.56%	36.94%	17.39%	18.76%

Driver: not ejected Passenger: completely ejected (2,167 pairs)					
	K	A	8	C	0
Driver	4.06%	20.12%	30.18%	16.29%	29.35%
Passenger	11.95%	37.24%	31.93%	13.98%	4.89%

Partial ejections.

Driver: partially ejected Passenger: not ejected (464 pairs)					
K A B C O					
Driver	25.22%	31.47%	28.01%	11.64%	3.66%
Passenger	8.19%	23.28%	34.48%	20.47%	13.58%

Driver: not ejected Passenger: partially ejected (583 pairs)					pairs)
	K	Α	8	C	0
Driver	6.17%	24.36%	33.28%	15.09%	21.10%
Passenger	17.32%	37.05%	32.76%	8.75%	4.12%

All ejections (partial or complete).

Driver: ejected Passenger: not ejected (1999 pairs)					s)
	K	A	••	C	0
Driver	17.66%	35.12%	27.46%	10.91%	8.85%
Passenger	6.00%	21.96%	36.37%	18.11%	17.56%

Driver: completely ejected Passenger: not ejected (2750 pairs)					
	K	Α	••	C	0
Driver	4.51%	21.02%	30.84%	16.04%	27.60%
Passenger	13.09%	37.20%	32.11%	12.87%	4.73%

Relative risk of fatality and reduction in fatalities.

Complete Ejections					
Relative Risk of Fractional Reduction in Fatality Fatalities					
Driver	3.46 (0.94)	71.06% (7.85%)			
Passenger	3.10 (0.84)	67.76% (8.71%)			

Partial Ejections					
Relative Risk of Fractional Reduction in Fatality Fatalities					
Driver	3.59 (0.85)	72.15% (6.57%)			
Passenger	3.15 (0.74)	68.27% (7.49%)			

All Ejections				
	Relative Risk of Fatality	Fractional Reduction in Fatalities		
Driver	3.55 (0.83)	71.85% (6.56%)		
Passenger	3.15 (0.73)	68.23% (7.40%)		

Relative risk of incapacitating injury and fractional reduction.

Complete Ejections						
	Relative Risk of Fractional Reduction in Incapacitating Injury Incapacitating Injuries					
Driver	2.05 (0.52)	51.20% (12.40%)				
Passenger	1.80 (0.46)	44.29% (14.23%)				

Partial Ejections				
	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries		
Driver	2.47 (0.57)	59.54% (9.27%)		
Passenger	2.00 (0.46)	50.05% (11.45%)		

All Ejections				
	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries		
Driver	2.38 (0.54)	58.11% (9.55%)		
Passenger	1.95 (0.44)	48.64% (11.72%)		

Complete Ejections - Light Truck				
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries
Driver	4.13 (1.48)	75.80% (8.65%)	3.14 (1.02)	68.17% (10.36%)
Passenger	3.94 (1.46)	74.60% (9.42%)	1.89 (0.62)	47.04% (17.27%)
Partial Ejections - Light Truck				
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries
Driver	Relative Risk of Fatality 6.42 (1.83)	Fractional Reduction in Fatalities 84.43% (4.44%)	Relative Risk of Incapacitating Injury 2.75 (0.66)	Fractional Reduction in Incapacitating Injuries 63.58% (8.82%)

All Ejections - Light Truck				
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries
Driver	5.62 (1.49)	82.19% (4.73%)	2.76 (0.66)	63.76% (8.65%)
Passenger	4.66 (1.24)	78.55% (5.70%)	2.22 (0.53)	54.87% (10.82%)

	Comp	olete Ejection	s - Passenger Car	S
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries
Driver	3.25 (0.94)	69.19% (8.92%)	1.95 (0.52)	48.71% (13.62%)
Passenger	3.06 (0.87)	67.29% (9.35%)	1.81 (0.48)	44.69% (14.68%)
Partial Ejections - Passenger Cars				
	Part	tial Ejections	- Passenger Cars	
	Part Relative Risk of Fatality	tial Ejections Fractional Reduction in Fatalities	- Passenger Cars Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries
Driver	Part Relative Risk of Fatality 2.84 (0.68)	tial Ejections Fractional Reduction in Fatalities 64.74% (8.44%)	 Passenger Cars Relative Risk of Incapacitating Injury 2.85 (0.69) 	Fractional Reduction in Incapacitating Injuries 64.97% (8.42%)

All Ejections - Passenger Cars				
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries
Driver	2.94 (0.69)	66.06% (8.00%)	2.37 (0.55)	57.83% (9.70%)
Passenger	2.66 (0.63)	62.46% (8.85%)	1.88 (0.43)	46.79% (12.26%)

Complete Ejections - Front Impact				
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries
Driver	3.96 (1.46)	74.72% (9.30%)	2.00 (0.63)	49.88% (15.84%)
Passenger	3.29 (1.18)	69.64% (10.85%)	1.74 (0.56)	42.49% (18.40%)
Partial Ejections - Front Impact				
	Pa	rtial Ejection	s - Front Impact	
	Pa Relative Risk of Fatality	rtial Ejection Fractional Reduction in Fatalities	s - Front Impact Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries
Driver	Pa Relative Risk of Fatality 3.41 (0.94)	rtial Ejection Fractional Reduction in Fatalities 70.64% (8.06%)	s - Front Impact Relative Risk of Incapacitating Injury 2.40 (0.59)	Fractional Reduction in Incapacitating Injuries 58.27% (10.32%)

All Ejections - Front Impact				
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries
Driver	3.55 (0.93)	71.85% (7.33%)	2.34 (0.56)	57.18% (10.33%)
Passenger	3.17 (0.82)	68.46% (8.21%)	1.73 (0.42)	42.08% (14.01%)

All Ejections - Rear Impact					
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries	
Driver	3.31 (1.69)	69.75% (15.42%)	1.94 (0.69)	48.39% (18.25%)	
Passenger	3.08 (1.57)	67.52% (16.61%)	1.56 (0.55)	35.69% (22.78%)	

Complete Ejections - Left Side Impact					
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries	
Driver	1.60 (0.82)	37.46% (32.24%)	2.16 (1.02)	53.78% (21.73%)	
Passenger	3.15 (1.64)	68.22% (16.52%)	1.61 (0.83)	37.74% (32.09%)	
Partial Ejections - Left Side Impact					
	Part	ial Ejections	- Left Side Impact		
	Part Relative Risk of Fatality	ial Ejections Fractional Reduction in Fatalities	- Left Side Impact Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries	
Driver	Part Relative Risk of Fatality 2.34 (0.88)	ial Ejections Fractional Reduction in Fatalities 57.35% (16.07%)	- Left Side Impact Relative Risk of Incapacitating Injury 2.11 (0.81)	Fractional Reduction in Incapacitating Injuries 52.55% (18.12%)	

All Ejections - Left Side Impact					
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries	
Driver	2.10 (0.70)	52.48% (15.91%)	1.80 (0.51)	44.59% (15.54%)	
Passenger	3.46 (1.15)	71.06% (9.60%)	2.23 (0.64)	55.18% (12.88%)	

Complete Ejections - Right Side Impact					
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries	
Driver	4.84 (2.23)	79.33% (9.54%)	1.97 (0.88)	49.16% (22.78%)	
Passenger	1.81 (0.91)	44.70% (27.81%)	1.27 (0.56)	21.30% (34.38%)	
	Partis	al Ejections -	Right Side Impac	2	
	Relative Risk	Fractional Reduction in	Relative Risk of Incapacitating	Fractional Reduction	
	of Fatality	Fatalities	Injury	Injuries	
Driver	of Fatality 3.21 (1.05)	Fatalities 68.85% (10.23%)	Injury 3.37 (0.99)	Injuries 70.32% (8.72%)	

All Ejections - Right Side Impact					
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries	
Driver	3.54 (1.07)	71.73% (8.55%)	3.06 (0.85)	67.37% (9.07%)	
Passenger	1.80 (0.54)	44.29% (16.90%)	1.69 (0.47)	40.90% (16.41%)	

Complete Ejections - Rollover					
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries	
Driver	7.75 (4.13)	87.09% (6.87%)	2.03 (0.78)	50.75% (18.87%)	
Passenger	9.70 (5.38)	89.70% (5.72%)	2.17 (0.86)	53.96% (18.27%)	
Partial Ejections - Rollover					
		Partial Ejectio	ns - Rollover		
	Relative Risk of Fatality	Partial Ejectio Fractional Reduction in Fatalities	ns - Rollover Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries	
Driver	Relative Risk of Fatality 6.94 (2.28)	Partial Ejectio Fractional Reduction in Fatalities 85.60% (4.73%)	ns - Rollover Relative Risk of Incapacitating Injury 3.21 (0.81)	Fractional Reduction in Incapacitating Injuries 68.87% (7.90%)	

All Ejections - Rollover					
	Relative Risk of Fatality	Fractional Reduction in Fatalities	Relative Risk of Incapacitating Injury	Fractional Reduction in Incapacitating Injuries	
Driver	7.16 (2.24)	86.03% (4.37%)	3.08 (0.77)	67.52% (8.10%)	
Passenger	9.94 (3.14)	89.94% (3.17%)	2.63 (0.67)	62.60% (9.38%)	

For Further Information

Phone

- Stephen Summers (202) 366-4712 OF
- Clarke Harper (202) 366-4916
- NHTSA Docket 95-41GR
- Email

ssummers@nhtsa.dot.gov or charper@nhtsa.dot.gov

Via www http://www.nhtsa.dot.gov/nrd/nrd10/nrd11/glazing.html

Future Work

Further Development of Component test
Repeatability
Sled Testing
Injury Potential for Belted Occupants
Additional Side and Planar accident analysis
Current Door/Window designs

Research Schedule

- Revisit Rulemaking and Research Options at the end of 1996
- Potential for another Public Meeting
 - Depends upon feedback and comments

How to Submit Comments

Comments should be submitted in writing to

Docket Section National Highway Traffic Safety Administration Room 5109 400 7th Street,SW Washington, DC 20590.

Please refer to docket number 95-41GR when submitting written comments.